调用阿里云API实现证件照生成
目录
- 1. 作者介绍
- 2. 算法介绍
- 2.1 阿里云介绍
- 2.2 证件照生成背景
- 2.3 图像分割算法
- 3.调用阿里云API进行证件照生成实例
- 3.1 准备工作
- 3.2 实验代码
- 3.3 实验结果与分析
- 参考(可供参考的链接和引用文献)
1. 作者介绍
王逸腾,男,西安工程大学电子信息学院,2022级硕士研究生
研究方向:三维手部姿态和网格估计
电子邮件:2978558373@qq.com
路治东,男,西安工程大学电子信息学院,2022级研究生,张宏伟人工智能课题组
研究方向:机器视觉与人工智能
电子邮件:2063079527@qq.com
2. 算法介绍
2.1 阿里云介绍
阿里云创立于2009年,是全球领先的云计算及人工智能科技公司,致力于以在线公共服务的方式,提供安全、可靠的计算和数据处理能力,让计算和人工智能成为普惠科技。阿里云服务着制造、金融、政务、交通、医疗、电信、能源等众多领域的领军企业,包括中国联通、12306、中石化、中石油、飞利浦、华大基因等大型企业客户,以及微博、知乎、锤子科技等明星互联网公司。在天猫双11全球狂欢节、12306春运购票等极富挑战的应用场景中,阿里云保持着良好的运行纪录
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本
猿辅导、中泰证券、小米、媛福达、Soul和当贝,这些我们耳熟能详的APP或企业中,阿里云给他们提供了性能强大、安全、稳定的云产品与服务。
计算,容器,存储,网络与CDN,安全、中间件、数据库、大数据计算、人工智能与机器学习、媒体服务、企业服务与云通信、物联网、开发工具、迁移与运维管理和专有云等方面,阿里云都做的很不错。
2.2 证件照生成背景
传统做法:通常是人工进行P图,不仅费时费力,而且效果也很难保障,容易有瑕疵。
机器学习做法:通常利用边缘检测算法进行人物轮廓提取。
深度学习做法:通常使用分割算法进行人物分割。例如U-Net网络。
2.3 图像分割算法
《BiHand: Recovering Hand Mesh with Multi-stage Bisected Hourglass Networks》里的SeedNet网络是很经典的网络,它把分割任务转变成多个任务。作者的思想是:尽可能的通过多任务学习收拢语义,这样或许会分割的更好或姿态估计的更好。其实这个模型就是多阶段学习网络的一部分,作者想通过中间监督来提高网络的性能。
我提取bihand网络中的SeedNet与训练权重,进行分割结果展示如下
我是用的模型不是全程的,是第一阶段的。为了可视化出最好的效果,我把第一阶段也就是SeedNet网络的输出分别采用不同的方式可视化。
从左边数第一张图为原图,第二张图为sigmoid后利用plt.imshow(colored_mask, cmap=‘jet’)进行彩色映射。第三张图为网络输出的张量经过sigmoid后,二色分割图,阀闸值0.5。第四张为网络的直接输出,利用直接产生的张量图进行颜色映射。第五张为使用sigmoid处理张量后进行的颜色映射。第六张为使用sigmoid处理张量后进行0,1分割掩码映射。使用原模型和网络需要添加很多代码。下面为修改后的的代码:
下面为修改后的net_seedd代码:# Copyright (c) Lixin YANG. All Rights Reserved.
