Bernstein-Vazirani算法
B-V算法
(1) 问题描述
给定布尔函数f:{0,1}n→0,1f:{\left\{ {0,1} \right\}^n} \to{0,1}f:{0,1}n→0,1, 函数fff的值是由输入比特串xxx和确定的比特串sss做模2意义下的内积:f(x)=x⋅s(mod2),f\left( x \right) = x \cdot s\left( {\bmod 2} \right),f(x)=x⋅s(mod2),其中x⋅s=∑i(xi⊕si)x \cdot s = \sum\limits_i {\left( {{x_i} \oplus {s_i}} \right)} x⋅s=i∑(xi⊕si)
前提:可以调用访问函数fff的黑盒
问题:计算出比特串sss
经典意义下:
依次输入比特串xxx:
00...0000...0100...10...01...0010...00\begin{array}{l} 00...00\\ 00...01\\ 00...10\\ ...\\ 01...00\\ 10...00 \end{array}00...0000...0100...10...01...0010...00
对于第iii次输入:
000100...00→x⋅s(mod2)=si000100...00 \to x \cdot s\left( {\bmod 2} \right) = {s_i}000100...00→x⋅s(mod2)=si
重复该流程nnn次,即可确定比特串sss,上述方法的查询复杂度为O(n)O\left( n \right)O(n)
(2) 量子算法核心思路:
基础知识:H⊗n∣s⟩=12n2∑x(−1)s⋅x∣x⟩H^{\otimes n}|s\rangle=\frac{1}{2^{\frac{n}{2}}} \sum_{x}(-1)^{s \cdot x}|x\rangleH⊗n∣s⟩=22n1∑x(−1)s⋅x∣x⟩
Step1:制备初始量子比特∣Φ0⟩=∣0⟩⊗n\left| {{\Phi _0}} \right\rangle ={\left| 0 \right\rangle ^{ \otimes n}}∣Φ0⟩=∣0⟩⊗n
Step2:作用H⊗n{H^{ \otimes n}}H⊗n,得到量子态∣Φ0⟩=12n2∑x∣x⟩\left| {{\Phi _0}} \right\rangle = \frac{1}{{{2^{\frac{n}{2}}}}}\sum\limits_x {|x\rangle } ∣Φ0⟩=22n1x∑∣x⟩
Step3:作用量子黑盒Of{O_f}Of,Of:∣x⟩→(−1)x⋅s∣x⟩{O_f}:\left| x \right\rangle \to {\left( { - 1} \right)^{x \cdot s}}\left| x \right\rangleOf:∣x⟩→(−1)x⋅s∣x⟩,此时系统状态为∣Φ1⟩=12n2∑x(−1)s⋅x∣x⟩\left| {{\Phi _1}} \right\rangle = \frac{1}{{{2^{\frac{n}{2}}}}}\sum\limits_x {{{\left( { - 1} \right)}^{s \cdot x}}|x\rangle }∣Φ1⟩=22n1x∑(−1)s⋅x∣x⟩
Step4:作用H⊗n{H^{ \otimes n}}H⊗n,系统状态变为∣s⟩|s\rangle∣s⟩
此时测量量子系统即可得到比特串sss,该算法的查询复杂为O(1)O(1)O(1)
备注:上述量子黑盒OfO_fOf的实现方法与Deutsh算法相似,具体方法如下
(1) 制备量子态∣Ψ0⟩=∣0⟩n∣1⟩\left| {{\Psi _0}} \right\rangle = {\left| 0 \right\rangle ^n}\left| 1 \right\rangle∣Ψ0⟩=∣0⟩n∣1⟩
(2) 作用H⊗n{H^{ \otimes n}}H⊗n,量子系统变为∣Ψ1⟩=12n2∑x∣x⟩∣−⟩\left| {{\Psi _1}} \right\rangle = \frac{1}{{{2^{\frac{n}{2}}}}}\sum\limits_x {|x\rangle } \left| - \right\rangle∣Ψ1⟩=22n1x∑∣x⟩∣−⟩
(3) 作用Uf:∣x⟩∣y⟩→∣x⟩∣y⊕f(x)⟩U_f:\left|x\right\rangle\left|y\right\rangle \to\left|x\right\rangle\left|y\oplus f\left( x \right)\right\rangleUf:∣x⟩∣y⟩→∣x⟩∣y⊕f(x)⟩,量子系统演变为∣Ψ2⟩=12n2∑x∣x⟩1212(∣0⊕f(x)⟩−∣1⊕f(x)⟩)\left| {{\Psi _2}} \right\rangle = \frac{1}{{{2^{\frac{n}{2}}}}}\sum\limits_x {|x\rangle } \frac{1}{{{2^{\frac{1}{2}}}}}\left( {\left| {0 \oplus f\left( x \right)} \right\rangle - \left| {1 \oplus f\left( x \right)} \right\rangle } \right)∣Ψ2⟩=22n1x∑∣x⟩2211(∣0⊕f(x)⟩−∣1⊕f(x)⟩)
当f(x)=0{f\left( x \right)}=0f(x)=0时,∣x⟩1212(∣0⊕f(x)⟩−∣1⊕f(x)⟩)=∣x⟩1212(∣0⟩−∣1⟩)=∣x⟩∣−⟩\left|x\right\rangle \frac{1}{{{2^{\frac{1}{2}}}}}\left( {\left| {0 \oplus f\left( x \right)} \right\rangle - \left| {1 \oplus f\left( x \right)} \right\rangle } \right) = |x\rangle \frac{1}{{{2^{\frac{1}{2}}}}}\left( {\left| 0 \right\rangle - \left| 1 \right\rangle } \right) = |x\rangle \left| - \right\rangle∣x⟩2211(∣0⊕f(x)⟩−∣1⊕f(x)⟩)=∣x⟩2211(∣0⟩−∣1⟩)=∣x⟩∣−⟩
当f(x)=1{f\left( x \right)}=1f(x)=1时,∣x⟩1212(∣0⊕f(x)⟩−∣1⊕f(x)⟩)=∣x⟩1212(∣0⟩−∣1⟩)=−∣x⟩∣−⟩\left|x\right\rangle \frac{1}{{{2^{\frac{1}{2}}}}}\left( {\left| {0 \oplus f\left( x \right)} \right\rangle - \left| {1 \oplus f\left( x \right)} \right\rangle } \right) = |x\rangle \frac{1}{{{2^{\frac{1}{2}}}}}\left( {\left| 0 \right\rangle - \left| 1 \right\rangle } \right) = -|x\rangle \left| - \right\rangle∣x⟩2211(∣0⊕f(x)⟩−∣1⊕f(x)⟩)=∣x⟩2211(∣0⟩−∣1⟩)=−∣x⟩∣−⟩
不难发现UfU_fUf的作用为:∣x⟩∣−⟩→(−1)f(x)∣x⟩∣−⟩=(−1)s⋅x∣x⟩∣−⟩|x\rangle \left| - \right\rangle \to {\left( { - 1} \right)^{f\left( x \right)}}|x\rangle \left| - \right\rangle={\left( { - 1} \right)^{s \cdot x}}|x\rangle \left| - \right\rangle∣x⟩∣−⟩→(−1)f(x)∣x⟩∣−⟩=(−1)s⋅x∣x⟩∣−⟩
舍弃掉最后一个量子比特(辅助比特)∣−⟩\left| - \right\rangle∣−⟩,即实现了Step3中的黑盒OfO_fOf
参考资料
[1] Bernstein-Vazirani Algorithm 学习笔记
[2] 量子计算【算法篇】第7章 Deutsch-Josza算法及实现
(3) 由 Fourier Sampling 到 Deutsch-Jozsa Algorithm & Bernstein-Vazirani Algorithm
相关文章:

