当前位置: 首页 > news >正文

机器学习:混合高斯聚类GMM(求聚类标签)+PCA降维(3维降2维)习题

  1. 使用混合高斯模型 GMM,计算如下数据点的聚类过程:
    Data=np.array([1,2,6,7])
    均值初值为:
    μ1,μ2=1,5
    权重初值为:
    w1,w2=0.5,0.5
    方差:
    std1,std2=1,1
    K=2
    10 次迭代后数据的聚类标签是多少?

采用python代码实现:

 

from scipy import stats
import numpy as np#初始化数据
Data = np.array([1,2,6,7])
w1 , w2 = 0.5, 0.5
mu1 , mu2 = 1, 5
std1 , std2 = 1, 1n = len(Data) # 样本长度
zij=np.zeros([n,2])
for t in range(10):# E-step 依据当前参数,计算每个数据点属于每个子分布的概率z1_up = w1 * stats.norm(mu1 ,std1).pdf(Data)z2_up = w2*stats.norm(mu2 , std2).pdf(Data)z_all = (w1*stats.norm(mu1 ,std1).pdf(Data)+w2*stats.norm(mu2 ,std2).pdf(Data))+0.001rz1 = z1_up/z_all # 为甲分布的概率rz2 = z2_up/z_all # 为乙分布的概率# M-step 依据 E-step 的结果,更新每个子分布的参数。mu1 = np.sum(rz1*Data)/np.sum(rz1)mu2 = np.sum(rz2*Data)/np.sum(rz2)std1 = np.sum(rz1*np.square(Data-mu1))/np.sum(rz1)std2 = np.sum(rz2*np.square(Data-mu2))/np.sum(rz2)w1 = np.sum(rz1)/nw2 = np.sum(rz2)/n
for i in range(n):zij[i][0] = rz1[i]/(rz1[i]+rz2[i])zij[i][1] = rz2[i]/(rz1[i]+rz2[i])labels = np.argmax(zij, axis=1)#输出每一行的最大值,0或1  axis表示返回每一行中最大值所在列的索引
print(labels)

聚类标签输出结果:[0 0 1 1]

也就是说,10 次迭代后数据的聚类标签是1,2归为0类6,7归为1

附注:

如果 axis 为 None,那么 np.argmax 会将数组展平为一维,然后返回最大值的索引。例如:

>>> a = np.array([[1, 2], [3, 4]])
>>> np.argmax(a)
3

如果 axis 为 0,那么 np.argmax 会沿着第一个维度(行)进行最大值的查找,返回每一列中最大值所在的行索引。例如:

>>> a = np.array([[1, 2], [3, 4]])
>>> np.argmax(a, axis=0)
array([1, 1])

如果 axis 为 1,那么 np.argmax 会沿着第二个维度(列)进行最大值的查找,返回每一行中最大值所在的列索引。例如:

>>> a = np.array([[1, 2], [3, 4]])
>>> np.argmax(a, axis=1)
array([1, 1])

在之前问题中,np.argmax([gamma1, gamma2], axis=0) 的意思是沿着第一个维度(gamma1 和 gamma2)进行最大值的查找,返回每个数据点属于哪个子分布的概率更大。

  1. 假设我们的数据集有 10 个 3 维数据, 需要用 PCA 降到 2 维特征。

    array([[ 3.25, 1.85, -1.29],[ 3.06, 1.25, -0.18],[ 3.46, 2.68, 0.64],[ 0.3 , -0.1 , -0.79],[ 0.83, -0.21, -0.88],[ 1.82, 0.99, 0.16],[ 2.78, 1.75, 0.51],[ 2.08, 1.5 , -1.06],[ 2.62, 1.23, 0.04],[ 0.83, -0.69, -0.61]])
    

    给出求解过程

解:

  1. 对所有的样本进行中心化:

x(i)=x(i)−1m∑j=1mx(j)

得到:

X=np.array([[ 1.147  0.825 -0.944][ 0.957  0.225  0.166][ 1.357  1.655  0.986][-1.803 -1.125 -0.444][-1.273 -1.235 -0.534][-0.283 -0.035  0.506][ 0.677  0.725  0.856][-0.023  0.475 -0.714][ 0.517  0.205  0.386][-1.273 -1.715 -0.264]])
  1. 计算样本的协方差矩阵 XXT
covM2=np.array([[1.26344556 1.08743889 0.32030889], 
[1.08743889 1.11076111 0.31611111],
[0.32030889 0.31611111 0.45449333]])
  1. 对矩阵 XXT 进行特征值分解

