数据可视化 - 动态柱状图
基础柱状图
通过Bar构建基础柱状图
from pyecharts.charts import Bar
from pyecharts.options import LabelOpts
# 使用Bar构建基础柱状图
bar = Bar()
# 添加X轴
bar.add_xaxis(["中国", "美国", "英国"])
# 添加Y轴 # 设置数值标签在右侧
bar.add_yaxis("GDP", [30, 50, 40], label_opts=LabelOpts(position="right"))
# 反转X轴和Y轴
bar.reversal_axis()
# 绘图
bar.render("基础柱状图.html")
1. 通过Bar()构建一个柱状图对象
2. 和折线图一样,通过add_xaxis()和add_yaxis()添加x和y轴数据
3. 通过柱状图对象的:reversal_axis(),反转x和y轴
4. 通过label_opts=LabelOpts(position="right")设置数值标签在右侧显示
基础时间线柱状图
创建时间线
Timeline()-时间线
柱状图描述的是分类数据,回答的是每一个分类中『有多少?』这个问题. 这是柱状图的主要特点,同时柱状图很难动态的描述一个趋势性的数据. 这里pyecharts为我们提供了一种解决方案-时间线
如果说一个Bar、Line对象是一张图表的话,时间线就是创建一个 一维的x轴,轴上每一个点就是一个图表对象
# 导入bar柱状图 Timeline时间线
from pyecharts.charts import Bar, Timeline
# 导入系统配置项
from pyecharts.options import LabelOpts
# 导入ThemeType主题类型
from pyecharts.globals import ThemeType
# 使用Bar构建基础柱状图
bar1 = Bar()
# 添加X轴
bar1.add_xaxis(["中国", "美国", "英国"])
# 添加Y轴
bar1.add_yaxis("GDP", [30, 50, 40], label_opts=LabelOpts(position="right"))bar2 = Bar()
bar2.add_xaxis(["中国", "美国", "英国"])
bar2.add_yaxis("GDP", [40, 40, 20], label_opts=LabelOpts(position="right"))bar3 = Bar()
bar3.add_xaxis(["中国", "美国", "英国"])
bar3.add_yaxis("GDP", [50, 30, 30], label_opts=LabelOpts(position="right"))bar4 = Bar()
bar4.add_xaxis(["中国", "美国", "英国"])
bar4.add_yaxis("GDP", [60, 20, 50], label_opts=LabelOpts(position="right"))# 构建时间线对象
timeline = Timeline({"theme": ThemeType.LIGHT}) # 主题设置
# 在时间线内部添加柱状图对象
timeline.add(bar1, "点1")
timeline.add(bar2, "点2")
timeline.add(bar3, "点3")
timeline.add(bar4, "点4")
自动播放
timeline.add_schema(play_interval=1000, # 自动播放的时间间隔,单位毫秒is_timeline_show=True, # 是否在自动播放的时候显示时间线is_auto_play=True, # 是否自动播放is_loop_play=True # 是否循环自动播放
)
时间线设置主题
from pyecharts.globals import ThemeTypetimeline = Timeline({"theme": ThemeType.LIGHT}) # 主题设置
完整代码
"""基础时间线柱状图
"""
# 导入bar柱状图 Timeline时间线
from pyecharts.charts import Bar, Timeline
# 导入系统配置项
from pyecharts.options import LabelOpts
# 导入ThemeType主题类型
from pyecharts.globals import ThemeType
# 使用Bar构建基础柱状图
bar1 = Bar()
# 添加X轴
bar1.add_xaxis(["中国", "美国", "英国"])
# 添加Y轴
bar1.add_yaxis("GDP", [30, 50, 40], label_opts=LabelOpts(position="right"))bar2 = Bar()
bar2.add_xaxis(["中国", "美国", "英国"])
bar2.add_yaxis("GDP", [40, 40, 20], label_opts=LabelOpts(position="right"))bar3 = Bar()
bar3.add_xaxis(["中国", "美国", "英国"])
bar3.add_yaxis("GDP", [50, 30, 30], label_opts=LabelOpts(position="right"))bar4 = Bar()
bar4.add_xaxis(["中国", "美国", "英国"])
bar4.add_yaxis("GDP", [60, 20, 50], label_opts=LabelOpts(position="right"))# 构建时间线对象
