当前位置: 首页 > news >正文

【MATLAB第62期】基于MATLAB的PSO-NN、BBO-NN、前馈神经网络NN回归预测对比

【MATLAB第62期】基于MATLAB的PSO-NN、BBO-NN、前馈神经网络NN回归预测对比

一、数据设置

1、7输入1输出
2、103行样本
3、80个训练样本,23个测试样本

二、效果展示

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

NN训练集数据的R2为:0.73013
NN测试集数据的R2为:0.23848
NN训练集数据的MAE为:3.0122
NN测试集数据的MAE为:4.4752
NN训练集数据的MAPE为:0.088058
NN测试集数据的MAPE为:0.1302
PSO-NN训练集数据的R2为:0.76673
PSO-NN测试集数据的R2为:0.72916
PSO-NN训练集数据的MAE为:3.124
PSO-NN测试集数据的MAE为:3.1873
PSO-NN训练集数据的MAPE为:0.088208
PSO-NN测试集数据的MAPE为:0.094787
BBO-NN训练集数据的R2为:0.67729
BBO-NN测试集数据的R2为:0.46872
BBO-NN训练集数据的MAE为:3.5204
BBO-NN测试集数据的MAE为:4.4843
BBO-NN训练集数据的MAPE为:0.099475
BBO-NN测试集数据的MAPE为:0.14177

三、代码展示(部分)