取出最大的 n′ 个特征值对应的特征向量 (w1,…,wn′), 将所有的特征向量标准化后,组成特征向量矩阵 W。

3.1求出特征值:

eigval=np.array([2.38219729 0.09637041 0.35013229])

3.2特征向量标准化:

eigvec=np.array([
[ 0.71144     0.67380165 -0.19961077],
[ 0.66498574 -0.73733944 -0.11884665],
[ 0.22725997  0.04818606  0.97264126]])

3.3取出特征值最大的2个特征值索引,也就是[2.38,0.35]对应的第1列和第3列:

indexes=[2 0]

3.4特征向量矩阵W:(对eigvec取了第3列和第1列)

W=np.array([
[-0.19961077  0.71144   ], 
[-0.11884665   0.66498574], 
[ 0.97264126   0.22725997]])
  1. 对样本集中的每一个样本 x(i) , 转化为新的样本 z(i)=WTx(i) ,得到输出样本集 D=(z(1),…z(m))

X:3×10 W:3×2 x⋅W=10×33×2 因为输入行列转置,结果是一致的

D=np.array([[-1.24517539  1.15010151][-0.05630956  0.86819503][ 0.49146125  2.29005381][ 0.06174799 -2.1317387 ][-0.1185103  -1.84827733][ 0.55280596 -0.10961848][ 0.6112806   1.15829407][-0.74632697  0.13724149][ 0.24787719  0.5918589 ][ 0.20114923 -2.10611029]])

代码:

import numpy as npX=np.array([[ 3.25, 1.85, -1.29],[ 3.06, 1.25, -0.18],[ 3.46, 2.68, 0.64],[ 0.3 , -0.1 , -0.79],[ 0.83, -0.21, -0.88],[ 1.82, 0.99, 0.16],[ 2.78, 1.75, 0.51],[ 2.08, 1.5 , -1.06],[ 2.62, 1.23, 0.04],[ 0.83, -0.69, -0.61]])def pca(X, d):# Centralization中心化means = np.mean(X, 0)X = X - meansprint(X)# Covariance Matrix 计算样本协方差矩阵M=len(X)X=np.mat(X)    covM2=np.cov(X.T)# 求出特征值,特征值分解eigval , eigvec = np.linalg.eig(covM2)indexes = np.argsort(eigval)[-d:]W = eigvec[:, indexes]return X*W
print(pca(X, 2))

附注:

np.cov()是一个用于计算协方差矩阵的函数,它可以接受一个或两个数组作为参数,返回一个二维数组,表示协方差矩阵。

协方差矩阵是一个对称矩阵,它的对角线元素表示各个变量的方差,非对角线元素表示两个变量之间的协方差。协方差反映了两个变量的线性相关程度,如果协方差为正,说明两个变量正相关;如果协方差为负,说明两个变量负相关;如果协方差为零,说明两个变量无相关性。

np.cov()的用法如下:

np.cov(m, y=None, rowvar=True, bias=False, ddof=None, fweights=None, aweights=None)

参数说明:

  • m: 一个一维或二维的数组,表示多个变量和观测值。如果是一维数组,表示一个变量的观测值;如果是二维数组,每一行表示一个变量,每一列表示一个观测值。
  • y: 可选参数,另一个一维或二维的数组,表示另一组变量和观测值,必须和m具有相同的形状。
  • rowvar: 可选参数,布尔值,默认为True。如果为True,表示每一行代表一个变量;如果为False,表示每一列代表一个变量。
  • bias: 可选参数,布尔值,默认为False。如果为False,表示计算无偏协方差(除以n-1);如果为True,表示计算有偏协方差(除以n)。
  • ddof: 可选参数,整数,默认为None。如果不为None,则覆盖由bias隐含的默认值。ddof=0表示计算有偏协方差;ddof=1表示计算无偏协方差。
  • fweights: 可选参数,一维数组或整数,默认为None。表示每次观测的频率权重。
  • aweights: 可选参数,一维数组,默认为None。表示每个变量的可靠性权重。

返回值:

  • 一个二维数组,表示协方差矩阵。

举例说明:

import numpy as np# 生成两组随机数据
x = np.random.randn(10)
y = np.random.randn(10)# 计算x和y的协方差矩阵
cov_xy = np.cov(x,y)
print(cov_xy)
# 输出:
[[ 0.8136679  -0.01594772][-0.01594772  0.84955963]]# 计算x和y的相关系数矩阵
corr_xy = np.corrcoef(x,y)
print(corr_xy)
# 输出:
[[ 1.         -0.01904402][-0.01904402  1.        ]]

