当前位置: 首页 > news >正文

Lecture 20 Topic Modelling

目录

      • Topic Modelling
      • A Brief History of Topic Models
      • LDA
      • Evaluation
      • Conclusion

Topic Modelling

  • makeingsense of text

    • English Wikipedia: 6M articles
    • Twitter: 500M tweets per day
    • New York Times: 15M articles
    • arXiv: 1M articles
    • What can we do if we want to learn something about these document collections?
  • questions

    • What are the less popular topics on Wikipedia?
    • What are the big trends on Twitter in the past month?
    • How do the social issues evolve over time in New York Times from 1900s to 2000s?
    • What are some influential research areas?
  • topic models to the rescue

    • Topic models learn common, overlapping themes in a document collection
    • Unsupervised model
      • No labels; input is just the documents!
    • What’s the output of a topic model?
      • Topics: each topic associated with a list of words
      • Topic assignments: each document associated with a list of topics
  • what do topics look like

    • A list of words

    • Collectively describes a concept or subject

    • Words of a topic typically appear in the same set of documents in the corpus(words overlapping in documents) 在这里插入图片描述

    • Wikipedia topics(broad)在这里插入图片描述

    • Twitter topics(short,conversational) 在这里插入图片描述

    • New York Times topics 在这里插入图片描述

  • applications of topic models

    • Personalised advertising(e.g. types of products bought)
    • Search engine
    • Discover senses of polysemous words(e.g. apple: fruit, company, two different clusters)

A Brief History of Topic Models

  • latent semantic analysis 在这里插入图片描述

    • LSA: truncate 在这里插入图片描述

    • issues

      • Positive and negative values in the U U U and V T V^T VT
      • Difficult to interpret(negative values) 在这里插入图片描述
  • probabilistic LSA

    • based on a probabilistic model to get rid of negative values 在这里插入图片描述

    • issues

      • No more negative values!
      • PLSA can learn topics and topic assignment for documents in the train corpus
      • But it is unable to infer topic distribution on new documents
      • PLSA needs to be re-trained for new documents
  • latent dirichlet allocation(LDA)

    • Introduces a prior to the document-topic and topicword distribution
    • Fully generative: trained LDA model can infer topics on unseen documents!
    • LDA is a Bayesian version of PLSA

LDA

  • LDA

    • Core idea: assume each document contains a mix of topics
    • But the topic structure is hidden (latent)
    • LDA infers the topic structure given the observed words and documents
    • LDA produces soft clusters of documents (based on topic overlap), rather than hard clusters
    • Given a trained LDA model, it can infer topics on new documents (not part of train data) 在这里插入图片描述
  • input

    • A collection of documents
    • Bag-of-words
    • Good preprocessing practice:
      • Remove stopwords
      • Remove low and high frequency word types
      • Lemmatisation
  • output

    • Topics: distribution over words in each topic 在这里插入图片描述

    • Topic assignment: distribution over topics in each document 在这里插入图片描述

  • learning

    • How do we learn the latent topics?

    • Two main family of algorithms:

      • Variational methods
      • Sampling-based methods
    • sampling method (Gibbs)

      1. Randomly assign topics to all tokens in documents 在这里插入图片描述

      2. Collect topic-word and document-topic co-occurrence statistics based on the assignments

        • first give some psudo-counts in every cell of two matrix(smoothing,no event is 0) 在这里插入图片描述

        • collect co-occurrence statistics 在这里插入图片描述

      3. Go through every word token in corpus and sample a new topic:

        • delete current topic assigned to a word 在这里插入图片描述

        • update two matrices 在这里插入图片描述

        • compute the probability distribution to sample: P ( t i ∣ w , d ) ∝ P ( t i ∣ w ) P ( t i ∣ d ) P(t_i|w,d) \propto P(t_i|w)P(t_i|d) P(tiw,d)P(tiw)P(tid) ( P ( t i ∣ w ) → P(t_i|w) \to P(tiw) topic-word, P ( t i ∣ d ) → P(t_i|d) \to P(tid) document-topic) 在这里插入图片描述

