当前位置: 首页 > news >正文

【MATLAB第58期】基于MATLAB的PCA-Kmeans、PCA-LVQ与BP神经网络分类预测模型对比

【MATLAB第58期】基于MATLAB的PCA-Kmeans、PCA-LVQ与BP神经网络分类预测模型对比

一、数据介绍

基于UCI葡萄酒数据集进行葡萄酒分类及产地预测

共包含178组样本数据,来源于三个葡萄酒产地,每组数据包含产地标签及13种化学元素含量,即已知类别标签。
把样本集随机分为训练集和测试集(70%训练,30%测试),根据已有数据集训练一个能进行葡萄酒产地预测的模型,以正确区分三个产地所产出的葡萄酒,
分别采用PCA+Kmeans、PCA+LVQ、BP神经网络等方法进行模型的训练与测试,准确率都能达到95%左右。

二、效果展示

1.PCA-Kmeans

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

train_accuracy = 0.95

test_accuracy = 0.98

2.PCA-LVQ

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.BP

在这里插入图片描述
在这里插入图片描述

三、代码展示(部分代码)

clear all;
wine_data = xlsread('wine.xlsx');  %分类标签默认第一列method = 'BP';%PK: PCA & Kmeans 
%PL:        PCA & LVQ  
%BP:         BP Neural Network'
rate = 0.7;%训练集70%,测试集30%
N = size(unique(wine_data(:,1)),1);;total_cnt = size(wine_data,1);
train_cnt = round(total_cnt*rate);
test_cnt = total_cnt - train_cnt;rand_idx = randperm(total_cnt);
train_idx = rand_idx(1:train_cnt);
test_idx = rand_idx(train_cnt+1:total_cnt);train_data = wine_data(train_idx,2:size(wine_data,2));
train_class = wine_data(train_idx,1);
test_data = wine_data(test_idx,2:size(wine_data,2));
test_class = wine_data(test_idx,1);
dim = size(wine_data,2)-1;%矩阵z-score标准化
train_SM = zeros(train_cnt,dim);
data_mean = mean(train_data);
data_std = std(train_data);
test_SM = zeros(test_cnt,dim);
for j = 1:dimtrain_SM(:,j) = (train_data(:,j) - data_mean(j)) / data_std(j);test_SM(:,j) = (test_data(:,j) - data_mean(j)) / data_std(j);
end

四、代码获取

私信回复“58期”即可获取下载链接。

相关文章:

【MATLAB第58期】基于MATLAB的PCA-Kmeans、PCA-LVQ与BP神经网络分类预测模型对比

【MATLAB第58期】基于MATLAB的PCA-Kmeans、PCA-LVQ与BP神经网络分类预测模型对比 一、数据介绍 基于UCI葡萄酒数据集进行葡萄酒分类及产地预测 共包含178组样本数据,来源于三个葡萄酒产地,每组数据包含产地标签及13种化学元素含量,即已知类…...

CF1833 A-E

A题 题目链接&#xff1a;https://codeforces.com/problemset/problem/1833/A 基本思路&#xff1a;for循环遍历字符串s&#xff0c;依次截取字符串s的子串str&#xff0c;并保存到集合中&#xff0c;最后输出集合内元素的数目即可 AC代码&#xff1a; #include <iostrea…...

【深度学习】【Image Inpainting】Generative Image Inpainting with Contextual Attention

Generative Image Inpainting with Contextual Attention DeepFillv1 (CVPR’2018) 论文&#xff1a;https://arxiv.org/abs/1801.07892 论文代码&#xff1a;https://github.com/JiahuiYu/generative_inpainting 论文摘录 文章目录 效果一览摘要介绍论文贡献相关工作Image…...

二维深度卷积网络模型下的轴承故障诊断

1.数据集 使用凯斯西储大学轴承数据集&#xff0c;一共有4种负载下采集的数据&#xff0c;每种负载下有10种 故障状态&#xff1a;三种不同尺寸下的内圈故障、三种不同尺寸下的外圈故障、三种不同尺寸下的滚动体故障和一种正常状态 2.模型&#xff08;二维CNN&#xff09; 使…...

redis突然变慢问题定位

CPU 相关&#xff1a;使用复杂度过高命令、O&#xff08;N&#xff09;的这个N&#xff0c;数据的持久化&#xff0c;都与耗费过多的 CPU 资源有关 内存相关&#xff1a;bigkey 内存的申请和释放、数据过期、数据淘汰、碎片整理、内存大页、内存写时复制都与内存息息相关 磁盘…...