%%PSO-NN及BBO-BP回归
%基于生物地理优化进化算法(BBO)
%-----------------------------------------------------------------------
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行
rng(0)
%%  导入数据
res = xlsread('数据集.xlsx');%%  划分训练集和测试集
temp = randperm(103);P_train = res(temp(1: 80), 1: 7)';
T_train = res(temp(1: 80), 8)';
M = size(P_train, 2);P_test = res(temp(81: end), 1: 7)';
T_test = res(temp(81: end), 8)';
N = size(P_test, 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);
%% Learning 
n = 9; % Neurons
%----------------------------------------
% 'trainlm'	    Levenberg-Marquardt
% 'trainbr' 	Bayesian Regularization (good)
% 'trainrp'  	Resilient Backpropagation
% 'traincgf'	Fletcher-Powell Conjugate Gradient
% 'trainoss'	One Step Secant (good)
% 'traingd' 	Gradient Descent
% Creating the NN ----------------------------
net = feedforwardnet(n,'trainoss');
%---------------------------------------------
% configure the neural network for this dataset
[net tr]= train(net,p_train, t_train);
perf = perform(net,p_train', t_train'); % mse%%  仿真预测
t_sim01=net(p_train);
t_sim02=net(p_test);
T_sim01 = mapminmax('reverse', t_sim01, ps_output);
T_sim02 = mapminmax('reverse', t_sim02, ps_output);%%  均方根误差
error01 = sqrt(sum((T_sim01 - T_train).^2) ./ M);
error02 = sqrt(sum((T_sim02 - T_test ).^2) ./ N);%%  绘图
figure()
subplot(2,1,1)
plot(1: M, T_train, 'r-*', 1: M, T_sim01, 'b-o', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'NN训练集预测结果对比'; ['RMSE=' num2str(error01)]};
title(string)
xlim([1, M])
gridsubplot(2,1,2)
plot(1: N, T_test, 'r-*', 1: N, T_sim02, 'b-o', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'NN测试集预测结果对比'; ['RMSE=' num2str(error02)]};
title(string)
xlim([1, N])
gridt_sim11=net_pso(p_train);
t_sim22=net_pso(p_test);
T_sim11 = mapminmax('reverse', t_sim11, ps_output);
T_sim22 = mapminmax('reverse', t_sim22, ps_output);
%%  均方根误差
error11 = sqrt(sum((T_sim11 - T_train).^2) ./ M);
error22 = sqrt(sum((T_sim22 - T_test ).^2) ./ N);%%  相关指标计算
%  R2
R01 = 1 - norm(T_train - T_sim01)^2 / norm(T_train - mean(T_train))^2;
R02 = 1 - norm(T_test  - T_sim02)^2 / norm(T_test  - mean(T_test ))^2;disp(['NN训练集数据的R2为:', num2str(R01)])
disp(['NN测试集数据的R2为:', num2str(R02)])%  MAE
mae01 = sum(abs(T_sim01 - T_train)) ./ M ;
mae02 = sum(abs(T_sim02 - T_test )) ./ N ;disp(['NN训练集数据的MAE为:', num2str(mae01)])
disp(['NN测试集数据的MAE为:', num2str(mae02)])%  MAPE   mape = mean(abs((YReal - YPred)./YReal));mape01 = mean(abs((T_train - T_sim01)./T_train));    
mape02 = mean(abs((T_test - T_sim02 )./T_test));      disp(['NN训练集数据的MAPE为:', num2str(mape01)])
disp(['NN测试集数据的MAPE为:', num2str(mape02)])%%  绘图
figure()
subplot(2,1,1)
plot(1: M, T_train, 'r-*', 1: M, T_sim11, 'b-o', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'PSO-NN训练集预测结果对比'; ['RMSE=' num2str(error11)]};
title(string)
xlim([1, M])
gridsubplot(2,1,2)
plot(1: N, T_test, 'r-*', 1: N, T_sim22, 'b-o', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'PSO-NN测试集预测结果对比'; ['RMSE=' num2str(error22)]};
title(string)
xlim([1, N])
grid%%  相关指标计算
%  R2
R11 = 1 - norm(T_train - T_sim11)^2 / norm(T_train - mean(T_train))^2;
R22 = 1 - norm(T_test  - T_sim22)^2 / norm(T_test  - mean(T_test ))^2;disp(['PSO-NN训练集数据的R2为:', num2str(R11)])
disp(['PSO-NN测试集数据的R2为:', num2str(R22)])%  MAE
mae11 = sum(abs(T_sim11 - T_train)) ./ M ;
mae22 = sum(abs(T_sim22 - T_test )) ./ N ;disp(['PSO-NN训练集数据的MAE为:', num2str(mae11)])
disp(['PSO-NN测试集数据的MAE为:', num2str(mae22)])%  MAPE   mape = mean(abs((YReal - YPred)./YReal));mape11 = mean(abs((T_train - T_sim11)./T_train));    
mape22 = mean(abs((T_test - T_sim22 )./T_test));      disp(['PSO-NN训练集数据的MAPE为:', num2str(mape11)])
disp(['PSO-NN测试集数据的MAPE为:', num2str(mape22)])%% BBO优化 NN 权重和偏差
%% PSO优化 NN 权重和偏差
Weights_Bias_bbo=getwb(net_bbo);t_sim31=net_bbo(p_train);
t_sim32=net_bbo(p_test);
T_sim31 = mapminmax('reverse', t_sim31, ps_output);
T_sim32 = mapminmax('reverse', t_sim32, ps_output);
%%  均方根误差
error31 = sqrt(sum((T_sim31 - T_train).^2) ./ M);
error32 = sqrt(sum((T_sim32 - T_test ).^2) ./ N);%%  绘图
figure()
subplot(2,1,1)
plot(1: M, T_train, 'r-*', 1: M, T_sim31, 'b-o', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'BBO-NN训练集预测结果对比'; ['RMSE=' num2str(error31)]};
title(string)
xlim([1, M])
gridsubplot(2,1,2)
plot(1: N, T_test, 'r-*', 1: N, T_sim32, 'b-o', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'BBO-NN测试集预测结果对比'; ['RMSE=' num2str(error32)]};
title(string)
xlim([1, N])
grid%%  相关指标计算
%  R2
R31 = 1 - norm(T_train - T_sim31)^2 / norm(T_train - mean(T_train))^2;
R32 = 1 - norm(T_test  - T_sim32)^2 / norm(T_test  - mean(T_test ))^2;disp(['BBO-NN训练集数据的R2为:', num2str(R31)])
disp(['BBO-NN测试集数据的R2为:', num2str(R32)])%  MAE
mae31 = sum(abs(T_sim31 - T_train)) ./ M ;
mae32 = sum(abs(T_sim32 - T_test )) ./ N ;disp(['BBO-NN训练集数据的MAE为:', num2str(mae31)])
disp(['BBO-NN测试集数据的MAE为:', num2str(mae32)])%  MAPE   mape = mean(abs((YReal - YPred)./YReal));mape31 = mean(abs((T_train - T_sim31)./T_train));    
mape32 = mean(abs((T_test - T_sim32 )./T_test));      disp(['BBO-NN训练集数据的MAPE为:', num2str(mape31)])
disp(['BBO-NN测试集数据的MAPE为:', num2str(mape32)])