timeline = Timeline({"theme": ThemeType.LIGHT}) # 主题设置
# 在时间线内部添加柱状图对象
timeline.add(bar1, "点1")
timeline.add(bar2, "点2")
timeline.add(bar3, "点3")
timeline.add(bar4, "点4")
# 自动播放设置
timeline.add_schema(play_interval=1000, # 自动播放的时间间隔,单位毫秒is_timeline_show=True, # 是否在自动播放的时候显示时间线is_auto_play=True, # 是否自动播放is_loop_play=True # 是否循环自动播放
)# 绘图
timeline.render("基础时间线柱状图.html")
GDP动态柱状图绘制
需求分析
简单分析后,发现最终效果图中需要:
1. GDP数据处理为亿级
2. 有时间轴,按照年份为时间轴的点
3. x轴和y轴反转,同时每一年的数据只要前8名国家
4. 有标题,标题的年份会动态更改
5. 设置了主题为LIGHT
代码
"""
演示第三个图表:GDP动态柱状图开发
"""
from pyecharts.charts import Bar, Timeline
from pyecharts.options import *
from pyecharts.globals import ThemeType# 读取数据
f = open("D:/1960-2019全球GDP数据.csv", "r", encoding="GB2312")
data_lines = f.readlines()
# 关闭文件
f.close()
# 删除第一条数据
data_lines.pop(0)
# 将数据转换为字典存储,格式为:
# { 年份: [ [国家, gdp], [国家,gdp], ...... ], 年份: [ [国家, gdp], [国家,gdp], ...... ], ...... }
# { 1960: [ [美国, 123], [中国,321], ...... ], 1961: [ [美国, 123], [中国,321], ...... ], ...... }
# 先定义一个字典对象
data_dict = {}
for line in data_lines:year = int(line.split(",")[0]) # 年份country = line.split(",")[1] # 国家gdp = float(line.split(",")[2]) # gdp数据# 如何判断字典里面有没有指定的key呢?try:data_dict[year].append([country, gdp])except KeyError:data_dict[year] = []data_dict[year].append([country, gdp])# print(data_dict[1960])
# 创建时间线对象
timeline = Timeline({"theme": ThemeType.LIGHT})
# 排序年份
sorted_year_list = sorted(data_dict.keys())
for year in sorted_year_list:data_dict[year].sort(key=lambda element: element[1], reverse=True)# 取出本年份前8名的国家year_data = data_dict[year][0:8]x_data = []y_data = []for country_gdp in year_data:x_data.append(country_gdp[0]) # x轴添加国家y_data.append(country_gdp[1] / 100000000) # y轴添加gdp数据# 构建柱状图bar = Bar()x_data.reverse()y_data.reverse()bar.add_xaxis(x_data)bar.add_yaxis("GDP(亿)", y_data, label_opts=LabelOpts(position="right"))# 反转x轴和y轴bar.reversal_axis()# 设置每一年的图表的标题bar.set_global_opts(title_opts=TitleOpts(title=f"{year}年全球前8GDP数据"))timeline.add(bar, str(year))# for循环每一年的数据,基于每一年的数据,创建每一年的bar对象
# 在for中,将每一年的bar对象添加到时间线中# 设置时间线自动播放
timeline.add_schema(play_interval=1000,is_timeline_show=True,is_auto_play=True,is_loop_play=False
)
# 绘图
timeline.render("1960-2019全球GDP前8国家.html")
相关文章:
![](https://img-blog.csdnimg.cn/93b1cbb28a0941f3a60b79a5c264b461.png)
数据可视化 - 动态柱状图
基础柱状图 通过Bar构建基础柱状图 from pyecharts.charts import Bar from pyecharts.options import LabelOpts # 使用Bar构建基础柱状图 bar Bar() # 添加X轴 bar.add_xaxis(["中国", "美国", "英国"]) # 添加Y轴 # 设置数值标签在右侧 b…...
