当前位置: 首页 > news >正文

清风1.层次分析法

一.流程

1.建立评价体系

2.建立判断矩阵

2.1 A-C-C矩阵

从准则层对目标层的特征向量上看,花费的权重最大

算术平均法求权重的结果为:
0.2623
0.4744
0.0545
0.0985
0.1103
几何平均法求权重的结果为:
0.2636
0.4773
0.0531
0.0988
0.1072
特征值法求权重的结果为:
0.2636
0.4758
0.0538
0.0981
0.1087
一致性指标CI=
0.0180
一致性比例CR=
0.0161
因为CR<0.10,所以该判断矩阵A的一致性可以接受!

2.2 Ci-P-P矩阵

从方案层对目标层的权重上看,桂林的权重最大(以C层最大的花费为Ci,两层权重的乘积)

算术平均法求权重的结果为:
0.5949
0.2766
0.1285
几何平均法求权重的结果为:
0.5954
0.2764
0.1283
特征值法求权重的结果为:
0.5954
0.2764
0.1283
一致性指标CI=
0.0028
一致性比例CR=
0.0053
因为CR<0.10,所以该判断矩阵A的一致性可以接受!

3.计算评分及排序

计算:

fn+F4锁定单元格

排序:

选择性粘贴:数值

粘贴中转置,再排序

二.论文

考虑到层次分析法构造时的主观色彩比较强,我们又利用熵值取权法给出了客观条件下的一组权值w2,对w1进行修正

通过判断各个因素的变化剧烈程度来决定该因素在最终目标中所占的权重

比如国家的财政支持对高等院校的学费的制定影响很重要,但是如果财政支持费用10年都不变,而家庭支付承受能力虽然对学费的制定没有国家财政支持的影响那么重要,但是它每年都在快速的增加,从熵值取权法的角度来看这时家庭的支付承受能力的影响就比国家财政的支持大,这与客观的人们的想法也是一样,同时它和层次分析法得出的结论是互补的且是客观的。

我们利用熵值取权法客观地给出一个5个因素的1×5的权重矩阵w2,对由层次分析法给出的1×5的权重矩阵w1,以0.2:0.8的比例进行修正,从而给出最终的5个因素对合理化指数的组合权重值阵 W=0.8×w1+0.2×w2

相关文章:

清风1.层次分析法

一.流程1.建立评价体系2.建立判断矩阵2.1 A-C-C矩阵从准则层对目标层的特征向量上看&#xff0c;花费的权重最大算术平均法求权重的结果为&#xff1a;0.26230.47440.05450.09850.1103几何平均法求权重的结果为&#xff1a;0.26360.47730.05310.09880.1072特征值法求权重的结果…...

「首席架构师推荐」免费数据可视化软件你喜欢哪一个?

数据可视化&#xff0c;是关于数据视觉表现形式的科学技术研究。其中&#xff0c;这种数据的视觉表现形式被定义为&#xff0c;一种以某种概要形式抽提出来的信息&#xff0c;包括相应信息单位的各种属性和变量。它是一个处于不断演变之中的概念&#xff0c;其边界在不断地扩大…...

深度学习术语解释:backbone、head、neck,etc

backbone&#xff1a;翻译为主干网络的意思&#xff0c;既然说是主干网络&#xff0c;就代表其是网络的一部分&#xff0c;那么是哪部分呢&#xff1f;这个主干网络大多时候指的是提取特征的网络&#xff0c;其作用就是提取图片中的信息&#xff0c;共后面的网络使用。这些网络…...

基础篇—CSS margin(外边距)解析

什么是CSS margin(外边距)? CSS margin(外边距)属性定义元素周围的空间。 属性描述margin简写属性。在一个声明中设置所有外边距属性。margin-bottom设置元素的下外边距。margin-left设置元素的左外边距。margin-right设置元素的右外边距。margin-top设置元素的上外边距。mar…...

ChatGPT或将引发新一轮失业潮?是真的吗?

最近&#xff0c;要说有什么热度不减的话题&#xff0c;那ChatGPT必然榜上有名。据悉是这是由美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型&#xff0c;它能够通过学习和理解人类的语言来进行对话&#xff0c;还能根据聊天的上下文进行互动&#xff0c;并协助人类…...