四、代码获取

后台私信回复“62期”即可获取下载链接。

相关文章:

【MATLAB第62期】基于MATLAB的PSO-NN、BBO-NN、前馈神经网络NN回归预测对比

【MATLAB第62期】基于MATLAB的PSO-NN、BBO-NN、前馈神经网络NN回归预测对比 一、数据设置 1、7输入1输出 2、103行样本 3、80个训练样本,23个测试样本 二、效果展示 NN训练集数据的R2为:0.73013 NN测试集数据的R2为:0.23848 NN训练集数据的…...

深度剖析C++ 异常机制

传统排错 我们早在 C 程序里面传统的错误处理手段有: 终止程序,如 assert;缺陷是用户难以接受,说白了就是一种及其粗暴的手法,比如发生内存错误,除0错误时就会终止程序。 返回错误码。缺陷是需要我们自己…...

adb no permissions (user *** is not in the plugdev group)

首次配置ubuntu下的adb 环境,执行了adb device命令会出现以下问题 lvilvi-PC:~/develop/android/sdk/platform-tools$ adb devices List of devices attached 123699aac6536d65 no permissions (user lvi is not in the plugdev group); see [http://develo…...

【外卖系统】分类管理业务

公共字段自动填充 需求分析 对于之前的开发中,有创建时间、创建人、修改时间、修改人等字段,在其他功能中也会有出现,属于公共字段,对于这些公共字段最好是在某个地方统一处理以简化开发,使用Mybatis Plus提供的公共…...

es报错[FORBIDDEN/12/index read-only / allow delete (api)]

报错 [FORBIDDEN/12/index read-only / allow delete (api)] es磁盘满了 postman请求 put 请求 http://loclahost:9200/_settings {"settings": {"index": {"blocks": {"read_only_allow_delete": "false"}}} }...

关于网络通信安全协议的一些知识(ssl,tls,CA,https)

首先了解一下http协议的变迁。 http1.0默认短连接,1.1默认长连接并且可以管道传输,但是存在队头阻塞问题; https就是在tcp和http之间加了SSL/TLS层。 http2也是安全的,改进是hpack二进制和编码压缩减小体积,stream没有…...

Generative Diffusion Prior for Unified Image Restoration and Enhancement 论文阅读笔记

这是CVPR2023的一篇用diffusion先验做图像修复和图像增强的论文 之前有一篇工作做了diffusion先验(Bahjat Kawar, Michael Elad, Stefano Ermon, and Jiaming Song, “Denoising diffusion restoration models,” arXiv preprint arXiv:2201.11793, 2022. 2, 4, 6,…...

GAMES101 笔记 Lecture13 光线追踪1

目录 Why Ray Tracing?(为什么需要光线追踪?)Basic Ray Tracing Algorithm(基础的光线追踪算法)Ray Casting(光线的投射)Generating Eye Rays(生成Eye Rays) Recursive(Whitted-Styled) Ray Tracing Ray-Surface Intersection(光线和平面的交点)Ray Rquation(射线方…...