相关文章:

机器学习:混合高斯聚类GMM(求聚类标签)+PCA降维(3维降2维)习题

使用混合高斯模型 GMM,计算如下数据点的聚类过程: Datanp.array([1,2,6,7]) 均值初值为: μ1,μ21,5 权重初值为: w1,w20.5,0.5 方差: std1,std21,1 K2 10 次迭代后数据的聚类标签是多少? 采用python代码实现: from scipy import…...

libuv库学习笔记-processes

Processes libuv提供了相当多的子进程管理函数,并且是跨平台的,还允许使用stream,或者说pipe完成进程间通信。 在UNIX中有一个共识,就是进程只做一件事,并把它做好。因此,进程通常通过创建子进程来完成不…...

c++ 给无名形参提供默认值

如上图,若函数的形参不在函数体里使用,可以不提供形参名,而且可以给此形参提供默认值。也能编译通过。 在看vs2019上的源码时,也出现了这种写法。应用SFINAE(substitute false is not an error)原则&#x…...

NO1.使用命令行创建Maven工程

①在工作空间目录下打开命令窗口 ②使用命令行生成Maven工程 mvn archetype:generate 运行 MVN 原型:生成命令,下面根据提示操作 选择一个数字或应用过滤器(格式:[groupId:]artifactId,区分大小写包含)&a…...

深度学习入门(一):神经网络基础

一、深度学习概念 1、定义 通过训练多层网络结构对位置数据进行分类或回归,深度学习解决特征工程问题。 2、深度学习应用 图像处理语言识别自然语言处理 在移动端不太好,计算量太大了,速度可能会慢 eg.医学应用、自动上色 3、例子 使用…...

网络知识整理

网络知识整理 网络拓扑网关默认网关 数据传输拓扑结构层面协议层面 网络拓扑 网关 连接两个不同的网络的设备都可以叫网关设备,网关的作用就是实现两个网络之间进行通讯与控制。 网关设备可以是交换机(三层及以上才能跨网络) 、路由器、启用了路由协议的服务器、代…...

如何有效地使用ChatGPT写小说讲故事?

​构思故事情节,虽有趣但耗时,容易陷入写作瓶颈。ChatGPT可提供灵感,帮你解决写作难题。要写出引人入胜的故事,关键在于抓住八个要素——主题、人物、视角、背景、情节、语气、冲突和解决办法。 直接给出故事模板,你可…...

原生求生记:揭秘UniApp的原生能力限制

文章目录 1. 样式适配问题2. 性能问题3. 原生能力限制4. 插件兼容性问题5. 第三方组件库兼容性问题6. 全局变量污染7. 调试和定位问题8. 版本兼容性问题9. 前端生态限制10. 文档和支持附录:「简历必备」前后端实战项目(推荐:⭐️⭐️⭐️⭐️…...

网络编程 IO多路复用 [epoll版] (TCP网络聊天室)

//head.h 头文件 //TcpGrpSer.c 服务器端 //TcpGrpUsr.c 客户端 通过IO多路复用实现服务器在单进程单线程下可以与多个客户端交互 API epoll函数 #include<sys/epoll.h> int epoll_create(int size); 功能&#xff1a;创建一个epoll句柄//创建红黑树根…...

【go-zero】浅析 01

“github.com/google/uuid” uuid.New().String() go-zero 文档 https://www.w3cschool.cn/gozero/ go-zero 官网 https://go-zero.dev/ 快速开始&#xff1a; $ mkdir go-zero-demo $ cd go-zero-demo $ go mod init go-zero-demo $ goctl api new greet $ go mod tidy Done…...

音视频——视频流H264编码格式

1 H264介绍 我们了解了什么是宏快&#xff0c;宏快作为压缩视频的最小的一部分&#xff0c;需要被组织&#xff0c;然后在网络之间做相互传输。 H264更深层次 —》宏块 太浅了 ​ 如果单纯的用宏快来发送数据是杂乱无章的&#xff0c;就好像在没有集装箱 出现之前&#xff0c;…...

【使用深度学习的城市声音分类】使用从提取音频特征(频谱图)中提取的深度学习进行声音分类研究(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…...

机器学习完整路径

一个机器学习项目从开始到结束大致分为 5 步&#xff0c;分别是定义问题、收集数据和预处理、选择算法和确定模型、训练拟合模型、评估并优化模型性能。是一个循环迭代的过程&#xff0c;优秀的模型都是一次次迭代的产物。 定义问题 要剖析业务场景&#xff0c;设定清晰的目标…...