【Selenium学习】Selenium 中特殊元素操作

1.鼠标定位操作鼠标悬停&#xff0c;即当光标与其名称表示的元素重叠时触发的事件&#xff0c;在 Selenium 中将键盘鼠标操作封装在 Action Chains 类中。Action Chains 类的主要应用场景为单击鼠标、双击鼠标、鼠标拖曳等。部分常用的方法使用分类如下&#xff1a;• click(on…...

Spark相关的依赖冲突,后期持续更新总结

Spark相关的依赖冲突持续更新总结 Spark-Hive_2.11依赖报错 这个依赖是Spark开启支持hive SQL解析&#xff0c;其中2.11是Spark对应的Scala版本&#xff0c;如Spark2.4.7&#xff0c;对应的Scala版本是2.11.12&#xff1b;这个依赖会由于Spark内部调用的依赖guava的版本问题出…...

【每日一题Day122】LC1237找出给定方程的正整数解 | 双指针 二分查找

找出给定方程的正整数解【LC1237】 给你一个函数 f(x, y) 和一个目标结果 z&#xff0c;函数公式未知&#xff0c;请你计算方程 f(x,y) z 所有可能的正整数 数对 x 和 y。满足条件的结果数对可以按任意顺序返回。 尽管函数的具体式子未知&#xff0c;但它是单调递增函数&#…...

笔记本加装固态和内存条教程(超详细)

由于笔记本是几年前买的了&#xff0c;当时是4000&#xff0c;现在用起来感到卡顿&#xff0c;启动、运行速度特别慢&#xff0c;就决定换个固态硬盘&#xff0c;加个内存条&#xff0c;再给笔记本续命几年。先说一下加固态硬盘SSD的好处&#xff1a;1.启动快 2.读取延迟小 3.写…...

【Python】字典 - Dictionary

字典 - Dictionarykeys()values()items()get()获取文件中指定字符的个数进阶版&#xff1a;获取所有单词的频数进阶版&#xff1a;获取所有字符的频数函数内容keys()输出字典中的所有键values()输出字典中的所有值items()以元组的形式输出键值对get()获取字典中指定键的值 keys…...

LeetCode分类刷题----二叉树

二叉树1.二叉树的递归遍历144.二叉树的前序遍历145.二叉树的后序遍历94.二叉树的中序遍历2.二叉树的迭代遍历144.二叉树的前序遍历145.二叉树的后序遍历94.二叉树的中序遍历3.二叉树的层序遍历102.二叉树的层序遍历107.二叉树的层序遍历||199.二叉树的右视图637.二叉树的层平均…...

Zipkin : Golang 微服务全链路监控(三)

Zipkin : Golang 微服务全链路监控&#xff08;三&#xff09; Golang 微服务全链路监控实现 broker-service -> auth-service -> postgres dbzipkin 监控&#xff1a;需代码入侵 使用 zipkin 库的 serverMiddleware&#xff0c;其通过 Http 跟踪&#xff08;trace&am…...

5.3 BGP路由黑洞

5.2.3实验3:BGP路由黑洞 1. 实验目的 熟悉BGP路由黑洞的应用场景掌握BGP水平分割的配置方法2. 实验拓扑 实验拓扑如图5-3所示: 图5-3:BGP路由黑洞 3. 实验步骤 配置IP地址 R1的配置 <Huawei>syst...

STM32 DFU模式烧录代码

什么是DFU? dfu的本质是isp&#xff0c;usb接口的isp&#xff0c;在系统编程&#xff0c;进入isp的方式我们先了解 如下图 boot0为高电平 boot1为低电平即可进入isp模式。 熟悉的场景 在我们使用flymcu软件下载代码时&#xff0c;本质也是isp 串口接口的isp。 傻瓜使用方式…...

松下PLC通过fpwin上传写入MRTC模块方法

目录 PLC程序上传方法 加密模块使用 PLC程序上传方法 手动将PLC模式设置为prog模式查看PLC是否设置为禁止上传查询指示灯是否变蓝&#xff0c;变蓝则需要将PLC禁止上传功能取消。 3.当上述动作操作完成后&#xff0c;将PLC程序导入到PLC中。为了配合加密程序使用&#xff0c;…...