          • P ( t 1 ∣ w , d ) = P ( t 1 ∣ m o u s e ) × P ( t 1 ∣ d 1 ) = 0.01 0.01 + 0.01 + 2.01 × 1.1 1.1 + 1.1 + 2.1 P(t_1|w,d)=P(t_1|mouse)\times{P(t_1|d_1)}=\frac{0.01}{0.01+0.01+2.01}\times{\frac{1.1}{1.1+1.1+2.1}} P(t1w,d)=P(t1mouse)×P(t1d1)=0.01+0.01+2.010.01×1.1+1.1+2.11.1
        • sample randomly based on the probability distribution

      4. Go to step 2 and repeat until convergence

      • when to stop
        • Train until convergence
        • Convergence = model probability of training set becomes stable
        • How to compute model probability?
          • l o g P ( w 1 , w 2 , . . . , w m ) = l o g ∑ j = 0 T P ( w 1 ∣ t j ) P ( t j ∣ d w 1 ) + . . . + l o g ∑ j = 0 T P ( w m ∣ t j ) P ( t j ∣ d w m ) logP(w_1,w_2,...,w_m)=log\sum_{j=0}^TP(w_1|t_j)P(t_j|d_{w_1})+...+log\sum_{j=0}^TP(w_m|t_j)P(t_j|d_{w_m}) logP(w1,w2,...,wm)=logj=0TP(w1tj)P(tjdw1)+...+logj=0TP(wmtj)P(tjdwm)
          • m = #word tokens
          • P ( w 1 ∣ t j ) → P(w_1|t_j) \to P(w1tj) based on the topic-word co-occurrence matrix
          • P ( t j ∣ d w 1 ) → P(t_j|d_{w_1}) \to P(tjdw1) based on the document-topic co-occurrence matrix
      • infer topics for new documents
        1. Randomly assign topics to all tokens in new/test documents 在这里插入图片描述

        2. Update document-topic matrix based on the assignments; but use the trained topic-word matrix (kept fixed) 在这里插入图片描述

        3. Go through every word in the test documents and sample topics: P ( t i ∣ w , d ) ∝ P ( t i ∣ w ) P ( t i ∣ d ) P(t_i|w,d) \propto P(t_i|w)P(t_i|d) P(tiw,d)P(tiw)P(tid)

        4. Go to step 2 and repeat until convergence

      • hyper-parameters
        • T T T: number of topic 在这里插入图片描述

        • β \beta β: prior on the topic-word distribution

        • α \alpha α: prior on the document-topic distribution

        • Analogous to k in add-k smoothing in N-gram LM

        • Pseudo counts to initialise co-occurrence matrix: 在这里插入图片描述

        • High prior values → \to flatter distribution 在这里插入图片描述

          • a very very large value would lead to a uniform distribution
        • Low prior values → \to peaky distribution 在这里插入图片描述

        • β \beta β: generally small (< 0.01)

          • Large vocabulary, but we want each topic to focus on specific themes
        • α \alpha α: generally larger (> 0.1)

          • Multiple topics within a document

Evaluation

  • how to evaluate topic models
    • Unsupervised learning → \to no labels
    • Intrinsic(内在的,固有的) evaluation:
      • model logprob / perplexity(困惑度,复杂度) on test documents
      • l o g L = ∑ W ∑ T l o g P ( w ∣ t ) P ( t ∣ d w ) logL=\sum_W\sum_TlogP(w|t)P(t|d_w) logL=WTlogP(wt)P(tdw)
      • p p l = e x p − l o g L W ppl=exp^{\frac{-logL}{W}} ppl=expWlogL
  • issues with perlexity
    • More topics = better (lower) perplexity
    • Smaller vocabulary = better perplexity
      • Perplexity not comparable for different corpora, or different tokenisation/preprocessing methods
    • Does not correlate with human perception of topic quality
    • Extrinsic(外在的) evaluation the way to go:
      • Evaluate topic models based on downstream task
  • topic coherence
    • A better intrinsic evaluation method

    • Measure how coherent the generated topics (blue more coherent than red)在这里插入图片描述