![](https://img-blog.csdnimg.cn/60abb3c9aadd44d0aff9996f22927d19.png)
【JVM】JVM五大内存区域介绍
目录 一、程序计数器(线程私有) 二、java虚拟机栈(线程私有) 2.1、虚拟机栈 2.2、栈相关测试 2.2.1、栈溢出 三、本地方法栈(线程私有) 四、java堆(线程共享) 五、方法区&…...
![](https://img-blog.csdnimg.cn/e102085b8e41411e9614513d6032cfc8.png)
自动驾驶感知系统--惯性导航定位系统
惯性导航定位 惯性是所有质量体本身的基本属性,所以建立在牛顿定律基础上的惯性导航系统(Inertial Navigation System,INS)(简称惯导系统)不与外界发生任何光电联系,仅靠系统本身就能对车辆进行连续的三维定位和三维定向。卫星导…...
![](https://img-blog.csdnimg.cn/1a1d51311b1045bda3557557873bf6d9.png)
Netty简介
Netty Netty初体验基础概念Reactor模型传统的阻塞IO模型基础Reactor模型多线程Reactor模型 为什么要使用Netty? (NIO的框架,用于解决高并发出现的问题) *BIO:同步且阻塞的IO NIO:同步且非阻塞的IO(不是说线程&#x…...
![](https://www.ngui.cc/images/no-images.jpg)
基于TCP/IP对等模型对计算机网络知识点的整合
目录 前言 应用层 Telnet SSH FTP/TFTP SNMP:简单的网络管理协议 HTTP:超文本传输协议 SMTP:电子邮件传输协议 DNS:域名解析协议 DHCP:动态主机配置协议 NTP:网络时钟协议 传输层 TCP UDP 端…...
![](https://img-blog.csdnimg.cn/30bc732cd41946cb86d2f0082d07933b.gif#pic_center)
【SQL应知应会】表分区(一)• Oracle版
欢迎来到爱书不爱输的程序猿的博客, 本博客致力于知识分享,与更多的人进行学习交流 本文收录于SQL应知应会专栏,本专栏主要用于记录对于数据库的一些学习,有基础也有进阶,有MySQL也有Oracle 分区表 • Oracle版 前言一、分区表1.什么是表分区…...
![](https://www.ngui.cc/images/no-images.jpg)
PostgreSQL 常用空间处理函数
1.OGC标准函数 管理函数: 添加几何字段 AddGeometryColumn(, , , , , ) 删除几何字段 DropGeometryColumn(, , ) 检查数据库几何字段并在geometry_columns中归档 Probe_Geometry_Columns() 给几何对象设置空间参考(在通过一个范围做空间查询时常用&…...
![](https://img-blog.csdnimg.cn/9b876cc901834e69b6847979f68c5457.png)
ubuntu初始化/修改root密码
1.登录ubuntu后,使用sudo passwd root命令,进行root密码的初始化/修改,注:这里需要保证两次输入的密码都是同一个,才可成功 ubuntugt-ubuntu22-04-cmd-v1-0-32gb-100m:~/ocr$ sudo passwd root New password: Retype…...
![](https://img-blog.csdnimg.cn/b91cb4468da34417acce03f08c68f4f1.png)
【Linux后端服务器开发】select多路转接IO服务器
目录 一、高级IO 二、fcntl 三、select函数接口 四、select实现多路转接IO服务器 一、高级IO 在介绍五种IO模型之前,我们先讲解一个钓鱼例子。 有一条大河,河里有很多鱼,分布均匀。张三是一个钓鱼新手,他钓鱼的时候很紧张&a…...