【多模态】21、BARON | 通过引入大量 regions 来提升模型开放词汇目标检测能力

文章目录 一、背景二、方法2.1 主要过程2.2 Forming Bag of Regions2.3 Representing Bag of Regions2.4 Aligning bag of regions 三、效果 论文:Aligning Bag of Regions for Open-Vocabulary Object Detection 代码:https://github.com/wusize/ovdet…...

2023“Java 基础 - 中级 - 高级”面试集结,已奉上我的膝盖

Java 基础(对象线程字符接口变量异常方法) 面向对象和面向过程的区别? Java 语言有哪些特点? 关于 JVM JDK 和 JRE 最详细通俗的解答 Oracle JDK 和 OpenJDK 的对比 Java 和 C的区别? 什么是 Java 程序的主类&…...

开源项目-erp企业资源管理系统(毕设)

哈喽,大家好,今天给大家带来一个开源项目-erp企业资源管理系统,项目通过ssh+oracle技术实现。 系统主要有基础数据,人事管理,采购管理,销售管理,库存管理,权限管理模块 登录 主页 基础数据 基础数据有商品类型,商品,供应商,客户,仓库管理功能...

Leetcode刷题---C语言实现初阶数据结构---单链表

1 删除链表中等于给定值 val 的所有节点 删除链表中等于给定值 val 的所有节点 给你一个链表的头节点head和一个整数val,请你删除链表中所有满足Node.valval的节点,并返回新的头节点 输入:head [1,2,6,3,4,5,6], val 6 输出:[…...

opencv hand openpose

使用opencv c 来调用caffemodel 使用opencv 得dnn 模块调用 caffemodel得程序,图片自己输入就行,不做过多得解释,看代码清单。 定义手指关节点 const int POSE_PAIRS[20][2] { {0,1}, {1,2}, {2,3}, {3,4}, // thumb {0,5}, {5,6}, {6,7}…...

flutter fl_chart 柱状图 柱条数量较多 实现左右滑动 固定y轴

一、引入插件 pub.dev:fl_chart package - All Versions 根据项目版本,安装可适配的 fl_chart 版本 二、官网柱状图示例 github参数配置:(x轴、y轴、边框、柱条数据、tooltip等) https://github.com/imaNNeo/fl_c…...

CAN学习笔记1:计算机网络

计算机网络 1 概述 计算机网络就是把多种形式的计算机用通信线路连接起来,并使其能够互相进行交换的系统。实际上,计算机网络包括了计算机、各种硬件、各种软件、组成网络的体系结构、网络传输介质和网络通信计数。因此,计算机网络是计算机…...

NAND flash的坏块

NAND flash的坏块 1.为什么会出现坏块 由于NAND Flash的工艺不能保证NAND的Memory Array(由NAND cell组成的阵列)在其生命周期中保持性能的可靠(电荷可能由于其他异常原因没有被锁起来。因此,在NAND的生产中及使用过程中会产生坏…...

代码随想录算法训练营第二十五天 | 读PDF复习环节3

读PDF复习环节3 本博客的内容只是做一个大概的记录,整个PDF看下来,内容上是不如代码随想录网站上的文章全面的,并且PDF中有些地方的描述,是很让我疑惑的,在困扰我很久后,无意间发现,其网站上的讲…...

18.Netty源码之ByteBuf 详解

highlight: arduino-light ByteBuf 是 Netty 的数据容器,所有网络通信中字节流的传输都是通过 ByteBuf 完成的。 然而 JDK NIO 包中已经提供了类似的 ByteBuffer 类,为什么 Netty 还要去重复造轮子呢?本节课我会详细地讲解 ByteBuf。 JDK NIO…...

#P0999. [NOIP2008普及组] 排座椅

题目描述 上课的时候总会有一些同学和前后左右的人交头接耳,这是令小学班主任十分头疼的一件事情。不过,班主任小雪发现了一些有趣的现象,当同学们的座次确定下来之后,只有有限的 DD 对同学上课时会交头接耳。 同学们在教室中坐…...