    • A good topic model is one that generates more coherent topics

  • word intrusion
    • Idea: inject one random word to a topic
      • {farmers, farm, food, rice, agriculture} → \to {farmers, farm, food, rice, cat, agriculture}
    • Ask users to guess which is the intruder word
    • Correct guess → \to topic is coherent
    • Try guess the intruder word in:
      • {choice, count, village, i.e., simply, unionist}
    • Manual effort; does not scale
  • PMI ≈ \approx coherence?
    • High PMI for a pair of words → \to words are correlated
      • PMI(farm, rice) ↑ \uparrow
      • PMI(choice, village) ↓ \downarrow
    • If all word pairs in a topic has high PMI → \to topic is coherent
    • If most topics have high PMI → \to good topic model
    • Where to get word co-occurrence statistics for PMI?
      • Can use same corpus for topic model
      • A better way is to use an external corpus (e.g. Wikipedia)
  • PMI
    • Compute pairwise PMI of top-N words in a topic
      • P M I ( t ) = ∑ j = 2 N ∑ i = 1 j − 1 l o g P ( w i , w j ) P ( w i ) P ( w j ) PMI(t)=\sum_{j=2}^N\sum_{i=1}^{j-1}log\frac{P(w_i,w_j)}{P(w_i)P(w_j)} PMI(t)=j=2Ni=1j1logP(wi)P(wj)P(wi,wj)
    • Given topic: {farmers, farm, food, rice, agriculture}
    • Coherence = sum PMI for all word pairs:
      • PMI(farmers, farm) + PMI(farmers, food) + … + PMI(rice, agriculture)
    • variants
      • Normalised PMI
        • N P M I ( t ) = ∑ j = 2 N ∑ i = 1 j − 1 l o g P ( w i , w j ) P ( w i ) P ( w j ) − l o g P ( w i , w j ) NPMI(t)=\sum_{j=2}^N\sum_{i=1}^{j-1}\frac{log\frac{P(w_i,w_j)}{P(w_i)P(w_j)}}{-logP(w_i,w_j)} NPMI(t)=j=2Ni=1j1logP(wi,wj)logP(wi)P(wj)P(wi,wj)
      • conditional probability (proved not as good as PMI)
        • L C P ( t ) = ∑ j = 2 N ∑ i = 1 j − 1 l o g P ( w i , w j ) P ( w i ) LCP(t)=\sum_{j=2}^N\sum_{i=1}^{j-1}log\frac{P(w_i,w_j)}{P(w_i)} LCP(t)=j=2Ni=1j1logP(wi)P(wi,wj)
    • example (PMI tends to favor rarer words, use NPMI to relieve this problem)在这里插入图片描述

Conclusion

  • Topic model: an unsupervised model for learning latent concepts in a document collection
  • LDA: a popular topic model
    • Learning
    • Hyper-parameters
  • How to evaluate topic models?
    • Topic coherence

相关文章:

Lecture 20 Topic Modelling

目录 Topic ModellingA Brief History of Topic ModelsLDAEvaluationConclusion Topic Modelling makeingsense of text English Wikipedia: 6M articlesTwitter: 500M tweets per dayNew York Times: 15M articlesarXiv: 1M articlesWhat can we do if we want to learn somet…...

ThreadPoolExecutor线程池

文章目录 一、ThreadPool线程池状态二、ThreadPoolExecutor构造方法三、Executors3.1 固定大小线程池3.2 带缓冲线程池3.3 单线程线程池 四、ThreadPoolExecutor4.1 execute(Runnable task)方法使用4.2 submit()方法4.3 invokeAll()4.4 invokeAny()4.5 shutdown()4.6 shutdownN…...

chatgpt赋能python:Python实践:如何升级pip

Python实践&#xff1a;如何升级pip Python作为一门高效的脚本语言&#xff0c;被广泛应用于数据分析、人工智能、Web开发等领域。而pip则是Python的包管理工具&#xff0c;是开发Python应用的必备工具。但是pip在使用过程中&#xff0c;有时候会出现版本不兼容或者出现漏洞等…...

【JavaEE进阶】mybatis

目录&#xff1a; 一、Mybatis是什么 三个映射关系如下图&#xff1a; 二、mybatis的使用&#xff08;前置工作简单案例&#xff09; 第一步&#xff1a;导入MAVEN依赖 第二步&#xff1a; 在spring项目当中新建数据源 第三步&#xff1a;新建一个实体类&#xff0c;是和…...

Redis的大key

什么是 redis 的大 key redis 的大 key 不是指存储在 redis 中的某个 key 的大小超过一定的阈值&#xff0c;而是该 key 所对应的 value 过大对于 string 类型来说&#xff0c;一般情况下超过 10KB 则认为是大 key&#xff1b;对于set、zset、hash 等类型来说&#xff0c;一般…...