r"""
Networks for heatmap estimation from RGB images using Hourglass Network
"Stacked Hourglass Networks for Human Pose Estimation", Alejandro Newell, Kaiyu Yang, Jia Deng, ECCV 2016
"""
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from skimage import io,transform,util
from termcolor import colored, cprintfrom bihand.models.bases.bottleneck import BottleneckBlock
from bihand.models.bases.hourglass import HourglassBisected
import bihand.utils.func as func
import matplotlib.pyplot as pltfrom bihand.utils import misc
import matplotlib.cm as cm
def color_mask(output_ok):# 颜色映射cmap = plt.cm.get_cmap('jet')# 将张量转换为numpy数组mask_array = output_ok.detach().numpy()# 创建彩色图像cmap = cm.get_cmap('jet')colored_mask = cmap(mask_array)return colored_mask# 可视化# plt.imshow(colored_mask, cmap='jet')# plt.axis('off')# plt.show()
def two_color(mask_tensor):# 将张量转换为numpy数组mask_array = mask_tensor.detach().numpy()# 将0到1之间的值转换为二值化掩码threshold = 0.5 # 阈值,大于阈值的为白色,小于等于阈值的为黑色binary_mask = np.where(mask_array > threshold, 1, 0)return binary_mask# 可视化# plt.imshow(binary_mask, cmap='gray')# plt.axis('off')# plt.show()
class SeedNet(nn.Module):def __init__(self,nstacks=2,nblocks=1,njoints=21,block=BottleneckBlock,):super(SeedNet, self).__init__()self.njoints = njointsself.nstacks = nstacksself.in_planes = 64self.conv1 = nn.Conv2d(3, self.in_planes, kernel_size=7, stride=2, padding=3, bias=True)self.bn1 = nn.BatchNorm2d(self.in_planes)self.relu = nn.ReLU(inplace=True)self.maxpool = nn.MaxPool2d(2, stride=2)self.layer1 = self._make_residual(block, nblocks, self.in_planes, 2*self.in_planes)# current self.in_planes is 64 * 2 = 128self.layer2 = self._make_residual(block, nblocks, self.in_planes, 2*self.in_planes)# current self.in_planes is 128 * 2 = 256self.layer3 = self._make_residual(block, nblocks, self.in_planes, self.in_planes)ch = self.in_planes # 256hg2b, res1, res2, fc1, _fc1, fc2, _fc2= [],[],[],[],[],[],[]hm, _hm, mask, _mask = [], [], [], []for i in range(nstacks): # 2hg2b.append(HourglassBisected(block, nblocks, ch, depth=4))res1.append(self._make_residual(block, nblocks, ch, ch))res2.append(self._make_residual(block, nblocks, ch, ch))fc1.append(self._make_fc(ch, ch))fc2.append(self._make_fc(ch, ch))hm.append(nn.Conv2d(ch, njoints, kernel_size=1, bias=True))mask.append(nn.Conv2d(ch, 1, kernel_size=1, bias=True))if i < nstacks-1:_fc1.append(nn.Conv2d(ch, ch, kernel_size=1, bias=False))_fc2.append(nn.Conv2d(ch, ch, kernel_size=1, bias=False))_hm.append(nn.Conv2d(njoints, ch, kernel_size=1, bias=False))_mask.append(nn.Conv2d(1, ch, kernel_size=1, bias=False))self.hg2b = nn.ModuleList(hg2b) # hgs: hourglass stackself.res1 = nn.ModuleList(res1)self.fc1 = nn.ModuleList(fc1)self._fc1 = nn.ModuleList(_fc1)self.res2 = nn.ModuleList(res2)self.fc2 = nn.ModuleList(fc2)self._fc2 = nn.ModuleList(_fc2)self.hm = nn.ModuleList(hm)self._hm = nn.ModuleList(_hm)self.mask = nn.ModuleList(mask)self._mask = nn.ModuleList(_mask)def _make_fc(self, in_planes, out_planes):bn = nn.BatchNorm2d(in_planes)conv = nn.Conv2d(in_planes, out_planes, kernel_size=1, bias=False)return nn.Sequential(conv, bn, self.relu)def _make_residual(self, block, nblocks, in_planes, out_planes):layers = []layers.append( block( in_planes, out_planes) )self.in_planes = out_planesfor i in range(1, nblocks):layers.append(block( self.in_planes, out_planes))return nn.Sequential(*layers)def forward(self, x):l_hm, l_mask, l_enc = [], [], []x = self.conv1(x) # x: (N,64,128,128)x = self.bn1(x)x = self.relu(x)x = self.layer1(x)x = self.maxpool(x) # x: (N,128,64,64)x = self.layer2(x)x = self.layer3(x)for i in range(self.nstacks): #2y_1, y_2, _ = self.hg2b[i](x)y_1 = self.res1[i](y_1)y_1 = self.fc1[i](y_1)est_hm = self.hm[i](y_1)l_hm.append(est_hm)y_2 = self.res2[i](y_2)y_2 = self.fc2[i](y_2)est_mask = self.mask[i](y_2)l_mask.append(est_mask)if i < self.nstacks-1:_fc1 = self._fc1[i](y_1)_hm = self._hm[i](est_hm)_fc2 = self._fc2[i](y_2)_mask = self._mask[i](est_mask)x = x + _fc1 + _fc2 + _hm + _maskl_enc.append(x)else:l_enc.append(x + y_1 + y_2)assert len(l_hm) == self.nstacksreturn l_hm, l_mask, l_encif __name__ == '__main__':#a = torch.randn(10, 3, 256, 256)# SeedNetmodel = SeedNet()# output1,output2,output3 = SeedNetmodel(a)# print(output1,output2,output3)#total_params = sum(p.numel() for p in SeedNetmodel.parameters())/1000000#print("Total parameters: ", total_params)pretrained_weights_path = 'E:/bihand/released_checkpoints/ckp_seednet_all.pth.tar'img_rgb_path=r"E:\FreiHAND\training\rgb\00000153.jpg"img=io.imread(img_rgb_path)resized_img = transform.resize(img, (256, 256), anti_aliasing=True)img256=util.img_as_ubyte(resized_img)#plt.imshow(resized_img)#plt.axis('off') # 关闭坐标轴#plt.show()''' implicit HWC -> CHW, 255 -> 1 '''img1 = func.to_tensor(img256).float() #转换为张量并且进行标准化处理''' 0-mean, 1 std, [0,1] -> [-0.5, 0.5] '''img2 = func.normalize(img1, [0.5, 0.5, 0.5], [1, 1, 1])img3 = torch.unsqueeze(img2, 0)ok=img3print(img.shape)SeedNetmodel = SeedNet()misc.load_checkpoint(SeedNetmodel, pretrained_weights_path)#加载权重output1, output2, output3 = SeedNetmodel(img3)#mask_tensor = torch.rand(1, 64, 64)output=output2[1] # 1,1,64,64output_1=output[0]# 1,64,64output_ok=torch.sigmoid(output_1[0])output_real=output_1[0].detach().numpy()#直接产生的张量图color_mask=color_mask(output_ok) #显示彩色分割图two_color=two_color(output_ok)#显示黑白分割图see=output_ok.detach().numpy() # 使用Matplotlib库显示分割掩码# plt.imshow(see, cmap='gray')# plt.axis('off')# plt.show()# print(output1, output2, output3)images = [resized_img, color_mask, two_color,output_real,see,see]rows = 1cols = 4# 创建子图并展示图像fig, axes = plt.subplots(1, 6, figsize=(30, 5))# 遍历图像列表,并在每个子图中显示图像for i, image in enumerate(images):ax = axes[i] if cols > 1 else axes # 如果只有一列,则直接使用axesif i ==5:ax.imshow(image, cmap='gray')else:ax.imshow(image)ax.imshowax.axis('off')# 调整子图之间的间距plt.subplots_adjust(wspace=0.1, hspace=0.1)# 展示图像plt.show()
