当前位置: 首页 > news >正文

ChatGPT模型采样算法详解

ChatGPT模型采样算法详解

ChatGPT所使用的模型——GPT(Generative Pre-trained Transformer)模型有几个参数,理解它们对文本生成任务至关重要。其中最重要的一组参数是temperaturetop_p。二者控制两种不同的采样技术,用于因果语言模型(Causal language models)中预测给定上下文情景中下一个单词出现的概率。本文将重点讲解temperaturetop_p的采样原理,以及它们对模型输出的影响。

文章目录

    • 理解因果语言模型中的采样
    • Top-k采样
      • Top-p采样
    • 温度采样
      • 典型用例
    • 总结

理解因果语言模型中的采样

假设我们训练了一个描述个人生活喜好的模型,我们想让它来补全“我喜欢漂亮的___”这个句子。一般语言模型会按照下图的流程来工作:

在这里插入图片描述

模型会查看所有可能的单词,并根据其概率分布从中采样,以预测下一个词。为了方便起见,假设模型的词汇量不大,只有:“大象”、“西瓜”、“鞋子”和“女孩”。通过下图的词汇概率我们可以发现,“女孩”的选中概率最高(p=0.664p=0.664p=0.664),“西瓜”的选中概率最低(p=0.032p=0.032p=0.032)。

在这里插入图片描述

上面的例子中,很明显“女孩”最可能被选中。因为人类对于单一问题在心智上习惯采用 “贪心策略”,即选择概率最高的事件。

在这里插入图片描述

永远选择分数或概率最大的token,这种策略叫做“贪心策略”。
贪心策略符合人类的心智,但是存在严重缺陷。

但是上面这种策略用在频繁交互的场景下会有一个显著缺陷——如果我们总是选择最可能的单词,那么这个词会反复不断被强化,因为现代语言模型中大多数模型的注意力只集中在最近的几个词(Token)上。这样生成的内容将非常的生硬和可预测,人们一眼就能看出是机器生成的且一点也不智能。

如何让我们的模型不那么具有确定性,让它生成的内容用词更加活跃呢?为此,我们引入了基于分布采样的生成采样算法。但是传统的采样方法会遇到了一个问题:如果我们有5万个候选词(Token),即使最后2.5万个极不可能出现的长尾词汇,它们的概率质量也可能会高达30%。这意味着,对于每个样本,我们有1/3的机会完全偏离原来的“主题”。又由于上面提到的注意力模型倾向于集中在最近出现的词上,这将导致不可恢复的错误级联,因为下一个词严重依赖于最近的错误词。

为了防止从尾部采样,最流行的方法是Top-k采样温度采样

Top-k采样

Top-k采样是对前面“贪心策略”的优化,它从排名前k的token种进行抽样,允许其他分数或概率较高的token也有机会被选中。在很多情况下,这种抽样带来的随机性有助于提高生成质量。

在这里插入图片描述

添加一些随机性有助于使输出文本更自然。
上图示例中,我们首先筛选似然值前三的token,然后根据似然值重新计算采样概率。

通过调整k的大小,即可控制采样列表的大小。“贪心策略”其实就是k=1的top-k采样。

在这里插入图片描述

Top-p采样

ChatGPT实际使用的不是Top-k采样,而是其改进版——Top-p采样。

Top-k有一个缺陷,那就是“k值取多少是最优的?”非常难确定。于是出现了动态设置token候选列表大小策略——即核采样(Nucleus Sampling)。下图展示了top-p值为0.9的Top-p采样效果:

在这里插入图片描述

在top-p中,根据达到某个阈值的可能性得分之和动态选择候选名单的大小。

top-p值通常设置为比较高的值(如0.75),目的是限制低概率token的长尾。我们可以同时使用top-k和top-p。如果kp同时启用,则pk之后起作用。

温度采样

温度采样受统计热力学的启发,高温意味着更可能遇到低能态。在概率模型中,logits扮演着能量的角色,我们可以通过将logits除以温度来实现温度采样,然后将其输入Softmax并获得采样概率。

越低的温度使模型对其首选越有信心,而高于1的温度会降低信心。0温度相当于argmax似然,而无限温度相当于于均匀采样。

温度采样中的温度与玻尔兹曼分布有关,其公式如下所示:
ρi=1Qe−ϵi/kT=e−ϵi/kT∑j=1Me−ϵj/kT\rho_i = \frac{1}{Q}e^{-\epsilon_i/kT}=\frac{e^{-\epsilon_i/kT}}{\sum_{j=1}^M e^{-\epsilon_j/kT}} ρi=Q1eϵi/kT=j=1Meϵj/kTeϵi/kT
其中 ρi\rho_iρi 是状态 iii 的概率,ϵi\epsilon_iϵi 是状态 iii 的能量, kkk 是波兹曼常数,TTT 是系统的温度,MMM 是系统所能到达的所有量子态的数目。