Bernstein-Vazirani算法
B-V算法 (1) 问题描述 给定布尔函数f:{0,1}n→0,1f:{\left\{ {0,1} \right\}^n} \to{0,1}f:{0,1}n→0,1, 函数fff的值是由输入比特串xxx和确定的比特串sss做模2意义下的内积:f(x)x⋅s(mod2),f\left( x \right) x \cdot s\left( {\bmod 2} \right),f(x)x⋅s(mod2),…...
华为OD机试 - 相对开音节 | 备考思路,刷题要点,答疑 【新解法】
最近更新的博客 【新解法】华为OD机试 - 关联子串 | 备考思路,刷题要点,答疑,od Base 提供【新解法】华为OD机试 - 停车场最大距离 | 备考思路,刷题要点,答疑,od Base 提供【新解法】华为OD机试 - 任务调度 | 备考思路,刷题要点,答疑,od Base 提供【新解法】华为OD机试…...

MyBatis
一、MyBatis环境搭建创建工程启动idea开发工具,选择工具栏中的“file”--“new”--“project”选项弹出“new project”对话框,编辑项目名称 选择maven项目,项目路径 单击 create 创建即可。引入相关依赖<dependencies><dependency&…...
良好的作息表
今天给大家带来“传说中”的“世界上最健康的作息时间表”(仅供参考),随时提醒自己吧,毕竟身体可是自己的哦。 7:30 起床:英国威斯敏斯特大学的研究人员发现,那些在早上5:22-7:21分起床的人,其血液中有一种能引起心脏病…...