上述的代码文件是在bihand/models/net_seed.py中,全部代码链接在https://github.com/lixiny/bihand。
把bihand/models/net_seed.p中的代码修改为我提供的代码即可使用作者训练好的模型和进行各种可视化。(预训练模型根据作者代码提示下载)
3.调用阿里云API进行证件照生成实例
3.1 准备工作
1.找到接口
进入下面链接即可快速访问
link
2.购买试用包
3.查看APPcode
4.下载代码
5.参数说明
3.2 实验代码
# !/usr/bin/python
# encoding: utf-8
"""
===========================证件照制作接口===========================
"""import requests
import json
import base64
import hashlibclass Idphoto:def __init__(self, appcode, timeout=7):self.appcode = appcodeself.timeout = timeoutself.make_idphoto_url = 'https://idp2.market.alicloudapi.com/idphoto/make'self.headers = {'Authorization': 'APPCODE ' + appcode,}def get_md5_data(self, body):"""md5加密:param body_json::return:"""md5lib = hashlib.md5()md5lib.update(body.encode("utf-8"))body_md5 = md5lib.digest()body_md5 = base64.b64encode(body_md5)return body_md5def get_photo_base64(self, file_path):with open(file_path, 'rb') as fp:photo_base64 = base64.b64encode(fp.read())photo_base64 = photo_base64.decode('utf8')return photo_base64def aiseg_request(self, url, data, headers):resp = requests.post(url=url, data=data, headers=headers, timeout=self.timeout)res = {"status_code": resp.status_code}try:res["data"] = json.loads(resp.text)return resexcept Exception as e:print(e)def make_idphoto(self, file_path, bk, spec="2"):"""证件照制作接口:param file_path::param bk::param spec::return:"""photo_base64 = self.get_photo_base64(file_path)body_json = {"photo": photo_base64,"bk": bk,"with_photo_key": 1,"spec": spec,"type": "jpg"}body = json.dumps(body_json)body_md5 = self.get_md5_data(body=body)self.headers.update({'Content-MD5': body_md5})data = self.aiseg_request(url=self.make_idphoto_url, data=body, headers=self.headers)return dataif __name__ == "__main__":file_path = "图片地址"idphoto = Idphoto(appcode="你的appcode")d = idphoto.make_idphoto(file_path, "red", "2")print(d)
3.3 实验结果与分析
原图片
背景为红色生成的证件照
背景为蓝色生成的证件照
另外尝试了使用柴犬照片做实验,也生成了证件照
原图
背景为红色生成的证件照
参考(可供参考的链接和引用文献)
1.参考:BiHand: Recovering Hand Mesh with Multi-stage Bisected Hourglass Networks(BMVC2020)
论文链接:https://arxiv.org/pdf/2008.05079.pdf
相关文章:
调用阿里云API实现证件照生成
目录 1. 作者介绍2. 算法介绍2.1 阿里云介绍2.2 证件照生成背景2.3 图像分割算法 3.调用阿里云API进行证件照生成实例3.1 准备工作3.2 实验代码3.3 实验结果与分析 参考(可供参考的链接和引用文献) 1. 作者介绍 王逸腾,男,西安工…...
PHP 转换 excel中读取的时间
首先,我们需要知道PHPExcel的时间和日期格式是以Excel内部的“1900年1月1日”为基础,以天为单位来计算的。即Excel日期与PHP时间戳之间存在一个时间偏移量。通过查阅PHPExcel的官方文档,我们可以得到以下的计算公式: // 读取exce…...
Cmake工具的简单使用
引言 本篇文章讲述如何简单的使用cmake工具构建一个项目,帮助入门的c新手学会如何使用cmake. 我们在Clion新创建一个项目时,会发现,除了main.cpp文件之外,还存在一个build-debug目录和一个CMakelists.txt文件,如图: …...
html选择器
基本选择器 基本选择器 : 标签选择器 , 类选择器 , ID选择器 标签选择器 代码: <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta http-equiv"X-UA-Compatible" content"IEed…...