MMPretrain

title: mmpretrain实战 date: 2023-06-07 16:04:01 tags: [image classification,mmlab] mmpretrain实战 [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ccTl9bOl-1686129437336)(null)] 主要讲解了安装,还有使用教程.安装教程直接参考官网.下面讲…...

栈和队列(数据结构刷题)[一]-python

文章目录 前言一、原理介绍二、用栈实现队列1.操作2.思路 三、关于面试考察栈里面的元素在内存中是连续分布的么&#xff1f; 前言 提到栈和队列&#xff0c;大家可能对它们的了解只停留在表面&#xff0c;再深入一点&#xff0c;好像知道又好像不知道的感觉。本文我将从底层实…...

【备战秋招】JAVA集合

集合 前言 一方面&#xff0c; 面向对象语言对事物的体现都是以对象的形式&#xff0c;为了方便对多个对象 的操作&#xff0c;就要 对对象进行存储。 另一方面&#xff0c;使用Array存储对象方面具有一些弊端&#xff0c;而Java 集合就像一种容器&#xff0c;可以动态地把多…...

setState详解

this. setState( [partialState], [callback]) 1.[partialState] :支持部分状态更改 this, setState({ x:100 //不论总共有多少状态&#xff0c;我们只修改了x&#xff0c;其余的状态不动 });callback :在状态更改/视图更新完毕后触发执行&#xff0c;也可以说只要执行了setS…...

Qt5.12.6配置Android Arm开发环境(windows)

1. 安装jdk1.8 2.安装Android Studio 并安装 SDK 与NDK SDK Tools 选择 26.0.3 SDK Platform 选择 Android SDK Platform 26 NDK选择19版本 安卓ARM环境配置成功如下: JDK1.8 , SDK 26 , NDK 19 在安装QT时要选择 ARMv7(32位CPU)与ARM64-v8a(64位CPU) 选择支持android平台…...

七、进程程序替换

文章目录 一、进程程序替换&#xff08;一&#xff09;概念&#xff08;二&#xff09;为什么程序替换&#xff08;三&#xff09;程序替换的原理&#xff08;四&#xff09;如何进行程序替换1. execl2. 引入进程创建——子进程执行程序替换&#xff0c;会不会影响父进程呢? &…...

C++核心编程——详解运算符重载

文章目录&#x1f4ac; 一.运算符重载基础知识①基本概念②运算符重载的规则③运算符重载形式④运算符重载建议 二.常用运算符重载①左移(<<)和右移(>>)运算符重载1️⃣重载后函数参数是什么&#xff1f;2️⃣重载的函数返回类型是什么&#xff1f;3️⃣重载为哪种…...

2023年前端面试汇总-CSS

1. CSS基础 1.1. CSS选择器及其优先级 对于选择器的优先级&#xff1a; 1. 标签选择器、伪元素选择器&#xff1a;1&#xff1b; 2. 类选择器、伪类选择器、属性选择器&#xff1a;10&#xff1b; 3. id 选择器&#xff1a;100&#xff1b; 4. 内联样式&#xff1a;1000&a…...

Java调用Pytorch实现以图搜图(附源码)

Java调用Pytorch实现以图搜图 设计技术栈&#xff1a; 1、ElasticSearch环境&#xff1b; 2、Python运行环境&#xff08;如果事先没有pytorch模型时&#xff0c;可以用python脚本创建模型&#xff09;&#xff1b; 1、运行效果 2、创建模型&#xff08;有则可以跳过&#xf…...

【EasyX】实时时钟

目录 实时时钟1. 绘制静态秒针2. 秒针的转动3. 根据实际时间转动4. 添加时针和分针5. 添加表盘刻度 实时时钟 本博客介绍利用EasyX实现一个实时钟表的小程序&#xff0c;同时学习时间函数的使用。 本文源码可从github获取 1. 绘制静态秒针 第一步定义钟表的中心坐标center&a…...

基于XC7Z100的PCIe采集卡(GMSL FMC采集卡)

GMSL 图像采集卡 特性 ● PCIe Gen2.0 X8 总线&#xff1b; ● 支持V4L2调用&#xff1b; ● 1路CAN接口&#xff1b; ● 6路/12路 GMSL1/2摄像头输入&#xff0c;最高可达8MP&#xff1b; ● 2路可定义相机同步触发输入/输出&#xff1b; 优势 ● 采用PCIe主卡与FMC子…...