【郭东白架构课 模块一:生存法则】01|模块导学:是什么在影响架构活动的成败?
你好,我是郭东白。这节课是我们模块一的导入部分,我会先来介绍模块的主要内容,以及为什么我要讲生存法则这个话题。 一名软件架构师要为相对复杂的业务制定,并且引导实施一个结构化的软件方案。这个发现最终方案和推动实施的过程&…...

webshell免杀之函数与变量玩法
webshell免杀之函数与变量玩法 前言 前文列举了一些用符号免杀的例子,此篇文章就以函数和变量来尝试下免杀。 本文以PHP为例,用PHP中函数和变量及语法特性,在不隐藏函数关键字情况下进行免杀。 动态函数 PHP中支持一个功能叫 variable fu…...
【新解法】华为OD机试 - 去重求和 | 备考思路,刷题要点,答疑,od Base 提供
华为 OD 清单查看地址:blog.csdn.net/hihell/category_12199275.html 去重求和 | 备考思路,刷题要点,答疑,od Base 提供 给定一个数组,编写一个函数, 计算他的最大N个数和最小N个数的和, 需要对数组进行去重。 输入 第一行输入M,M表示数组大小 第二行输入M个数,表…...

MySQL 服务正在启动.MySQL 服务无法启动.服务没有报告任何错误。请键入 NET HELPMSG 3534 以获得更多的帮助。总结较全 (已解决)
输入以下命令启动mysql: net start mysql出现以下错误提示: MySQL 服务正在启动 .MySQL 服务无法启动。服务没有报告任何错误。请键入 NET HELPMSG 3534 以获得更多的帮助。 出现这个问题的话,一般有几个情况: 一、MySQL安装文…...

【数据结构与算法】数组2:双指针法 二分法(螺旋矩阵)
文章目录今日任务1.Leetcode977:有序数列的平方(1)题目(2)思路(3)暴力排序(4)双指针法2.Leetcode209:长度最小的子数组(1)题目&#x…...
librtmp优化
librtmp是一个RTMP的开源库,很多地方用它来做推流、拉流。它是RTMPDump开源软件里的一部分,librtmp的下载地址:RTMPDump,目前最新版是V2.3。本文重点介绍librtmp优化。 1、调整网络输出块大小。 RTMP_Connect0函数中LibRTMP是关…...

数据结构与算法(二):线性表
上一篇《数据结构与算法(一):概述》中介绍了数据结构的一些基本概念,并分别举例说明了算法的时间复杂度和空间复杂度的求解方法。这一篇主要介绍线性表。 一、基本概念 线性表是具有零个或多个数据元素的有限序列。线性表中数据…...

IOS安全区域适配
对于 iPhone 8 和以往的 iPhone,由于屏幕规规整整的矩形,安全区就是整块屏幕。但自从苹果手机 iphoneX 发布之后,前端人员在开发移动端Web页面时,得多注意一个对 IOS 所谓安全区域范围的适配。这其实说白了就是 iphoneX 之后的苹果…...

在Java 中 利用Milo通信库,实现OPCUA客户端,并生成证书
程序结构: 配置文件resources: opcua.properties 西门子PLC端口号为4840,kepserver为49320 #opcua服务端配置参数 #opcua.server.endpoint.urlopc.tcp://192.168.2.102:49320 opcua.server.endpoint.urlopc.tcp://192.168.2.11:4840 opcu…...

三分钟学会用Vim
Vim知识点 目录Vim知识点一:什么是vim二:vim常用的三种模式三:vim的基本操作一:什么是vim vim最小集 vim是一款多模式的编辑器—各种模式—每种模式的用法有差别—每种模式之间可以互相切换 但是我们最常用的就是3~5个模式 vi…...

编译链接实战(8)认识elf文件格式
🎀 关于博主👇🏻👇🏻👇🏻 🥇 作者简介: 热衷于知识探索和分享的技术博主。 💂 csdn主页::【奇妙之二进制】 ✍️ 微信公众号:【Linux …...

新手小白如何入门黑客技术?
你是否对黑客技术感兴趣呢?感觉成为黑客是一件很酷的事。那么作为新手小白,我们该如何入门黑客技术,黑客技术又是学什么呢? 其实不管你想在哪个新的领域里有所收获,你需要考虑以下几个问题: 首先ÿ…...