有机器学习背景的朋友第一眼看到上面的公式会觉得似曾相识。没错,上面的公式跟Softmax函数Softmax(zi)=ezi∑c=1CezcSoftmax(z_i) = \frac{e^{z_i}}{\sum_{c=1}^Ce^{z_c}}Softmax(zi)=c=1Cezcezi 很相似,本质上就是在Softmax函数上添加了温度(T)这个参数。Logits根据我们的温度值进行缩放,然后传递到Softmax函数以计算新的概率分布。

上面“我喜欢漂亮的___”这个例子中,初始温度T=1T=1T=1,我们直观看一下 TTT 取不同值的情况下,概率会发生什么变化:

在这里插入图片描述

通过上图我们可以清晰地看到,随着温度的降低,模型愈来愈越倾向选择”女孩“;另一方面,随着温度的升高,分布变得越来越均匀。当T=50T=50T=50时,选择”西瓜“的概率已经与选择”女孩“的概率相差无几了。

在这里插入图片描述

通常来说,温度与模型的“创造力”有关。但事实并非如此。温度只是调整单词的概率分布。其最终的宏观效果是,在较低的温度下,我们的模型更具确定性,而在较高的温度下,则不那么确定。

典型用例

temperature = 0.0

temperature=0会消除输出的随机性,这会使得GPT的回答稳定不变。

较低的温度适用于需要稳定性、最可能输出(实际输出、分类等)的情况。

temperature = 1.0

temperature=1每次将产生完全不同的输出,且有时输出的结果会非常搞笑。因此,即便是开放式任务,也应该谨慎使用temperature=1。对于故事创作或创意文案生成等任务,温度值设为0.7到0.9之间更为合适。

temperature = 0.75

通常,温度设在0.70–0.90之间是创造性任务最常见的温度。

虽然存在一些关于温度设置的一般性建议,但没有什么是一成不变的。作为GPT-3最重要的设置之一,实际使用中建议多一试下,看看不同设置对输出效果的影响。

总结

本文详细为大家阐述了temperaturetop_p的采样原理,以及它们对模型输出的影响。实际使用中建议只修改其中一个的值,不要两个同时修改。

temperature可以简单得将其理解为“熵”,控制输出的混乱程度(随机性),而top-p可以简单将其理解为候选词列表大小,控制模型所能看到的候选词的多少。实际使用中大家要多尝试不同的值,从而获得最佳输出效果。

另外还有两个参数——frequency_penaltypresence_penalty 对生成输出也有较大影响,请参考《ChatGPT模型中的惩罚机制》。

相关文章:

ChatGPT模型采样算法详解

ChatGPT模型采样算法详解 ChatGPT所使用的模型——GPT(Generative Pre-trained Transformer)模型有几个参数,理解它们对文本生成任务至关重要。其中最重要的一组参数是temperature和top_p。二者控制两种不同的采样技术,用于因果…...

【Unity3d】Unity与iOS通信

在unity开发或者sdk开发经常需要用到unity与oc之间进行交互,这里把它们之间通信代码整理出来。 Unity调用Objective-C 主要分三个步骤: (一)、在xcode中定义要被unity调用的函数 新建一个类,名字可以任意,比如UnityBridge&…...

RDD的持久化【博学谷学习记录】

RDD的缓存缓存: 一般当一个RDD的计算非常的耗时|昂贵(计算规则比较复杂),或者说这个RDD需要被重复(多方)使用,此时可以将这个RDD计算完的结果缓存起来, 便于后续的使用, 从而提升效率通过缓存也可以提升RDD的容错能力, 当后续计算失败后, 尽量不让RDD进行回溯所有的依赖链条, 从…...

Python3 正则表达式

Python3 正则表达式 正则表达式是一个特殊的字符序列,它能帮助你方便的检查一个字符串是否与某种模式匹配。 Python 自1.5版本起增加了re 模块,它提供 Perl 风格的正则表达式模式。 re 模块使 Python 语言拥有全部的正则表达式功能。 compile 函数根…...

Qt-基础

Qt1. 概念其他概念对话框模态对话框与非模态对话框事件事件拦截/过滤事件例子鼠标/屏幕使用界面功能qt-designer工具debug目录结构mainwindow控件窗口QMainWindow事件2. 项目概览QOBJECT tree 对象树3. 信号和槽信号函数关联自定义信号和槽函数自定义信号和槽函数1自定义信号和…...

ABB机器人将实时坐标发送给西门子PLC的具体方法示例

ABB机器人将实时坐标发送给西门子PLC的具体方法示例 本次以PROFINET通信为例进行说明,演示ABB机器人将实时坐标发送给西门子PLC的具体方法。 首先,要保证ABB机器人和PLC的信号地址分配已经完成,具体的内容可参考以下链接: S7-1200PLC与ABB机器人进行PROFINET通信的具体方法…...