Leetcode 剑指 Offer II 030. 插入、删除和随机访问都是 O(1) 的容器
题目难度: 中等 原题链接 今天继续更新 Leetcode 的剑指 Offer(专项突击版)系列, 大家在公众号 算法精选 里回复 剑指offer2 就能看到该系列当前连载的所有文章了, 记得关注哦~ 题目描述 设计一个支持在平均 时间复杂度 O(1) 下,执行以下操作…...
django实现读取数据导出生成excel表格
目录 一、简单示例: 1.创建文件对象: 2.添加工作表: 3.写入数据: 二、实践出真理 需要先安装xlwt模块 pip install -i https://pypi.douban.com/simple xlwt一、简单示例: import xlwt# 创建一个Excel文件对象 …...
DevOps系列文章之 Docker-compose
一,Docker-compose全集 1,Docker-compose简介 Docker-Compose项目是Docker官方的开源项目,负责实现对Docker容器集群的快速编排。 Docker-Compose将所管理的容器分为三层,分别是工程(project),…...
Vue Router入门:轻松构建单页应用程序
Vue.js是一种流行的前端JavaScript框架,可以让开发人员轻松构建动态用户界面。Vue.js的一个关键特性是其路由系统,它使得开发人员可以轻松创建具有多个视图和页面的单页应用程序(SPA)。在本文中,我们将探讨如何使用Vue Router在Vue.js中构建SPA。我们将介绍如何安装和配置…...
ITSM 如何帮助制造业企业
ITSM在现代制造业中的作用 在过去的几年中,制造业已经看到了快速的数字化,以智能制造技术改进生产技术。在工业4.0和工业5.0的推动下,制造商正在摆脱陈旧 以及利用物联网、人工智能、机器学习和大数据等先进技术的互联智能制造系统ÿ…...
leecode
leecode20,有效的括号,栈 class Solution:def isValid(self, s: str) -> bool:def check(ch1,ch2):if ch1 [ and ch2 ]:return Trueelif ch1 ( and ch2 ):return Trueelif ch1 { and ch2 }:return Trueelse:return Falsestack []for i in ran…...
2023-06-09 LeetCode每日一题(修改图中的边权)<未来补全>
2023-06-09每日一题 一、题目编号 2699. 修改图中的边权二、题目链接 点击跳转到题目位置 三、题目描述 给你一个 n 个节点的 无向带权连通 图,节点编号为 0 到 n - 1 ,再给你一个整数数组 edges ,其中 edges[i] [ai, bi, wi] 表示节点…...
Linux 应用程序信号量使用实战
背景 在项目实施过程中,有个机制需要做两个线程之间的同步。 具体需求如下: 首先,线程1需要把资源读取到缓存 其次,线程2才可以操作这块缓存 上述两个动作顺序交替重复。 思路 使用信号量解决思路,申请两个信号…...
【Java多线程进阶】synchronized工作原理
前言 本期讲解 synchronized 工作的原理以及常见的锁优化机制,相信大家在看完这篇博文后对 synchronized 工作流程有一定的理解。话不多说,让我们快速进入学习吧~ 目录 1. 锁的工作流程 2. 偏向锁 3. 轻量级锁和重量级锁 3.1 轻量级锁 3.2 重量级锁…...
C语言经典题目(三)
C站的小伙伴们,大家好呀!😊😊✨✨这一篇是C语言之经典题目篇,除程序设计,还有一些不错的程序分析,快来和我一起进入C语言的世界吧!✨✨✨ 💕C语言其他刷题篇在这里哦&…...
九、(补充文章四)Arcgis实现深度学习训练样本数据的批量制作——只靠原图+shp如何批量制作样本图片
之前写了一些个深度学习系列文 其中先是单张样本的制作方法 最后通过构造模型批量处理 大大提高了生成样本的速度 四、Arcgis实现深度学习河流训练样本数据的制作(使用软件批量获取样本图片)——对已经获取到的完整面状样本数据进行处理 但是这个方法不仅仅需要shp和原图 还需要…...