就业大山之下的网络安全:安逸的安服仔

从去年开始&#xff0c;各个互联网大厂就接二连三的放出了裁员消息&#xff0c;整个互联网行业好像都处于寒冬状态。微博、小米、滴滴、知乎、拼多多等在内的一大批互联网知名企业&#xff0c;也相继传出“人员优化”的消息。 除了国内市场的萧条&#xff0c;国外市场也是不容…...

JavaWeb3-线程的3种创建方式7种写法

目录 1.方式一&#xff1a;继承Thread&#xff08;2种写法&#xff09; 写法①&#xff08;常规&#xff09;&#xff1a; a.使用jconsole观察线程 b.启动线程——start方法 PS&#xff1a;&#xff08;常见面试题&#xff09;start 方法与 run 方法的区别&#xff1a; 写…...

驱动调试手段

文章目录 前言一、通过sysfs调试LCD查看电源:查看 pwm 信息查看管脚信息总结前言 本文记录在驱动中常用的调试手段 提示:以下是本篇文章正文内容,下面案例可供参考 一、通过sysfs 系统起来之后可以读取 sysfs 一些信息,来协助调试 示例: 调试LCD 输入如下命令 cat /…...

[RK3568 Android12] 音频及路由

1:概述(耳机 ,hdmiin ,板载喇叭) 在开发板上面,系统注册了三个音频输出通道,如下: [ 2.280612] ALSA device list: [ 2.280622] #0: rockchip,rk809-codec [ 2.280630] #1: ROCKCHIP,SPDIF [ 2.280638] #2: rockchip,hdmi console:/proc/asound # cat pcm …...

C++——C++11 第一篇

目录 统一的列表初始化 &#xff5b;&#xff5d;初始化 decltype ​编辑 nullptr STL中一些变化 右值引用和移动语义 左值引用和右值引用 总结 左值引用优缺点 右值引用&#xff08;将亡值&#xff09; 拷贝赋值和移动赋值 万能引用|完美转发 移动构造和移动赋值注意…...

Spring Data JPA 中 CrudRepository 和 JpaRepository 的区别

1 问题描述Spring Data JPA 中&#xff0c;CrudRepository 和 JpaRepository 有何区别&#xff1f;当我在网上找例子的时候&#xff0c;发现它们可以互相替换使用。它们有什么不同呢&#xff1f;为什么你习惯用其中的一个而不是另一个呢&#xff1f;2 CrudRepository 和 JpaRep…...

推荐几款好用的数据库管理工具

本文主要介绍几款常用的数据库管理软件&#xff08;客户端&#xff09;&#xff0c;包括开源/免费的、商用收费的&#xff0c;其中有一些是专用于 MySQL 数据库的&#xff0c;例如 MySQL Workbench、phpMyAdmin&#xff0c;有一些是支持多种 SQL、NoSQL 数据库的&#xff0c;例…...

DPDK — 性能优化手段

目录 文章目录 目录硬件布局层面的优化操作系统层面的优化Linux 操作系统版本应用程序层面的优化Cache 优化内存对齐内存预取SIMD 报文批处理DDIO使用高级 CPU 指令集硬件布局层面的优化 DPDK 在硬件布局层面的优化,主要体现在以下几个方面: CPU 频率的高低:CPU 频率越高,…...

Fedora Linux未来五年规划

Fedora 委员会一直致力于起草战略计划&#xff0c;以帮助 Fedora Linux 更好地发展。近日 Fedora 委员会公布了一份 “《未来五年的 Fedora Linux 》” 战略计划草案&#xff0c;这份草案里面包含了他们的雄心壮志&#xff1a;每周将 Fedora 的活跃贡献者人数增加一倍。 Fedora…...

【C++之容器篇】map和set常见函数接口的使用与剖析

目录前言一、set1. 简介2. 成员类型3. 构造函数(1) set()(2)set(InputIterator first,InputIterator last)(3)使用4. 拷贝构造函数和赋值运算符重载5. empty()6. size()7. insert()(1)pair<iterator,bool> insert(const K& key)(2)iterator insert(iterator pos,cons…...

