当前位置: 首页 > news >正文

设备树的引入及简明教程

首先说明,设备树不可能用来写驱动。

设备树只是用来给内核里的驱动程序,指定硬件的信息。比如LED驱动,在内核的驱动程序里去操作寄存器,但是操作哪一个引脚?这由设备树指定。

需要编写设备树文件(dts: device tree source),它需要编译为dtb(device tree blob)文件,内核使用的是dtb文件。

1.设备树示例:

在这里插入图片描述
它对应的dts文件如下:
在这里插入图片描述

2. Devicetree格式

2.1 DTS文件的格式

DTS文件布局(layout):

/dts-v1/;                // 表示版本
[memory reservations]    // 格式为: /memreserve/ <address> <length>;
/ {[property definitions][child nodes]
};

2.2 node的格式

设备树中的基本单元,被称为“node”,其格式为:

[label:] node-name[@unit-address] {[properties definitions][child nodes]
};

label是标号,可以省略。label的作用是为了方便地引用node,比如:

/dts-v1/;
/ {uart0: uart@fe001000 {compatible="ns16550";reg=<0xfe001000 0x100>;};
};

可以使用下面2种方法来修改uart@fe001000这个node

// 在根节点之外使用label引用node:
&uart0 {status = “disabled”;
};
或在根节点之外使用全路径:
&{/uart@fe001000}  {status = “disabled”;
};

2.3 properties的格式

简单地说,properties就是“name=value”,value有多种取值方式。
(1)Property格式1:

[label:] property-name = value;

(2)Property格式2(没有值):

[label:] property-name;

(3)Property取值只有3种:

arrays of cells(1个或多个32位数据, 64位数据使用2个32位数据表示), 
string(字符串), 
bytestring(1个或多个字节)

示例:
(1)Arrays of cells : cell就是一个32位的数据,用尖括号包围起来

interrupts = <17 0xc>;

(2)64bit数据使用2个cell来表示,用尖括号包围起来:

clock-frequency = <0x00000001 0x00000000>;

(3)A null-terminated string (有结束符的字符串),用双引号包围起来:

compatible = "simple-bus";

(4)A bytestring(字节序列) ,用中括号包围起来:

local-mac-address = [00 00 12 34 56 78];  // 每个byte使用2个16进制数来表示
local-mac-address = [000012345678];       // 每个byte使用2个16进制数来表示

(5)可以是各种值的组合, 用逗号隔开:

compatible = "ns16550", "ns8250";
example = <0xf00f0000 19>, "a strange property format";

3. dts文件包含dtsi文件

设备树文件不需要我们从零写出来,内核支持了某款芯片比如imx6ull,在内核的arch/arm/boot/dts目录下就有了能用的设备树模板,一般命名为xxxx.dtsi。“i”表示“include”,被别的文件引用的。

我们使用某款芯片制作出了自己的单板,所用资源跟xxxx.dtsi是大部分相同,小部分不同,所以需要引脚xxxx.dtsi并修改。

dtsi文件跟dts文件的语法是完全一样的。

dts中可以包含.h头文件,也可以包含dtsi文件,在.h头文件中可以定义一些宏。
示例:

/dts-v1/;#include <dt-bindings/input/input.h>
#include "imx6ull.dtsi"/ {
……
};

4. 常用的属性

4.1 #address-cells、#size-cells

cell指一个32位的数值,
address-cells:address要用多少个32位数来表示;
size-cells:size要用多少个32位数来表示。

比如一段内存,怎么描述它的起始地址和大小?
下例中,address-cells为1,所以reg中用1个数来表示地址,即用0x80000000来表示地址;size-cells为1,所以reg中用1个数来表示大小,即用0x20000000表示大小:

/ {
#address-cells = <1>;
#size-cells = <1>;
memory {
reg = <0x80000000 0x20000000>;};
};

4.2 compatible

“compatible”表示“兼容”,对于某个LED,内核中可能有A、B、C三个驱动都支持它,那可以这样写:

led {
compatible = “A”, “B”, “C”;
};

内核启动时,就会为这个LED按这样的优先顺序为它找到驱动程序:A、B、C。

根节点下也有compatible属性,用来选择哪一个“machine desc”:一个内核可以支持machine A,也支持machine B,内核启动后会根据根节点的compatible属性找到对应的machine desc结构体,执行其中的初始化函数。

compatible的值,建议取这样的形式:“manufacturer,model”,即“厂家名,模块名”。

注意:machine desc的意思就是“机器描述”,学到内核启动流程时才涉及。

4.3 model

model属性与compatible属性有些类似,但是有差别。

compatible属性是一个字符串列表,表示可以你的硬件兼容A、B、C等驱动;
model用来准确地定义这个硬件是什么。

比如根节点中可以这样写:

/ {compatible = "samsung,smdk2440", "samsung,mini2440";model = "jz2440_v3";
};

它表示这个单板,可以兼容内核中的“smdk2440”,也兼容“mini2440”。
compatible属性中可以知道它兼容哪些板,但是它到底是什么板?用model属性来明确。

4.4 status

dtsi文件中定义了很多设备,但是在你的板子上某些设备是没有的。这时你可以给这个设备节点添加一个status属性,设置为“disabled”:

&uart1 {status = "disabled";
};

4.5 reg

reg的本意是register,用来表示寄存器地址。

但是在设备树里,它可以用来描述一段空间。反正对于ARM系统,寄存器和内存是统一编址的,即访问寄存器时用某块地址,访问内存时用某块地址,在访问方法上没有区别。

reg属性的值,是一系列的“address size”,用多少个32位的数来表示addresssize,由其父节点的#address-cells#size-cells决定。

示例:

/dts-v1/;
/ {#address-cells = <1>;#size-cells = <1>; memory {reg = <0x80000000 0x20000000>;};
};

5. 常用的节点(node)

5.1 根节点

dts文件中必须有一个根节点:

/dts-v1/;
/ {model = "SMDK24440";compatible = "samsung,smdk2440";#address-cells = <1>;#size-cells = <1>; 
};

根节点中必须有这些属性:

#address-cells // 在它的子节点的reg属性中, 使用多少个u32整数来描述地址(address)
#size-cells   // 在它的子节点的reg属性中, 使用多少个u32整数来描述大小(size)
compatible   // 定义一系列的字符串, 用来指定内核中哪个machine_desc可以支持本设备// 即这个板子兼容哪些平台 // uImage : smdk2410 smdk2440 mini2440     ==> machine_desc         model       // 咱这个板子是什么// 比如有2款板子配置基本一致, 它们的compatible是一样的// 那么就通过model来分辨这2款板子

5.2 CPU节点

一般不需要我们设置,在dtsi文件中都定义好了:

cpus {#address-cells = <1>;#size-cells = <0>;cpu0: cpu@0 {.......}
};

5.3 memory节点

芯片厂家不可能事先确定你的板子使用多大的内存,所以memory节点需要板厂设置,比如:

memory {
reg = <0x80000000 0x20000000>;
};

5.4 chosen节点

我们可以通过设备树文件给内核传入一些参数,这要在chosen节点中设置bootargs属性:

chosen {bootargs = "noinitrd root=/dev/mtdblock4 rw init=/linuxrc console=ttySAC0,115200";
};

6. 内核对设备树的处理

从源代码文件dts文件开始,设备树的处理过程为:
在这里插入图片描述
dts在PC机上被编译为dtb文件;
u-bootdtb文件传给内核;
③ 内核解析dtb文件,把每一个节点都转换为device_node结构体;
④ 对于某些device_node结构体,会被转换为platform_device结构体。

6.1 dtb中每一个节点都被转换为device_node结构体

在这里插入图片描述
根节点被保存在全局变量of_root中,从of_root开始可以访问到任意节点。

6.2 哪些设备树节点会被转换为platform_device

(1)根节点下含有compatile属性的子节点

(2)含有特定compatile属性的节点的子节点
如果一个节点的compatile属性,它的值是这4者之一:“simple-bus”,“simple-mfd”,“isa”,“arm,amba-bus”,

那么它的子结点(需含compatile属性)也可以转换为platform_device

(3)总线I2CSPI节点下的子节点:不转换为platform_device
某个总线下到子节点,应该交给对应的总线驱动程序来处理, 它们不应该被转换为platform_device

比如以下的节点中:
/mytest会被转换为platform_device, 因为它兼容"simple-bus";它的子节点/mytest/mytest@0 也会被转换为platform_device

/i2c节点一般表示i2c控制器, 它会被转换为platform_device, 在内核中有对应的platform_driver;
/i2c/at24c02节点不会被转换为platform_device, 它被如何处理完全由父节点的platform_driver决定, 一般是被创建为一个i2c_client

类似的也有/spi节点, 它一般也是用来表示SPI控制器, 它会被转换为platform_device, 在内核中有对应的platform_driver;

/spi/flash@0节点不会被转换为platform_device, 它被如何处理完全由父节点的platform_driver决定, 一般是被创建为一个spi_device

/ {mytest {compatile = "mytest", "simple-bus";mytest@0 {compatile = "mytest_0";};};i2c {compatile = "samsung,i2c";at24c02 {compatile = "at24c02";                      };};spi {compatile = "samsung,spi";              flash@0 {compatible = "winbond,w25q32dw";spi-max-frequency = <25000000>;reg = <0>;};};};