![](https://img-blog.csdnimg.cn/fbb73867ba20493d88f21117cf2f5a1b.png)
支持向量机(iris)
代码: import pandas as pd from sklearn.preprocessing import StandardScaler from sklearn import svm import numpy as np# 定义每一列的属性 colnames [sepal-length, sepal-width, petal-length, petal-width, class] # 读取数据 iris pd.read_csv(data\\i…...
![](https://img-blog.csdnimg.cn/f8460fa6496b489b80c66381595a86aa.png)
24考研数据结构-第二章:线性表
目录 第二章:线性表2.1线性表的定义(逻辑结构)2.2 线性表的基本操作(运算)2.3 线性表的物理/存储结构(确定了才确定数据结构)2.3.1 顺序表的定义2.3.1.1 静态分配2.3.1.2 动态分配2.3.1.3 mallo…...
![](https://www.ngui.cc/images/no-images.jpg)
Mybatis 动态 sql 是做什么的?都有哪些动态 sql?能简述动态 sql 的执行原理不?
OGNL表达式 OGNL,全称为Object-Graph Navigation Language,它是一个功能强大的表达式语言,用来获取和设置Java对象的属性,它旨在提供一个更高的更抽象的层次来对Java对象图进行导航。 OGNL表达式的基本单位是"导航链"&a…...
![](https://www.ngui.cc/images/no-images.jpg)
250_C++_typedef std::function<int(std::vector<int> vtBits)> fnChkSstStt
假设我们需要定义一个函数类型来表示一个能够计算整数向量中所有元素之和的函数。 首先,我们定义一个函数,它的参数是一个 std::vector 类型的整数向量,返回值是 int 类型,表示所有元素之和: int sumVectorElements(std::vector<int> vt) {int sum = 0;for (int n…...
![](https://www.learnfk.com/guide/images/wuya.png)
无涯教程-jQuery - Transfer方法函数
Transfer 效果可以与effect()方法一起使用。这会将元素的轮廓转移到另一个元素。尝试可视化两个元素之间的交互时非常有用。 Transfer - 语法 selector.effect( "transfer", {arguments}, speed ); 这是所有参数的描述- className - 传输元素将收到的可选类名。…...
![](https://img-blog.csdnimg.cn/img_convert/66e275769c838bd850b071e4b5440110.jpeg)
openGauss学习笔记-24 openGauss 简单数据管理-模式匹配操作符
文章目录 openGauss学习笔记-24 openGauss 简单数据管理-模式匹配操作符24.1 LIKE24.2 SIMILAR TO24.3 POSIX正则表达式 openGauss学习笔记-24 openGauss 简单数据管理-模式匹配操作符 数据库提供了三种独立的实现模式匹配的方法:SQL LIKE操作符、SIMILAR TO操作符…...
![](https://img-blog.csdnimg.cn/2ea113b8646f4a1f936efad8f67148b2.png)
JAVASE---数据类型与变量
1. 字面常量 常量即程序运行期间,固定不变的量称为常量,比如:一个礼拜七天,一年12个月等。 public class Demo{ public static void main(String[] args){ System.Out.println("hello world!"); System.Out.println(…...
![](https://img-blog.csdnimg.cn/6d6e651230f849d1bbd09b2edc8e225c.png)
IDEA Groovy 脚本一键生成实体类<mybatisplus>
配置数据库(mysql) 一键生成(右键点击table) 配置自己的groovy脚本 import com.intellij.database.model.DasTable import com.intellij.database.util.Case import com.intellij.database.util.DasUtil import com.intellij.data…...
![](https://www.learnfk.com/guide/images/wuya.png)
无涯教程-jQuery - Puff方法函数
吹气效果可以与show/hide/toggle一起使用。通过按比例放大元素并同时隐藏它,可以形成粉扑效果。 Puff - 语法 selector.hide|show|toggle( "puff", {arguments}, speed ); 这是所有参数的描述- model - 效果的模式。可以是"显…...