反向传播与梯度下降详解

一,前向传播与反向传播 1.1,神经网络训练过程 神经网络训练过程是: 先通过随机参数“猜“一个结果(模型前向传播过程),这里称为预测结果 a a a;然后计算 a a a 与样本标签值...

Skywalking ui页面功能介绍

菜单栏 仪表盘:查看被监控服务的运行状态; 拓扑图:以拓扑图的方式展现服务之间的关系,并以此为入口查看相关信息; 追踪:以接口列表的方式展现,追踪接口内部调用过程; 性能剖析&am…...

哪里可以找到免费的 PDF 阅读编辑器?7 个免费 PDF 阅读编辑器分享

如果您曾经需要编辑 PDF,您可能会发现很难找到免费的 PDF 编辑器。幸运的是,您可以使用在线资源来编辑该文档,而无需为软件付费。 在本文中,我将介绍七种不同的 PDF 编辑器,它们至少可以让您免费编辑几个文件。我通过…...

使用梯度下降的线性回归(Matlab代码实现)

目录 💥1 概述 📚2 运行结果 🎉3 参考文献 👨‍💻4 Matlab代码 💥1 概述 梯度下降法,是一种基于搜索的最优化方法,最用是最小化一个损失函数。梯度下降是迭代法的一种,可以用于求…...

在Ubuntu上设置MySQL可以远程登录

在Ubuntu上设置MySQL可以远程登录一.设置数据库二.设置防火墙由于Ubuntu查看修改MySQL不是很方便,想着在虚拟机安装的Windows系统或者局域网中的其他电脑上去查看Ubuntu系统上的数据库,这样省事一些,我电脑安装的数据库是MySQL8。一.设置数据…...

清风1.层次分析法

一.流程1.建立评价体系2.建立判断矩阵2.1 A-C-C矩阵从准则层对目标层的特征向量上看,花费的权重最大算术平均法求权重的结果为:0.26230.47440.05450.09850.1103几何平均法求权重的结果为:0.26360.47730.05310.09880.1072特征值法求权重的结果…...

「首席架构师推荐」免费数据可视化软件你喜欢哪一个?

数据可视化,是关于数据视觉表现形式的科学技术研究。其中,这种数据的视觉表现形式被定义为,一种以某种概要形式抽提出来的信息,包括相应信息单位的各种属性和变量。它是一个处于不断演变之中的概念,其边界在不断地扩大…...

深度学习术语解释:backbone、head、neck,etc

backbone:翻译为主干网络的意思,既然说是主干网络,就代表其是网络的一部分,那么是哪部分呢?这个主干网络大多时候指的是提取特征的网络,其作用就是提取图片中的信息,共后面的网络使用。这些网络…...

基础篇—CSS margin(外边距)解析

什么是CSS margin(外边距)? CSS margin(外边距)属性定义元素周围的空间。 属性描述margin简写属性。在一个声明中设置所有外边距属性。margin-bottom设置元素的下外边距。margin-left设置元素的左外边距。margin-right设置元素的右外边距。margin-top设置元素的上外边距。mar…...

ChatGPT或将引发新一轮失业潮?是真的吗?

最近,要说有什么热度不减的话题,那ChatGPT必然榜上有名。据悉是这是由美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类…...

【Selenium学习】Selenium 中特殊元素操作

1.鼠标定位操作鼠标悬停,即当光标与其名称表示的元素重叠时触发的事件,在 Selenium 中将键盘鼠标操作封装在 Action Chains 类中。Action Chains 类的主要应用场景为单击鼠标、双击鼠标、鼠标拖曳等。部分常用的方法使用分类如下:• click(on…...

Spark相关的依赖冲突,后期持续更新总结

Spark相关的依赖冲突持续更新总结 Spark-Hive_2.11依赖报错 这个依赖是Spark开启支持hive SQL解析,其中2.11是Spark对应的Scala版本,如Spark2.4.7,对应的Scala版本是2.11.12;这个依赖会由于Spark内部调用的依赖guava的版本问题出…...

【每日一题Day122】LC1237找出给定方程的正整数解 | 双指针 二分查找

找出给定方程的正整数解【LC1237】 给你一个函数 f(x, y) 和一个目标结果 z,函数公式未知,请你计算方程 f(x,y) z 所有可能的正整数 数对 x 和 y。满足条件的结果数对可以按任意顺序返回。 尽管函数的具体式子未知,但它是单调递增函数&#…...

笔记本加装固态和内存条教程(超详细)

由于笔记本是几年前买的了,当时是4000,现在用起来感到卡顿,启动、运行速度特别慢,就决定换个固态硬盘,加个内存条,再给笔记本续命几年。先说一下加固态硬盘SSD的好处:1.启动快 2.读取延迟小 3.写…...