6.3 怎么转换为platform_device

内核处理设备树的函数调用过程,这里不去分析;我们只需要得到如下结论:
(1)platform_device中含有resource数组, 它来自device_nodereg, interrupts属性;
(2)platform_device.dev.of_node指向device_node, 可以通过它获得其他属性

7. platform_device如何与platform_driver配对

从设备树转换得来的platform_device会被注册进内核里,以后当我们每注册一个platform_driver时,它们就会两两确定能否配对,如果能配对成功就调用platform_driverprobe函数。

在这里插入图片描述
(1)最先比较:是否强制选择某个driver
比较platform_device.driver_overrideplatform_driver.driver.name
可以设置platform_devicedriver_override,强制选择某个platform_driver
(2)然后比较:设备树信息
比较:platform_device.dev.of_nodeplatform_driver.driver.of_match_table

由设备树节点转换得来的platform_device中,含有一个结构体:of_node。它的类型如下:
在这里插入图片描述
如果一个platform_driver支持设备树,它的platform_driver.driver.of_match_table是一个数组,类型如下:
在这里插入图片描述
使用设备树信息来判断devdrv是否配对时,
首先,如果of_match_table中含有compatible值,就跟devcompatile属性比较,若一致则成功,否则返回失败;

其次,如果of_match_table中含有type值,就跟devdevice_type属性比较,若一致则成功,否则返回失败;

最后,如果of_match_table中含有name值,就跟devname属性比较,若一致则成功,否则返回失败。

而设备树中建议不再使用devcie_typename属性,所以基本上只使用设备节点的compatible属性来寻找匹配的platform_driver

(3)接下来比较:platform_device_id
比较platform_device.nameplatform_driver.id_table[i].nameid_table中可能有多项。

platform_driver.id_table是“platform_device_id”指针,表示该drv支持若干个device,它里面列出了各个device{.name, .driver_data},其中的“name”表示该drv支持的设备的名字,driver_data是些提供给该device的私有数据。

(4)最后比较:platform_device.nameplatform_driver.driver.name
platform_driver.id_table可能为空,这时可以根据platform_driver.driver.name来寻找同名的platform_device

一个图概括所有的配对过程
在这里插入图片描述

相关文章:

设备树的引入及简明教程

首先说明&#xff0c;设备树不可能用来写驱动。 设备树只是用来给内核里的驱动程序&#xff0c;指定硬件的信息。比如LED驱动&#xff0c;在内核的驱动程序里去操作寄存器&#xff0c;但是操作哪一个引脚&#xff1f;这由设备树指定。 需要编写设备树文件(dts: device tree s…...

MM32F3273G8P火龙果开发板MindSDK开发教程12 -获取msa311加速器的敲击事件

MM32F3273G8P火龙果开发板MindSDK开发教程12 -获取msa311加速器的敲击事件 1、功能描述 msa311可以识别单击、双击事件&#xff0c;类似手机上的点击返回&#xff0c;双击截屏功能。 单击&#xff0c;双击都能产生中断事件。 中断事件产生后&#xff0c;从对应的状态寄存器读…...

Maven聚合

在实际的开发过程中&#xff0c;我们所接触的项目一般都由多个模块组成。在构建项目时&#xff0c;如果每次都按模块一个一个地进行构建会十分得麻烦&#xff0c;Maven 的聚合功能很好的解决了这个问题。 聚合 使用 Maven 聚合功能对项目进行构建时&#xff0c;需要在该项目中…...

[架构之路-211]- 需求- 软架构前的需求理解:ADMEMS标准化、有序化、结构化、层次化需求矩阵 =》需求框架

目录 前言&#xff1a; 一、什么是ADMES: 首先&#xff0c;需求是分层次的&#xff1a; 其次&#xff0c;需求是有结构的&#xff0c;有维度的 再次&#xff0c;不同层次需求、不同维度需求之间可以相互转化&#xff08;难点、经验积累&#xff09; 最终&#xff0c;标准…...

基于前推回代法的连续潮流计算研究【IEEE33节点】(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…...

【双向链表】

双向链表 带头双向循环链表的实现1. 函数的声明2. 函数的实现3. 主函数测试 带头双向循环链表的实现 今天我们来实现一下带头双向循环链表&#xff0c;顾名思义&#xff0c;带头就是有哨兵位&#xff0c;哨兵位不是链表的头&#xff0c;它是连接头节点的一个节点&#xff0c;方…...