Sentinel 容灾中心的使用

Sentinel 容灾中心的使用 往期文章 Nacos环境搭建Nacos注册中心的使用Nacos配置中心的使用 熔断/限流结果 Jar 生产者 spring-cloud-alibaba:2021.0.4.0 spring-boot:2.6.8 spring-cloud-loadbalancer:3.1.3 sentinel:2021.0…...

html-<abbr> 缩写或首字母缩略词

定义与作用 <abbr> 标签用于表示缩写或首字母缩略词&#xff0c;它可以帮助用户更好地理解缩写的含义&#xff0c;尤其是对于那些不熟悉该缩写的用户。 title 属性的内容提供了缩写的详细说明。当用户将鼠标悬停在缩写上时&#xff0c;会显示一个提示框。 示例&#x…...

C# 求圆面积的程序(Program to find area of a circle)

给定半径r&#xff0c;求圆的面积。圆的面积应精确到小数点后5位。 例子&#xff1a; 输入&#xff1a;r 5 输出&#xff1a;78.53982 解释&#xff1a;由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982&#xff0c;因为我们只保留小数点后 5 位数字。 输…...

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列&#xff0c;以便知晓哪些列包含有价值的数据&#xff0c;…...

0x-3-Oracle 23 ai-sqlcl 25.1 集成安装-配置和优化

是不是受够了安装了oracle database之后sqlplus的简陋&#xff0c;无法删除无法上下翻页的苦恼。 可以安装readline和rlwrap插件的话&#xff0c;配置.bahs_profile后也能解决上下翻页这些&#xff0c;但是很多生产环境无法安装rpm包。 oracle提供了sqlcl免费许可&#xff0c…...

沙箱虚拟化技术虚拟机容器之间的关系详解

问题 沙箱、虚拟化、容器三者分开一一介绍的话我知道他们各自都是什么东西&#xff0c;但是如果把三者放在一起&#xff0c;它们之间到底什么关系&#xff1f;又有什么联系呢&#xff1f;我不是很明白&#xff01;&#xff01;&#xff01; 就比如说&#xff1a; 沙箱&#…...

【深度学习新浪潮】什么是credit assignment problem?

Credit Assignment Problem(信用分配问题) 是机器学习,尤其是强化学习(RL)中的核心挑战之一,指的是如何将最终的奖励或惩罚准确地分配给导致该结果的各个中间动作或决策。在序列决策任务中,智能体执行一系列动作后获得一个最终奖励,但每个动作对最终结果的贡献程度往往…...

macOS 终端智能代理检测

&#x1f9e0; 终端智能代理检测&#xff1a;自动判断是否需要设置代理访问 GitHub 在开发中&#xff0c;使用 GitHub 是非常常见的需求。但有时候我们会发现某些命令失败、插件无法更新&#xff0c;例如&#xff1a; fatal: unable to access https://github.com/ohmyzsh/oh…...

DAY 26 函数专题1

函数定义与参数知识点回顾&#xff1a;1. 函数的定义2. 变量作用域&#xff1a;局部变量和全局变量3. 函数的参数类型&#xff1a;位置参数、默认参数、不定参数4. 传递参数的手段&#xff1a;关键词参数5 题目1&#xff1a;计算圆的面积 任务&#xff1a; 编写一…...

图解JavaScript原型:原型链及其分析 | JavaScript图解

​​ 忽略该图的细节&#xff08;如内存地址值没有用二进制&#xff09; 以下是对该图进一步的理解和总结 1. JS 对象概念的辨析 对象是什么&#xff1a;保存在堆中一块区域&#xff0c;同时在栈中有一块区域保存其在堆中的地址&#xff08;也就是我们通常说的该变量指向谁&…...

CppCon 2015 学习:Time Programming Fundamentals

Civil Time 公历时间 特点&#xff1a; 共 6 个字段&#xff1a; Year&#xff08;年&#xff09;Month&#xff08;月&#xff09;Day&#xff08;日&#xff09;Hour&#xff08;小时&#xff09;Minute&#xff08;分钟&#xff09;Second&#xff08;秒&#xff09; 表示…...