React井字棋游戏官方示例

在本篇技术博客中&#xff0c;我们将介绍一个React官方示例&#xff1a;井字棋游戏。我们将逐步讲解代码实现&#xff0c;包括游戏的组件结构、状态管理、胜者判定以及历史记录功能。让我们一起开始吧&#xff01; 项目概览 在这个井字棋游戏中&#xff0c;我们有以下组件&am…...

七大经典比较排序算法

1. 插入排序 (⭐️⭐️) &#x1f31f; 思想&#xff1a; 直接插入排序是一种简单的插入排序法&#xff0c;思想是是把待排序的数据按照下标从小到大&#xff0c;依次插入到一个已经排好的序列中&#xff0c;直至全部插入&#xff0c;得到一个新的有序序列。例如&#xff1a;…...

【点云处理教程】03使用 Python 实现地面检测

一、说明 这是我的“点云处理”教程的第3篇文章。“点云处理”教程对初学者友好&#xff0c;我们将在其中简单地介绍从数据准备到数据分割和分类的点云处理管道。 在上一教程中&#xff0c;我们在不使用 Open3D 库的情况下从深度数据计算点云。在本教程中&#xff0c;我们将首先…...

Python 日志记录:6大日志记录库的比较

Python 日志记录&#xff1a;6大日志记录库的比较 文章目录 Python 日志记录&#xff1a;6大日志记录库的比较前言一些日志框架建议1. logging - 内置的标准日志模块默认日志记录器自定义日志记录器生成结构化日志 2. Loguru - 最流行的Python第三方日志框架默认日志记录器自定…...

最近遇到一些问题的解决方案

最近遇到一些问题的解决方案 SpringBoot前后端分离参数传递方式总结Java8版本特性讲解idea使用git更新代码 : update project removeAll引发得java.lang.UnsupportedOperationException异常Java的split()函数用多个不同符号分割 Aspect注解切面demo 抽取公共组件&#xff0c;使…...

封装hutool工具生成JWT token

private static final String KEY "abcdef";/*** 生成token** param payload 可以存放用户的一些信息&#xff0c;不要存放敏感字段* return*/public static String createToken(Map<String, Object> payload) {//十分重要&#xff0c;不禁用发布到生产环境无…...

【手机】三星手机刷机解决SecSetupWizard已停止

三星手机恢复出厂设置之后&#xff0c;出现SecSetupWizard已停止的解决方案 零、问题 我手上有一部同学给的三星 GT-S6812I&#xff0c;这几天搞了张新卡&#xff0c;多余出的卡就放到这个手机上玩去了。因为是获取了root权限的&#xff08;直接使用KingRoot就可以&#xff0…...

GDAL C++ API 学习之路 OGRGeometry 抽象曲线基类 OGRCurve

OGRCurve class "ogrsf_frmts.h" OGRCurve 是 OGR&#xff08;OpenGIS Simple Features Reference Implementation&#xff09;几何库中的一个基类&#xff0c;表示曲线几何对象。它是 OGRLineString 和 OGRCircularString 的抽象基类&#xff0c;用于表示曲…...

etcd底层支持的数据库有哪些

etcd底层的数据库可以更换。在当前版本的etcd中&#xff0c;它使用的是BoltDB作为默认的后端存储引擎。但是&#xff0c;etcd提供了接口允许您更换数据库后端&#xff0c;以便根据需要选择更合适的存储引擎。 以下是etcd支持的一些后端数据库选项&#xff1a; BoltDB&#xff…...

linux设备驱动的poll与fasync

什么是fasync 在 Linux 驱动程序中&#xff0c;fasync 是一种机制&#xff0c;用于在异步事件发生时通知进程。它允许进程在等待设备事件时&#xff0c;不必像传统的轮询方式那样持续地查询设备状态。 具体来说&#xff0c;当进程调用 fcntl(fd, F_SETFL, O_ASYNC) 函数时&am…...

TortoiseGit安装与配置

注&#xff1a;在安装TortoiseGit之前我已经安装了git工具。 二、Git的诞生及环境配置_tortoisegit安装包_朱嘉鼎的博客-CSDN博客 1、TortoiseGit简介 TortoiseGit是基于TortoiseSVN的Git版本的Windows Shell界面。它是开源的&#xff0c;可以完全免费使用。 TortoiseGit 支持…...

Java代码打印空心菱形(小练习)

回看基础 利用Java代码打印一个空心菱形 //5. 打印空心菱形 import java.util.Scanner; public class MulForExercise01 {//编写一个 main 方法public static void main(String[] args) {Scanner myScanner new Scanner(System.in);System.out.println("请输入正三角的行…...

【性能优化】MySQL百万数据深度分页优化思路分析

业务场景 一般在项目开发中会有很多的统计数据需要进行上报分析&#xff0c;一般在分析过后会在后台展示出来给运营和产品进行分页查看&#xff0c;最常见的一种就是根据日期进行筛选。这种统计数据随着时间的推移数据量会慢慢的变大&#xff0c;达到百万、千万条数据只是时间问…...