POSTGRESQL NEON - Serverless 式的POSTGRESQL 数据库的独特技能 分支数据

开头还是介绍一下群&#xff0c;如果感兴趣polardb ,mongodb ,mysql ,postgresql ,redis 等有问题&#xff0c;有需求都可以加群群内有各大数据库行业大咖&#xff0c;CTO&#xff0c;可以解决你的问题。加群请联系 liuaustin3 &#xff0c;在新加的朋友会分到2群&#xff08;共…...

数据分布——长尾分布的处理

前言 长尾分布在分类任务中会提到这个名,这是因为长尾分布这个现象问题会导致在训练过程中会出现出错率高的问题&#xff0c;影响了实验结果。 这里要说的是&#xff0c;长尾分布是一种现象&#xff0c;有的地方说是一种理论或定律&#xff0c;我感觉这样说不太确切&#xff0…...

集合导题、刷题、考试全套完整流程,专业强大的功能,提高刷题学习效率和企业的培训效率

土著刷题微信小程序v1.15&#xff0c;主要是迭代了考试模块的进阶功能&#xff0c;对考试模块进行了一次升级改造。 由于在v1.15开发期间&#xff0c;收到了违规内容整改的通告&#xff0c;为了遵守相关法律法规&#xff0c;让小程序能够平稳安全地运营下去&#xff0c;我们特此…...

【机器学习】采样方法

文章目录 采样方法11.1 简介11.2 常见采样方法11.2.1 均匀分布采样11.2.2 逆变换采样11.2.3 拒绝采样11.2.4 重要采样11.2.5 Metropolis方法11.2.6 Metropolis-Hasting 算法11.2.7 吉布斯采样 采样方法 11.1 简介 什么是采样 从一个分布中生成一批服从该分布的样本&#xff0c…...

Seata TCC 模式理论学习、生产级使用示例搭建及注意事项 | Spring Cloud55

一、前言 通过以下系列章节&#xff1a; docker-compose 实现Seata Server高可用部署 | Spring Cloud 51 Seata AT 模式理论学习、事务隔离及部分源码解析 | Spring Cloud 52 Spring Boot集成Seata利用AT模式分布式事务示例 | Spring Cloud 53 Seata XA 模式理论学习、使用…...

一文详解:Vue3中使用Vue Router

目录 安装和配置Vue Router安装Vue Router配置Vue Router Vue Router的基本概念Vue Router 的配置项介绍routes中的配置项介绍 路由跳转使用 router-link组件使用router.push函数 路由传参动态路由嵌套路由命名路由路由守卫全局路由守卫路由独享守卫 路由懒加载使用import()方式…...

C++开发—远程控制

C开发—远程控制 一&#xff0c;准备二&#xff0c;安装版本控制工具1&#xff0c;安装gitforwindows2&#xff0c;安装乌龟git1&#xff0c;安装乌龟git应用2&#xff0c;安装乌龟git对应的语言包 3&#xff0c;设置Visual Studio的git插件4&#xff0c;创建git项目 三&#x…...

【Python基础】Python数据容器(集合)

文章目录 数据容器&#xff1a;set&#xff08;集合&#xff09;集合的定义集合的常用操作-修改(1)添加新元素(2)移除元素(3)从集合中随机取出元素(4)清空集合(5)取出 两个集合的差集(6)消除 两个集合的差集(7)两个集合 合并(8)统计集合元素数量len()(9)集合的遍历 集合的特点 …...

高通 Camera HAL3:集成camxoverridesettings.txt到整机版本

camxoverridesettings.txt 是高通提供给开发者临时进行CAMX、CHI-CDK功能调试的一种方式&#xff0c;通过配置各种变量值然后写入到该文件&#xff0c;能控制Log打印、参数配置、数据dump等多种功能 这个文件需要集成在设备目录的vendor/etc/camera/里 因为camxoverridesetti…...

PHP面试题大全

一 、PHP基础部分 1、PHP语言的一大优势是跨平台&#xff0c;什么是跨平台&#xff1f; PHP的运行环境最优搭配为ApacheMySQLPHP&#xff0c;此运行环境可以在不同操作系统&#xff08;例如windows、Linux等&#xff09;上配置&#xff0c;不受操作系统的限制&#xff0c;所以…...

Linux发送接收邮件

目录 一、实验 1.linux用户发送给linux中的其它用户 2.linux用户发送给外网用户 一、实验 1.linux用户发送给linux中的其它用户 &#xff08;1&#xff09;使用命令 yum install -y sendmail 安装sendmail软件 &#xff08;2&#xff09;使用yum install -y mailx 安装 mail…...