CK-00靶机详解

CK-00靶机详解 靶场下载地址&#xff1a;https://download.vulnhub.com/ck/CK-00.zip 这个靶场扫描到ip打开后发现主页面css是有问题的&#xff0c;一般这种情况就是没有配置域名解析。 我们网站主页右击查看源代码&#xff0c;发现一个域名。 把域名添加到我们hosts文件中。…...

17-C++ 数据结构 - 栈

&#x1f4d6; 1.1 什么是栈 栈是一种线性数据结构&#xff0c;具有后进先出&#xff08;Last-In-First-Out&#xff0c;LIFO&#xff09;的特点。可以类比为装满盘子的餐桌&#xff0c;每次放盘子都放在最上面&#xff0c;取盘子时也从最上面取&#xff0c;因此最后放进去的盘…...

Redis如何实现排行榜?

今天给大家简单聊聊 Redis Sorted Set 数据类型底层的实现原理和游戏排行榜实战。特别简单&#xff0c;一点也不深入&#xff0c;也就 7 张图&#xff0c;粉丝可放心食用&#xff0c;哈哈哈哈哈~~~~。 1. 是什么 Sorted Sets 与 Sets 类似&#xff0c;是一种集合类型&#xff…...

Pycharm debug程序,跳转至指定循环条件/循环次数

在断点出右键&#xff0c;然后设置条件 示例 for i in range(1,100):a i 1b i 2print(a, b, i) 注意&#xff1a; 1、你应该debug断点在循环后的位置而不是循环上的位置&#xff0c;然后你就可以设置你的条件进入到指定的循环上了 2、设置条件&#xff0c;要使用等于符号…...

react实现markdown

参考&#xff1a;https://blog.csdn.net/Jack_lzx/article/details/118495763 参考&#xff1a;https://blog.csdn.net/m0_48474585/article/details/119742984 0. 示例 用react实现markdown编辑器 1.基本布局及样式 <><div classNametf_editor_header>头部&…...

HTTP请求走私漏洞简单分析

文章目录 HTTP请求走私漏洞的产生HTTP请求走私漏洞的分类HTTP请求走私攻击的危害确认HTTP请求走私漏洞通过时间延迟技术确认CL漏洞通过时间延迟技术寻找TE.CL漏洞 使用差异响应内容确认漏洞通过差异响应确认CL.TE漏洞通过差异响应确认TE.CL漏洞 请求走私漏洞的利用通过请求漏洞…...

BI-SQL丨两表差异比较

BOSS&#xff1a;哎&#xff0c;白茶&#xff0c;我们最近新上了一个系统&#xff0c;后续有一些数据要进行源切换&#xff0c;这个能整么&#xff1f; 白茶&#xff1a;没问题&#xff0c;可以整&#xff01; BOSS&#xff1a;哦&#xff0c;对了&#xff0c;差点忘记告诉你了…...

ZooKeeper 选举的过半机制防止脑裂

结论&#xff1a; Zookeeper采用过半选举机制&#xff0c;防止了脑裂。 原因&#xff1a; 如果有5台节点&#xff0c;leader联系不上了&#xff0c;其他4个节点由于超过半数&#xff0c;所以又选出了一个leader&#xff0c;当失联的leader恢复网络时&#xff0c;发现集群中已…...

【图论】树上差分(边差分)

一.简介 其实点差分和边差分区别不大。 点差分中&#xff0c;d数组存储的是树上的节点 边差分中&#xff0c;d数组存储的是当前节点到父节点的那条边的差分值。 指定注意的是&#xff1a;边差分中因为根连的父节点是虚点&#xff0c;所以遍历结果时应当忽略&#xff01; 二…...

RT1052的定时器

文章目录 1 通用定时器1.1 定时器框图1.2 实现周期性中断 2 相关寄存器3 定时器配置3.1 时钟使能3.2 初始化GPT1定时器3.2.1 base3.2.2 initConfig3.2.2.1 clockSorce3.2.2.2 divider3.2.2.3 enablexxxxx 3.3 设置 GPT1 比较值3.3.1 base3.3.2 channel3.3.3 value 3.4 设置 GPT…...

opencv python 训练自己的分类器

源码下载 一、分类器制作 1.样本准备 收集好你所需的正样本&#xff0c;和负样本&#xff0c;分别保存在不同文件夹 在pycharm新建项目&#xff0c;项目结构如下&#xff1a;has_mask文件夹放置正样本&#xff0c;no_mask文件夹放置负样本 安装opencv&#xff0c;把opencv包…...