![](https://img-blog.csdnimg.cn/39da6d7b7191490d9c70a9b979413c59.png#pic_center)
什么叫前后端分离?为什么需要前后端问题?解决了什么问题?
单体架构出现的问题 引出:来看一个单体项目架构的结构 通过上述可以看到单体架构主要存在以下几点问题: 开发人员同时负责前端和后端代码开发,分工不明确开发效率低前后端代码混合在一个工程中,不便于管理对开发人员要求高(既会前…...
![](https://www.ngui.cc/images/no-images.jpg)
Vector<T> 动态数组(随机访问迭代器)(答案)
答案如下 //------下面的代码是用来测试你的代码有没有问题的辅助代码,你无需关注------ #include <algorithm> #include <cstdlib> #include <iostream> #include <vector> #include <utility> using namespace std; struct Record { Record…...
![](https://img-blog.csdnimg.cn/851694ab2a0f4678b24833c732f27bde.png)
Istio 故障注入与重试的实验
故障注入 Istio流量治理有故障注入的功能,在接收到用户请求程序的流量时,注入故障现象,例如注入HTTP请求错误,当有流量进入Sidecar时,直接返回一个500的错误请求代码。 通过故障注入可以用来测试整个应用程序的故障恢…...
![](https://www.ngui.cc/images/no-images.jpg)
Java设计模式-中介者模式
中介者模式 1.中介者模式含义 中介者模式,就是用一个中介对象来封装一系列的对象交互。中介者使各对象不需要显式地互相引用,从而使其耦合松散,而且可以独立的改变它们之间的交互。 其实中介者模式很简单的,就像它的名字一样&a…...
![](https://img-blog.csdnimg.cn/50bab17e9aa14575a1f5262f5116401e.png)
OpenCV实现高斯模糊加水印
# coding:utf-8 # Email: wangguisendonews.com # Time: 2023/4/21 10:07 # File: utils.pyimport cv2 import PIL from PIL import Image import numpy as np from watermarker.marker import add_mark, im_add_mark import matplotlib.pyplot as plt# PIL Image转换成OpenCV格…...
![](https://img-blog.csdnimg.cn/img_convert/751e3d2775d3c0ac4eb4a11058dd1edf.png)
JMeter 怎么查看 TPS 数据教程,简单易懂
TPS 是软件测试结果的测量单位。一个事务是指一个客户机向服务器发送请求然后服务器做出反应的过程。客户机在发送请求时开始计时,收到服务器响应后结束计时,以此来计算使用的时间和完成的事务个数。在 JMeter 中,我们可以使用以下方法查看 T…...
![](https://img-blog.csdnimg.cn/9c3da8a40ace4dbda5be871c58b09377.jpeg#pic_center)
2023年的深度学习入门指南(19) - LLaMA 2源码解析
2023年的深度学习入门指南(19) - LLaMA 2源码解析 上一节我们学习了LLaMA 2的补全和聊天两种API的使用方法。本节我们来看看LLaMA 2的源码。 补全函数text_completion源码解析 上一节我们讲了LLaMA 2的编程方法。我们来复习一下: generator Llama.build(ckpt_di…...
![](https://www.ngui.cc/images/no-images.jpg)
慕课网Go-2.数组、slice、map、list
数组 package mainimport "fmt"func main() {var course1 [3]stringcourse1[0] "go"course1[1] "grpc"course1[2] "gin"for _, value : range course1 {fmt.Println(value)}course2 : [3]string{2: "grpc"}fmt.Println(…...
![](https://www.ngui.cc/images/no-images.jpg)
Django的Rest framework搭建自定义授权登录
系列文章目录 提示:阅读本章之前,请先阅读目录 文章目录 系列文章目录一、前言User模型User的viewsUser的serializersutils的md5加密自定义认证方法配置路由总路由分路由rest的配置 一、前言 之前的文章有写过通过jwt认证的文章,今天这一篇是…...