Kibana:使用 Kibana 自带数据进行可视化(一)

在今天的练习中&#xff0c;我们将使用 Kibana 自带的数据来进行一些可视化的展示。希望对刚开始使用 Kibana 的用户有所帮助。 前提条件 如果你还没有安装好自己的 Elastic Stack&#xff0c;你可以参考如下的视频来开启 Elastic Stack 并进行下面的练习。你可以开通阿里云检…...

MySQL数据库基础 07

第七章 单行函数 1. 函数的理解1.1 什么是函数1.2 不同DBMS函数的差异1.3 MySQL的内置函数及分类 2. 数值函数2.1 基本函数2.2 角度与弧度互换函数2.3 三角函数2.4 指数与对数2.5 进制间的转换 3. 字符串函数4. 日期和时间函数4.1 获取日期、时间 4.2 日期与时间戳的转换 4.3 获…...

JVM | JVM垃圾回收

JVM | JVM垃圾回收 1、堆空间的基本结构2、内存分配和回收原则2.1、对象优先在 Eden 区分配2.2、大对象直接进入老年代2.3、长期存活的对象将进入老年代2.4、主要进行 gc 的区域2.5、空间分配担保3、死亡对象判断方法3.1、引用计数法3.2、可达性分析算法3.3、引用类型总结3.4、…...

avive零头撸矿

Avive 是一个透明的、自下而上替代自上而下的多元网络&#xff0c;旨在克服当前生态系统的局限性&#xff0c;实现去中心化社会。 aVive&#xff1a;一个基于 SBT 和市场的 deSoc&#xff0c;它使 dapps 能够与分散的位置 oracle 和 SBT 关系进行互操作。您的主权社交网络元宇宙…...

openGauss5.0之学习环境 Docker安装

文章目录 0.前言1. 准备软硬件安装环境1.1 软硬件环境要求1.2 修改操作系统配置1.2.1 关闭操作系统防火墙 1.3 设置字符集参数1.4 设置时区和时间&#xff08;可选&#xff09;关闭swap交换内存1.5 关闭RemoveIPC1.6 关闭HISTORY记录 2. 容器安装2. 1支持的架构和操作系统版本2…...

数据可视化大屏人员停留系统的开发实录(默认加载条件筛选、单击加载、自动刷新加载、异步加载数据)

项目需求 录入进入房间的相关数据&#xff1b;从进入时间开始计时&#xff0c;计算滞留房间的时间&#xff1b;定时刷新数据&#xff0c;超过30分钟的人数&#xff0c;进行红色告警&#xff1b; 实现流程 为了完整地实现上述需求&#xff0c;我们可以按照以下步骤开发&#…...

【Linux】-关于调试器gdb的介绍和使用

作者&#xff1a;小树苗渴望变成参天大树 作者宣言&#xff1a;认真写好每一篇博客 作者gitee:gitee 如 果 你 喜 欢 作 者 的 文 章 &#xff0c;就 给 作 者 点 点 关 注 吧&#xff01; 文章目录 前言一、Linux中的debug和release二、gdb的使用**1.进入调试****2.显示代码*…...

项目开发经验

hadoop 1.namenode中有专门的工作线程池用于处理与datanode的心跳信号 dfs.namenode.handler.count20 * log2(Clust 2.编辑日志存储路径 dfs.namenode.edits.dir 设置与镜像文件存储路径 dfs.namenode分开存放&#xff0c;可以达到提高并发 3.yarn参数调优&#xff0c;单个服…...

STM32——05-按键、时钟控制、中断复位 点亮LED灯

如何点亮一颗LED灯 编程实现点灯 常用的 GPIO HAL 库函数&#xff1a; void HAL_GPIO_Init ( GPIO_TypeDef * GPIOx , GPIO_InitTypeDef * GPIO_Init ); void HAL_GPIO_WritePin ( GPIO_TypeDef * GPIOx , uint16_t GPIO_Pin , GPIO_PinState PinState ); void HAL_GPIO_Togg…...

VBA下载二进制文件,文本读写

这里使用了vba如下两个对象&#xff1a; Microsoft.XMLHTTP&#xff1a;文件读写&#xff0c;可读写二进制&#xff0c;可指定编码,对于utf-8编码文本文件使用FSO的TextStream对象打开&#xff0c;读取到的内容可能会出现乱码&#xff0c;可以使用该对象打开;前期绑定添加引用…...