虚拟DOM是什么

参考文章做的总结&#xff0c;如有不足之处请指正&#xff01; 在讲虚拟dom之前&#xff0c;先讲讲&#xff0c;为什么前端操作dom会导致页面性能降低&#xff1f; 先说几个概念 有助于后面的理解 什么是 JavaScript 引擎&#xff1f; JavaScript引擎是一个专门处理JavaScript脚…...

进程通信方式

无名管道( pipe )&#xff1a; 管道是一种半双工的通信方式&#xff0c;数据只能单向流动&#xff0c;而且只能在具有亲缘关系的进程间使用。进程的亲缘关系通常是指父子进程关系。高级管道&#xff08;popen&#xff09;&#xff1a; 将另一个程序当做一个新的进程在当前程序进…...

强化学习基础知识

强化学习是一种机器学习方法&#xff0c;通过agent与environment的互动&#xff0c;学习适当的action policy以取得更大的奖励reward。本篇博客介绍强化学习的基础知识&#xff0c;与两类强化学习模型。 目录强化学习的基础设定policy based 强化学习的目标3个注意事项实际训练…...

LeetCode230218_148、654. 最大二叉树

给定一个不重复的整数数组 nums 。 最大二叉树 可以用下面的算法从 nums 递归地构建: 创建一个根节点&#xff0c;其值为 nums 中的最大值。 递归地在最大值 左边 的 子数组前缀上 构建左子树。 递归地在最大值 右边 的 子数组后缀上 构建右子树。 返回 nums 构建的 最大二叉树…...

WordPress 是什么?.com 和 .org 的 WordPress 有什么差异?

本篇文章会介绍这次WordPress 5.8核心版本所带来的其中一项新功能&#xff1a;内存块小工具&#xff08;Widget&#xff09;此次更新把小工具编辑设定的页面也改成用「内存块编辑」的概念&#xff0c;就跟内置的「古腾堡」编辑器一样&#xff0c;把所有元件都内存块化&#xff…...

临沂网站建设费用/免费crm

ThingsBoard是一个开源物联网平台。 支持用户对设备进行管理&#xff0c;资产管理&#xff0c;以及客户管理。并以动态仪表盘的形式展示数据。 ThingsBoard最关键的两点&#xff1a; 规则引擎&#xff1a; 控制设备端到ThingsBoards平台后数据的处理方式。比如&#xff1a;数据…...

美女图片网站模板/百度竞价广告收费标准

什么是多态 所谓的多态是通过一个单一的标识符支持不同的特定行为的能力。 多态的分类 从绑定时间 静态多态 &#xff08;编译期多态&#xff09;动态多态 &#xff08;运行期多态&#xff09; 从表现的形式 虚函数重载模板 转换 &#xff08;类型别名&#xff09; 今天…...

事业单位网站建设工作方案/艾滋病多久能检查出来

邮箱登录方式有两种&#xff0c;一种是官方提供的统一登录网址&#xff0c;另外一种就是foxmail、outlook这样的客户端了。 在网页端登录邮箱可通过群发单显、抄送多人来群发邮件&#xff0c;用TOM VIP有5个套餐选择&#xff0c;最高可发500封。如果在邮箱客户端登录邮箱&…...

视频弹幕网站建设/模板式自助建站

给大家炒个冷饭&#xff0c;是我在2003年写的一点心得。不过现在来看还是有启发意义的&#xff0c;虽然笔法有些稚嫩 实施分为这几个阶段&#xff1a;1字典准备&#xff0c;系统参数配置2客户化3使用培训4做报表做运行监控5升级更新版本这几部分都挺费时间。为什么&#xff1f…...

公司网站建设开发/谷歌浏览器网页版

类的属性都是存放在字典中&#xff0c;所以对类或实例的属性进行操作实际上就是对字典的操作。类的属性相关操作如下图&#xff1a;代码块如下:class Door():"门的类"address "浙江省杭州市"def __init__(self,size,color,type):#构造函数"初始化门的…...

深圳高端家具公司/上海专业seo排名优化

C初始化之超级大坑起因类中定义成员变量的初始化问题解决方法采用如下初始化方法栈区定义类的加括号与不加括号问题起因 平时很少用leetcode写题&#xff08;一般都是用ACWing&#xff09;今天看到个题用leetcode写了哈&#xff0c;结果遇到了两个语法大坑 类中定义成员变量的…...