MKS SERVO4257D 闭环步进电机_系列8 CAN通讯示例
第1部分 产品介绍 MKS SERVO 28D/35D/42D/57D 系列闭环步进电机是创客基地为满足市场需求而自主研发的一款产品。具备脉冲接口和RS485/CAN串行接口,支持MODBUS-RTU通讯协议,内置高效FOC矢量算法,采用高精度编码器,通过位置反馈&a…...
UnityVR--组件9--视频组件VideoPlayer
目录 前言 参数解释 RenderMode渲染方式 VideoPlayer类中的API 前言 在之前的VR场景中已经使用过VideoPlayer播放视频(Unity.UI的交互(6)-播放视频),不过在VR中设置是有些不同的,这里更详细地说明一下V…...
Java 深拷贝和浅拷贝
Java 中的深拷贝和浅拷贝是针对对象复制而言的。 浅拷贝(Shallow Copy) 当对象进行浅拷贝时,只会复制对象本身和其中的基本数据类型属性,而不会复制引用对象的实际内容。具体而言,浅拷贝只会创建一个新的对象&#x…...
[ruby on rails] docker
docker安装 ubuntu14.04后自带docker安装包,可以直接安装 sudo apt-get updatesudo apt-get install -y docker.io# 安装后启动sudo service docker start查看docker信息 docker infodocker命令 sudo service docker start sudo service docker stop sudo servic…...
网络协议——STP协议是什么?是如何实现的?
作者:Insist-- 个人主页:insist--个人主页 作者会持续更新网络知识和python基础知识,期待你的关注 目录 一、STP协议是什么 二、为什么需要STP协议 三、STP的实现过程 编辑 1、选举跟桥 2、给非跟桥交换机选举跟端口 3、给每个网段选…...
【C++】智能指针 学习总结 |std::shared_ptr |std::unique_ptr | std::weak_ptr
文章目录 前言一、智能指针介绍二、普通指针和智能指针的比较案例三、std::shared_ptr四、std::unique_ptr五、std::weak_ptr六、std::shared_ptr |std::unique_ptr | std::weak_ptr三大智能指针的区别 前言 参考答案:chatgpt 一、智能指针介绍 智能指针是C的一种…...
iptables防火墙
文章目录 一.linux防火墙基础1.linux 包过滤防火墙概述1.1netfilter1.2 iptables 2.包过滤的工作层次2.1 通信的五元素和四元素 3.iptables 的表、链结构3.1 规则链3.2 默认包括5种规则链3.3 规则表3.4 默认包括4个规则表 二.数据包过滤的匹配流程1.规则表之间的顺序2.规则链之…...
properties、yaml作为配置文件的特点
说明:在软件开发中,经常需要把一些配置写在文件中,如数据库配置、MyBatis配置等。这样,后续如果数据库参数有改动,就可以避免直接对代码做修改,只要修改配置文件中关于数据库的配置。关于配置文件的选择&am…...
JavaSE-03 【流程控制语句】
文章目录 JavaSE-03 【流程控制语句】第一章 流程控制1.1 流程概述1.2 顺序结构 第二章 判断语句2.1 判断语句---if2.2 判断语句---if...else2.3 判断语句---if...else if ... else 第三章 选择语句3.1 选择语句--switch3.2 case的穿透性 第四章 循环语句4.1 循环概述4.2 循环语…...
笔记本电脑的BIOS是怎么保护安全的?
随着攻防技术的不断演进,像BIOS攻击、高级网络代码攻击等手段层出不穷,“受害者”也不仅限于企业级服务器、存储,很多魔爪也开始伸向了拥有商业机密数据的PC。 BIOS是Basic Input/Output System(基本输入/输出系统)的…...
Xubuntu之将rm删除内容移至回收站(一百七十七)
简介: CSDN博客专家,专注Android/Linux系统,分享多mic语音方案、音视频、编解码等技术,与大家一起成长! 优质专栏:Audio工程师进阶系列【原创干货持续更新中……】🚀 人生格言: 人生…...