MongoDB结合Robo 3T 1.4.3的简单操作

MongoDB的简单操作结合Robo 3T 1.4.3工具进行查询。 常用的正则表达式 /* 29 */ 正则表达式 /\* [0-9]* \*/ "_id" : ObjectId("5f3d05cdfd2aa9a8a7"), 正则表达式 \"([^\"]*_id)\".*, 使用方法&#xff1a;查询结果去掉注释和不需要…...

【学习笔记】[AGC048D] Pocky Game

这是一个非平等博弈。但是只要求你判断胜负&#xff0c;本身也不是一道结论题&#xff0c;所以可以用 D P DP DP来解决。 结论&#xff1a;第一堆石子剩的越多&#xff0c;先手玩家获胜的概率越大。这直接引出了一个非常感性的结论&#xff1a;每次取石子时要么取一堆&#xf…...

Qgis中进行Shp和Excel属性连接实现百强县公共预算空间分析

前言 在之前的博文中&#xff0c;将2022的全国百强县一般公共预算收入的数据下载到了本地&#xff0c;博客原文地址&#xff1a;一种使用Java的快速将Web中表格转换成Excel的方法。对于不关注时空位置关系的一般分析&#xff0c;到此也就基本够用了。但是&#xff0c;如果站在全…...

ES6 新增的循环方法

在 ES6&#xff08;ECMAScript 2015&#xff09;中&#xff0c;新增了一些循环方法&#xff0c;这些方法可以帮助我们更方便地遍历数组、字符串、Set、Map 等数据结构。本文将介绍一些常用的 ES6 循环方法。 for…of 循环 for…of 循环是一种遍历可迭代对象的方法&#xff0c…...

wordpress外联插件/太原seo推广

亲爱的BCGSoft用户&#xff0c;我们非常高兴地宣布BCGControlBar Professional for MFC和BCGSuite for MFC v31.0正式发布&#xff01;全新的CBCGPMultiViewFrameWnd类&#xff08;实现多视图单文档界面&#xff09;、新增主题CBCGPNumericIndicatorImpl、在高DPI模式下改进的功…...

网易企业邮箱官网登录入口/苏州seo安严博客

Linux的SOCKET编程详解 1. 网络中进程之间如何通信 进 程通信的概念最初来源于单机系统。由于每个进程都在自己的地址范围内运行&#xff0c;为保证两个相互通信的进 程之间既互不干扰又协调一致工作&#xff0c;操作系统为进程通信提供了相应设施&#xff0c;如 UNIX BSD有&am…...

燕莎做网站/谷歌seo最好的公司

概述 basename 命令用于打印目录或者文件的基本名称。通常在 shell 脚本中用于获取文件名或目录名。 注&#xff1a;basename 命令不会关注路径是否真实有效&#xff0c;是给 basename 指定一个路径&#xff0c;basename 命令会删掉所有的前缀包括最后一个 ‘/’ 字符&#x…...

自己做网站统计/seo文章范文

Spring中的单例模式和多例模式单例模式每个bean定义只生成一个对象实例,每次getBean请求获得的都是此实例单例模式分为饿汉模式和懒汉模式饿汉模式&#xff1a;spring singleton的缺省是饿汉模式:启动容器时(即实例化容器时),为所有spring配置文件中定义的bean都生成一个实例懒…...

要修改wordpress目录下的文件权限/北京百度竞价托管公司

问题如题&#xff1a;安装方法参考 http://www.cnblogs.com/shengulong/p/7887586.html &#xff0c;安装完后&#xff0c;使用时出现如题的错误 解决办法&#xff1a; 1、zerorpc本身依赖很多三方包&#xff0c;请注意版本的兼容性&#xff0c;因此最佳方案是&#xff0c;把这…...

优惠的网站建设/seo网站推广首页排名

【问题】 通过buildroot配置编译好qtopia后&#xff0c;下载到开发板上&#xff0c;配置好环境变量&#xff1a; export QWS_DISPLAY"LinuxFb:mmWidth480:mmHeight272:0" export QWS_SIZE"480x272" export LD_LIBRARY_PATH/usr/lib 然后去运行demo程序&…...