SpringBoot-【回顾】

第一个SpringBoot程序 自动装配原理 Springboot的自动装配实际上就是为了从Spring.factories文件中获取到对应的需要进行自动装配的类&#xff0c;并生成相应的Bean对象&#xff0c;然后将它们交给Spring容器来帮我们进行管理 启动器&#xff1a;以starter为标记 EnableAuto…...

Python模拟试卷2023(1)

模拟试卷(1) 一、简答题 &#xff08;共8题&#xff0c;100分&#xff09; 1、已知有列表lst[54,36,75,28,50]&#xff0c;请完成一下操作&#xff1a; 1、在列表尾部插入元素42 2、在元素28前面插入66 3、删除并输出28 4、将列表按降序排序 5、清空整个列表 lst[54,3…...

常量接口 vs 常量类 vs 枚举区别

把常量定义在接口里与类里都能通过编译&#xff0c;那2者到底有什么区别呢&#xff1f; 那个更合理&#xff1f; 常量接口 public interface ConstInterfaceA {public static final String CONST_A "aa";public static final String CONST_C "cc"; } 存在…...

SpringBoot-17-MyBatis动态SQL标签之常用标签

文章目录 1 代码1.1 实体User.java1.2 接口UserMapper.java1.3 映射UserMapper.xml1.3.1 标签if1.3.2 标签if和where1.3.3 标签choose和when和otherwise1.4 UserController.java2 常用动态SQL标签2.1 标签set2.1.1 UserMapper.java2.1.2 UserMapper.xml2.1.3 UserController.ja…...

为什么需要建设工程项目管理?工程项目管理有哪些亮点功能?

在建筑行业&#xff0c;项目管理的重要性不言而喻。随着工程规模的扩大、技术复杂度的提升&#xff0c;传统的管理模式已经难以满足现代工程的需求。过去&#xff0c;许多企业依赖手工记录、口头沟通和分散的信息管理&#xff0c;导致效率低下、成本失控、风险频发。例如&#…...

使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装

以下是基于 vant-ui&#xff08;适配 Vue2 版本 &#xff09;实现截图中照片上传预览、删除功能&#xff0c;并封装成可复用组件的完整代码&#xff0c;包含样式和逻辑实现&#xff0c;可直接在 Vue2 项目中使用&#xff1a; 1. 封装的图片上传组件 ImageUploader.vue <te…...

Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)

引言&#xff1a;为什么 Eureka 依然是存量系统的核心&#xff1f; 尽管 Nacos 等新注册中心崛起&#xff0c;但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制&#xff0c;是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...

C# 类和继承(抽象类)

抽象类 抽象类是指设计为被继承的类。抽象类只能被用作其他类的基类。 不能创建抽象类的实例。抽象类使用abstract修饰符声明。 抽象类可以包含抽象成员或普通的非抽象成员。抽象类的成员可以是抽象成员和普通带 实现的成员的任意组合。抽象类自己可以派生自另一个抽象类。例…...

微信小程序云开发平台MySQL的连接方式

注&#xff1a;微信小程序云开发平台指的是腾讯云开发 先给结论&#xff1a;微信小程序云开发平台的MySQL&#xff0c;无法通过获取数据库连接信息的方式进行连接&#xff0c;连接只能通过云开发的SDK连接&#xff0c;具体要参考官方文档&#xff1a; 为什么&#xff1f; 因为…...

使用 SymPy 进行向量和矩阵的高级操作

在科学计算和工程领域&#xff0c;向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能&#xff0c;能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作&#xff0c;并通过具体…...

OPENCV形态学基础之二腐蚀

一.腐蚀的原理 (图1) 数学表达式&#xff1a;dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一&#xff0c;腐蚀跟膨胀属于反向操作&#xff0c;膨胀是把图像图像变大&#xff0c;而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...

人工智能(大型语言模型 LLMs)对不同学科的影响以及由此产生的新学习方式

今天是关于AI如何在教学中增强学生的学习体验&#xff0c;我把重要信息标红了。人文学科的价值被低估了 ⬇️ 转型与必要性 人工智能正在深刻地改变教育&#xff0c;这并非炒作&#xff0c;而是已经发生的巨大变革。教育机构和教育者不能忽视它&#xff0c;试图简单地禁止学生使…...

NPOI操作EXCEL文件 ——CAD C# 二次开发

缺点:dll.版本容易加载错误。CAD加载插件时&#xff0c;没有加载所有类库。插件运行过程中用到某个类库&#xff0c;会从CAD的安装目录找&#xff0c;找不到就报错了。 【方案2】让CAD在加载过程中把类库加载到内存 【方案3】是发现缺少了哪个库&#xff0c;就用插件程序加载进…...