![](https://img-blog.csdnimg.cn/9d660f4827474d0eacc655c7f1ade7e6.png)
01 矩阵(力扣)多源广度优先搜索 JAVA
给定一个由 0 和 1 组成的矩阵 mat ,请输出一个大小相同的矩阵,其中每一个格子是 mat 中对应位置元素到最近的 0 的距离。 两个相邻元素间的距离为 1 。 输入:mat [[0,0,0],[0,1,0],[0,0,0]] 输出:[[0,0,0],[0,1,0],[0,0,0]] 输入…...
![](https://img-blog.csdnimg.cn/7daef9861075445baad7236f956efc61.png)
怎么绘制简爱思维导图?用这个工具绘制很简单
怎么绘制简爱思维导图?绘制思维导图是一项非常有用的技能,有助于梳理思路、整理知识、更好地理解和记忆信息。因此,无论你是学生、教师、工程师、项目经理或者只是想要更好地组织自己的想法,学会绘制思维导图都是非常有益的。下面…...
![](https://img-blog.csdnimg.cn/5ab219b0f78e477eb26735d39c1c92f2.png)
EC200U-CN学习(三)
EC200U系列内置丰富的网络协议,集成多个工业标准接口,并支持多种驱动和软件功能(适用于Windows 7/8/8.1/10、Linux和Android等操作系统下的USB驱动),极大地拓展了其在M2M领域的应用范围,如POS、POC、ETC、共…...
![](/images/no-images.jpg)
wordpress优缺点/网络营销方案ppt
容斥原理 设\(S_1,S_2,...,S_n\)为\(n\)个有限集合,\(|S|\)代表集合\(S\)的大小,则有 \[\left | \bigcup_{i1}^nS_i \right |\sum_{i1}^n|S_i|-\sum_{1\leq i \leq j \leq n}|S_i\cap S_j|...(-1)^{n1}\left | \bigcap_{i1}^nS_i \right |\] 多重集组合数…...
![](https://img-blog.csdnimg.cn/20200202150304319.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly94aW56aGUuYmxvZy5jc2RuLm5ldA==,size_16,color_FFFFFF,t_70)
深圳市住房和建设局网站变更/谷歌竞价广告
Django Web应用程序(3) 本文主要内容为对项目“学习笔记”设置样式并对其进行部署。 为设置样式,将使用Bootstrap库;另外,我们还将把项目部署到Heroku,这个网站能够让我们能够将项目推送到其服务器&#x…...
![](/images/no-images.jpg)
wordpress手机号码插件/百度推广有哪些售后服务
我们的家庭宽带光猫软件会定期进行升级,推送及更新一些新的插件,下面来说说光猫几个内置插件的作用及功能;用户无法对插件进行操作,默认光猫开机后,插件就开始运行了,这些插件都需要通过INTERNET连接出去&a…...
![](/images/no-images.jpg)
wordpress 3.2/seo网站关键词排名提升
引子 Android Framework的音频子系统中,每一个音频流对应着一个AudioTrack类的一个实例,每个AudioTrack会在创建时注册到AudioFlinger中,由AudioFlinger把所有的AudioTrack进行混合(Mixer)&am…...
![](/images/no-images.jpg)
网站建设要费用多少/百度一下首页问问
1 JSON.stringify() 此方法用来将 JavaScript 对象转换为字符串。 1.1 语法 JSON.stringify(value[, replacer[, space]])1.2 参数说明 value: 必需, 要转换的 JavaScript 值(通常为对象或数组)。 replacer: 可选。用于转换结果的函数或数组…...
![](https://images2015.cnblogs.com/blog/501599/201508/501599-20150830213725609-1545905511.png)
求一个用脚做asmr的网站/厦门seo代理商
Instruments 是应用程序用来动态跟踪和分析 Mac OS X 和 iOS 代码的实用工具。 这是一个灵活而强大的工具,它让你可以跟踪一个或多个进程,并检查收集的数据。 这样,Instruments可以帮你更好的理解应用程序和操作系统的行为。 使用 Instruments 应用,你可以使用特殊的工具(即 in…...