【java】Spring Boot --深入SpringBoot注解原理及使用
步骤一 首先,先看SpringBoot的主配置类: SpringBootApplication public class StartEurekaApplication {public static void main(String[] args){SpringApplication.run(StartEurekaApplication.class, args);} }步骤二 点进SpringBootApplication来…...

一文掌握如何对项目进行诊断?【步骤方法和工具】
作为项目经理和PMO,面对错综复杂的项目,需要对组织的项目运作情况进行精确的分析和诊断,找出组织项目管理中和项目运行中存在的问题和潜在隐患,分析其原因,预防风险,并且形成科学合理的决策建议和解决方案&…...
系统分析师真题2020试卷相关概念二
结构化设计相关内容: 结构化设计是一种面向数据流的系统设计方法,它以数据流图和数据字典等文档为基础。数据流图从数据传递和加工的角度,以图形化方式来表达系统的逻辑功能、数据在系统内部的逻辑流向和逻辑变换过程,是结构化系统分析方法的主要表达工具及用于表示软件模…...

<<Java开发环境配置>>5-MySQL安装教程(绿色版)
一.MySQL绿色版安装: 1.直接解压下载的ZIP文件到对应的目录下(切记安装目录不要有中文); 如图:我的安装目录:D:Program Files 2.创建配置文件: 在MySQL安装目录下,创建一个my.ini配置文件,然后在里面添加以下内容(别忘了MySQL安装目录要改成…...
应用升级/灾备测试时使用guarantee 闪回点迅速回退
1.场景 应用要升级,当升级失败时,数据库回退到升级前. 要测试系统,测试完成后,数据库要回退到测试前。 相对于RMAN恢复需要很长时间, 数据库闪回只需要几分钟。 2.技术实现 数据库设置 2个db_recovery参数 创建guarantee闪回点,不需要开启数据库闪回。…...
R语言AI模型部署方案:精准离线运行详解
R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...

MFC内存泄露
1、泄露代码示例 void X::SetApplicationBtn() {CMFCRibbonApplicationButton* pBtn GetApplicationButton();// 获取 Ribbon Bar 指针// 创建自定义按钮CCustomRibbonAppButton* pCustomButton new CCustomRibbonAppButton();pCustomButton->SetImage(IDB_BITMAP_Jdp26)…...
基础测试工具使用经验
背景 vtune,perf, nsight system等基础测试工具,都是用过的,但是没有记录,都逐渐忘了。所以写这篇博客总结记录一下,只要以后发现新的用法,就记得来编辑补充一下 perf 比较基础的用法: 先改这…...

【SQL学习笔记1】增删改查+多表连接全解析(内附SQL免费在线练习工具)
可以使用Sqliteviz这个网站免费编写sql语句,它能够让用户直接在浏览器内练习SQL的语法,不需要安装任何软件。 链接如下: sqliteviz 注意: 在转写SQL语法时,关键字之间有一个特定的顺序,这个顺序会影响到…...

React19源码系列之 事件插件系统
事件类别 事件类型 定义 文档 Event Event 接口表示在 EventTarget 上出现的事件。 Event - Web API | MDN UIEvent UIEvent 接口表示简单的用户界面事件。 UIEvent - Web API | MDN KeyboardEvent KeyboardEvent 对象描述了用户与键盘的交互。 KeyboardEvent - Web…...
生成 Git SSH 证书
🔑 1. 生成 SSH 密钥对 在终端(Windows 使用 Git Bash,Mac/Linux 使用 Terminal)执行命令: ssh-keygen -t rsa -b 4096 -C "your_emailexample.com" 参数说明: -t rsa&#x…...

新能源汽车智慧充电桩管理方案:新能源充电桩散热问题及消防安全监管方案
随着新能源汽车的快速普及,充电桩作为核心配套设施,其安全性与可靠性备受关注。然而,在高温、高负荷运行环境下,充电桩的散热问题与消防安全隐患日益凸显,成为制约行业发展的关键瓶颈。 如何通过智慧化管理手段优化散…...
Unit 1 深度强化学习简介
Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库,例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体,比如 SnowballFight、Huggy the Do…...

深入解析C++中的extern关键字:跨文件共享变量与函数的终极指南
🚀 C extern 关键字深度解析:跨文件编程的终极指南 📅 更新时间:2025年6月5日 🏷️ 标签:C | extern关键字 | 多文件编程 | 链接与声明 | 现代C 文章目录 前言🔥一、extern 是什么?&…...