STM32F407实现1588v2(ptpd)
硬件: STM32F407ZGT6开发板 软件: VSCode arm-none-eabi-gcc openOCD st-link 在github搜到一个在NUCLEO-F429ZI开发板上移植ptpd的example,因为和F407差别很小,所以就打算用这个demo移植到手头的开发板上。因为目前只需要…...
架构师如何找到自己的商业模式
作为一个架构师,必须要在有限的资源下最大化架构活动所带来的商业价值。对于任何一个架构活动而言,架构师的可用资源,包括商业成本、研发成本、时间成本、迁移成本等等,都是非常有限的。但架构活动就是要在这些限制条件之下&#…...
SQLServer2022安装(Windows),已验证
一、SQLServer2022下载 1、官网下载地址 SQL Server 下载 | Microsoft 2、下载安装包 2.1、选择Developer版本,立即下载。 2.2、打开下载文件夹,双击运行SQL2022-SSEI-Dev.exe 尝试运行SQL2022-SSEI-Dev.exe,会收到以下信息:“…...
facenet, dlib人脸识别,人体检测,云数据库mysql,QQ邮箱,手机验证码,语音播报
目录 部分代码展示: 录入部分 识别部分编辑 活体检测部分编辑 同步到云数据库MySQL 其他操作 部分图片展示: 完整代码加ui链接: 涉及到的一些知识点的文章 部分代码展示: 录入部分 识别部分 活体检测部分 同步到云数…...
常州全景网站制作/东莞网络推广平台
从2.0开始Spring Security对服务层的方法的安全有了实质性的改善。他提供对JSR-250的注解安全支持象框架原生的Secured注解一样好。从3.0开始你也可以使用新的基于表达式的注解。你可以应用安全到单独的bean,使用拦截方法元素去装饰Bean声明,或者你可以在整个服务层…...
如何做企业网站后台管理/网络推广引流
1. 迁移背景介绍目前我们的图数据库数据量为 顶点 20 亿,边 200 亿的规模。在迁移之前我们使用的 AgensGraph 数据库一个主库四个备库,机器的配置都比较高,256G 内存 SSD 的磁盘,单机数据量为 3T左右。在数据量比较小的情况下 Age…...
专做日淘的网站/最近三天的新闻大事摘抄
※ 写在前面Hi 各位,是我旅客君,又和大家见面了,大家还记得之前 MacBook 的体验评测吗?非常感谢大家对我的支持,这次就继续为大家带来这台 MacBook Pro 搭配显卡扩展坞的体验评测。如果还没有看过的可以先点击一下这个…...
wordpress和vue哪个好/网站定制开发
[收集]DotNetNuke(DNN)学习和应用资源合集 在想解决任何问题之前,请看看DNN的官方文档有没有答案。DNN官方文档:http://jaist.dl.sourceforge.net/sourceforge/dnn/DotNetNuke_4.4.1_Docs.zipDNN官方安装程序和官方模块下载(如果去DNN官网下…...
wordpress做社交网站/百度网盘下载
登录linux时出现黑屏的找到这篇解决SUSE的黑屏问题1、在启动时,GRUB上引导命令后面加上一个VGA791,这样进去屏幕分辩率就是1024*768。kernel (hd0,0)/linux root/dev/ram ramdisk_size65536 devfsmount,all vga791initrd (hd0,0)/initrdboot2、在黑屏时。…...
企业的网站开发费用如何入账/网络营销策划的流程
interactivePopGestureRecognizer是iOS7推出的解决VeiwController滑动后退的新功能,虽然很实用,但是坑也很多啊,用过的同学肯定知道问题在哪里,所以具体问题我就不描述了,这里只给出如何完美解决interactivePopGestureRecognizer卡住的问题. 当然我们要自定义UINavigationContr…...