详解Mybatis之分页插件【PageHelper】

编译软件&#xff1a;IntelliJ IDEA 2019.2.4 x64 操作系统&#xff1a;win10 x64 位 家庭版 Maven版本&#xff1a;apache-maven-3.6.3 Mybatis版本&#xff1a;3.5.6 文章目录 一. 什么是分页&#xff1f;二. 为什么使用分页&#xff1f;三. 如何设计一个Page类&#xff08;分…...

【基于矢量射线的衍射积分 (VRBDI)】基于矢量射线的衍射积分 (VRBDI) 和仿真工具(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…...

基于jackson对bean的序列号和反序列化

通过观察控制台输出的SQL发现页面传递过来的员工id的值和数据库中的id值不一致&#xff0c;这是怎么回事呢? 分页查询时服务端响应给页面的数据中id的值为19位数字&#xff0c;类型为long 页面中js处理long型数字只能精确到前16位&#xff0c;所以最终通过ajax请求提交给服务…...

排队理论简介

排队理论简介 1. 理论背景2. 研究的数学方法3. 拒绝型排队系统与等候型排队系统4. 拒绝型排队系统 本文参考文献为Вентцель Е. С.的《Исследование операций》。 1. 理论背景 排队理论又称大众服务理论&#xff0c;顾名思义指的是在有限的服务条…...

极速查找(3)-算法分析

篇前小言 本篇文章是对查找&#xff08;2&#xff09;的续讲二叉排序树 二叉排序树&#xff08;Binary Search Tree&#xff0c;BST&#xff09;&#xff0c;又称为二叉查找树&#xff0c;是一种特殊的二叉树。性质&#xff1a; 左子树的节点值小于根节点的值&#xff0c;右…...

http 常见的响应状态码 ?

100——客户必须继续发出请求101——客户要求服务器根据请求转换HTTP协议版本200——交易成功201——提示知道新文件的URL202——接受和处理、但处理未完成203——返回信息不确定或不完整204——请求收到&#xff0c;但返回信息为空205——服务器完成了请求&#xff0c;用户代理…...

顺企网企业查询/西安seo服务外包

题目描述 G 公司有 \(n\) 个沿铁路运输线环形排列的仓库&#xff0c;每个仓库存储的货物数量不等。如何用最少搬运量可以使 \(n\) 个仓库的库存数量相同。搬运货物时&#xff0c;只能在相邻的仓库之间搬运。 输入格式 文件的第 \(1\) 行中有 \(1\) 个正整数 \(n\) &#xff0c;…...

成都大丰网站建设例表网/青岛seo搜索优化

因为我的笔记本式HASEE的&#xff08;因为没钱。。&#xff09;&#xff0c;安不了Fedora Core 和 Ubuntu &#xff0c;所以我打算自己编个内核然后给他们加上支持驱动。不知道行不行&#xff0c;但现在第一步就是先做个LiveCD玩玩。 准备了linux kernel&#xff0c;必须的吧~&…...

企业网站制作模板免费下载/网站制作策划书

1.基本参数的设置1)按“MENU”键&#xff0c;控制盘显示屏出现“-99-”字样。2)按“ENTER”键&#xff0c;控制盘显示屏出现“-9902-”字样。再按“ENTER”键&#xff0c;显示屏显示SET、LWD闪烁&#xff0c;同时显示控制参数控9902的数值&#xff0c;反复按“UP&#xff0f;DO…...

用wgert 做网站/搜狗收录提交

jQuery Mobile 是针对触屏智能手机与平板电脑的网页开发框架。 移动端兼容性好&#xff0c;但是pc端兼容较差。 <head> <!-- meta使用viewport以确保页面可自由缩放 --> <meta name"viewport" content"widthdevice-width, initial-scale1&quo…...

常州网站建设选思创/微信平台推广方法

借助一个html标签object,来嵌入一个swf媒体播放文件&#xff0c;并利用该文件来播放你预设的文件。下载链接 利用B站开源的flv.js 通过将FLV文件流转换为ISO BMFF&#xff08;Fragmented MP4&#xff09;段&#xff0c;然后<video>通过Media Source Extensions API 将mp4…...

asp网站制作设计教程/广告素材

需求&#xff1a;y轴刻度 最大值取接口返回的 最大值数据 方法一&#xff1a; data() {return {yAxisMaxNum: 49};},initChart() {// 创建 echarts 实例。this.myChartOne this.$echarts.init(this.$refs.Echart);let maxNum this.yAxisMaxNumvar option {tooltip: {trigger…...