交叉编译工具链的安装、配置、使用

一、交叉编译的概念 交叉编译是在一个平台上生成另一个平台上的可执行代码。 编译&#xff1a;一个平台上生成在该平台上的可执行文件。 例如&#xff1a;我们的Windows上面编写的C51代码&#xff0c;并编译成可执行的代码&#xff0c;如xx.hex.在C51上面运行。 我们在Ubunt…...

【C++ 进阶】继承

一.继承的定义格式 基类又叫父类&#xff0c;派生类又叫子类&#xff1b; 二.继承方式 继承方式分为三种&#xff1a; 1.public继承 2.protected继承 3.private继承 基类成员与继承方式的关系共有9种&#xff0c;见下表&#xff1a; 虽然说是有9种&#xff0c;但其实最常用的还…...

装饰模式(Decorator Pattern)重构java邮件发奖系统实战

前言 现在我们有个如下的需求&#xff0c;设计一个邮件发奖的小系统&#xff0c; 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式&#xff08;Decorator Pattern&#xff09;允许向一个现有的对象添加新的功能&#xff0c;同时又不改变其…...

基于Docker Compose部署Java微服务项目

一. 创建根项目 根项目&#xff08;父项目&#xff09;主要用于依赖管理 一些需要注意的点&#xff1a; 打包方式需要为 pom<modules>里需要注册子模块不要引入maven的打包插件&#xff0c;否则打包时会出问题 <?xml version"1.0" encoding"UTF-8…...

多模态大语言模型arxiv论文略读(108)

CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题&#xff1a;CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者&#xff1a;Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...

大数据学习(132)-HIve数据分析

​​​​&#x1f34b;&#x1f34b;大数据学习&#x1f34b;&#x1f34b; &#x1f525;系列专栏&#xff1a; &#x1f451;哲学语录: 用力所能及&#xff0c;改变世界。 &#x1f496;如果觉得博主的文章还不错的话&#xff0c;请点赞&#x1f44d;收藏⭐️留言&#x1f4…...

2023赣州旅游投资集团

单选题 1.“不登高山&#xff0c;不知天之高也&#xff1b;不临深溪&#xff0c;不知地之厚也。”这句话说明_____。 A、人的意识具有创造性 B、人的认识是独立于实践之外的 C、实践在认识过程中具有决定作用 D、人的一切知识都是从直接经验中获得的 参考答案: C 本题解…...

使用Matplotlib创建炫酷的3D散点图:数据可视化的新维度

文章目录 基础实现代码代码解析进阶技巧1. 自定义点的大小和颜色2. 添加图例和样式美化3. 真实数据应用示例实用技巧与注意事项完整示例(带样式)应用场景在数据科学和可视化领域,三维图形能为我们提供更丰富的数据洞察。本文将手把手教你如何使用Python的Matplotlib库创建引…...

C# 表达式和运算符(求值顺序)

求值顺序 表达式可以由许多嵌套的子表达式构成。子表达式的求值顺序可以使表达式的最终值发生 变化。 例如&#xff0c;已知表达式3*52&#xff0c;依照子表达式的求值顺序&#xff0c;有两种可能的结果&#xff0c;如图9-3所示。 如果乘法先执行&#xff0c;结果是17。如果5…...

基于Java+VUE+MariaDB实现(Web)仿小米商城

仿小米商城 环境安装 nodejs maven JDK11 运行 mvn clean install -DskipTestscd adminmvn spring-boot:runcd ../webmvn spring-boot:runcd ../xiaomi-store-admin-vuenpm installnpm run servecd ../xiaomi-store-vuenpm installnpm run serve 注意&#xff1a;运行前…...

【UE5 C++】通过文件对话框获取选择文件的路径

目录 效果 步骤 源码 效果 步骤 1. 在“xxx.Build.cs”中添加需要使用的模块 &#xff0c;这里主要使用“DesktopPlatform”模块 2. 添加后闭UE编辑器&#xff0c;右键点击 .uproject 文件&#xff0c;选择 "Generate Visual Studio project files"&#xff0c;重…...

客户案例 | 短视频点播企业海外视频加速与成本优化:MediaPackage+Cloudfront 技术重构实践

01技术背景与业务挑战 某短视频点播企业深耕国内用户市场&#xff0c;但其后台应用系统部署于东南亚印尼 IDC 机房。 随着业务规模扩大&#xff0c;传统架构已较难满足当前企业发展的需求&#xff0c;企业面临着三重挑战&#xff1a; ① 业务&#xff1a;国内用户访问海外服…...