【Python】字典 - Dictionary

字典 - Dictionarykeys()values()items()get()获取文件中指定字符的个数进阶版:获取所有单词的频数进阶版:获取所有字符的频数函数内容keys()输出字典中的所有键values()输出字典中的所有值items()以元组的形式输出键值对get()获取字典中指定键的值 keys…...

LeetCode分类刷题----二叉树

二叉树1.二叉树的递归遍历144.二叉树的前序遍历145.二叉树的后序遍历94.二叉树的中序遍历2.二叉树的迭代遍历144.二叉树的前序遍历145.二叉树的后序遍历94.二叉树的中序遍历3.二叉树的层序遍历102.二叉树的层序遍历107.二叉树的层序遍历||199.二叉树的右视图637.二叉树的层平均…...

Zipkin : Golang 微服务全链路监控(三)

Zipkin : Golang 微服务全链路监控(三) Golang 微服务全链路监控实现 broker-service -> auth-service -> postgres dbzipkin 监控:需代码入侵 使用 zipkin 库的 serverMiddleware,其通过 Http 跟踪(trace&am…...

5.3 BGP路由黑洞

5.2.3实验3:BGP路由黑洞 1. 实验目的 熟悉BGP路由黑洞的应用场景掌握BGP水平分割的配置方法2. 实验拓扑 实验拓扑如图5-3所示: 图5-3:BGP路由黑洞 3. 实验步骤 配置IP地址 R1的配置 <Huawei>syst...

STM32 DFU模式烧录代码

什么是DFU? dfu的本质是isp&#xff0c;usb接口的isp&#xff0c;在系统编程&#xff0c;进入isp的方式我们先了解 如下图 boot0为高电平 boot1为低电平即可进入isp模式。 熟悉的场景 在我们使用flymcu软件下载代码时&#xff0c;本质也是isp 串口接口的isp。 傻瓜使用方式…...

松下PLC通过fpwin上传写入MRTC模块方法

目录 PLC程序上传方法 加密模块使用 PLC程序上传方法 手动将PLC模式设置为prog模式查看PLC是否设置为禁止上传查询指示灯是否变蓝&#xff0c;变蓝则需要将PLC禁止上传功能取消。 3.当上述动作操作完成后&#xff0c;将PLC程序导入到PLC中。为了配合加密程序使用&#xff0c;…...

就业大山之下的网络安全:安逸的安服仔

从去年开始&#xff0c;各个互联网大厂就接二连三的放出了裁员消息&#xff0c;整个互联网行业好像都处于寒冬状态。微博、小米、滴滴、知乎、拼多多等在内的一大批互联网知名企业&#xff0c;也相继传出“人员优化”的消息。 除了国内市场的萧条&#xff0c;国外市场也是不容…...

JavaWeb3-线程的3种创建方式7种写法

目录 1.方式一&#xff1a;继承Thread&#xff08;2种写法&#xff09; 写法①&#xff08;常规&#xff09;&#xff1a; a.使用jconsole观察线程 b.启动线程——start方法 PS&#xff1a;&#xff08;常见面试题&#xff09;start 方法与 run 方法的区别&#xff1a; 写…...

驱动调试手段

文章目录 前言一、通过sysfs调试LCD查看电源:查看 pwm 信息查看管脚信息总结前言 本文记录在驱动中常用的调试手段 提示:以下是本篇文章正文内容,下面案例可供参考 一、通过sysfs 系统起来之后可以读取 sysfs 一些信息,来协助调试 示例: 调试LCD 输入如下命令 cat /…...

[RK3568 Android12] 音频及路由

1:概述(耳机 ,hdmiin ,板载喇叭) 在开发板上面,系统注册了三个音频输出通道,如下: [ 2.280612] ALSA device list: [ 2.280622] #0: rockchip,rk809-codec [ 2.280630] #1: ROCKCHIP,SPDIF [ 2.280638] #2: rockchip,hdmi console:/proc/asound # cat pcm …...

网站制作的文章/国内永久免费的云服务器

原标题&#xff1a;TVS管特性曲线、参数说明及应用TVS管的英文名是TRANSIENT VOLTAGE SUPPRESSOR&#xff0c;中文名叫瞬变抑制。它在承受瞬间高能量脉冲时&#xff0c;能在极短的时间内由原来的高阻抗状态变为低阻抗&#xff0c;并把电压箝制到特定的水平&#xff0c;从而有效…...

公司注册网站有什么好处/整站优化seo公司哪家好

文章目录快速排序快排求第k小的数归并排序归并排序求逆序对的个数整数二分浮点数二分高精度高精度加法高精度加法压位&#xff08;压9位&#xff09;高精度减法高精度乘法高精度除法前缀和一维前缀和二维前缀和&#xff08;子矩阵的和&#xff09;差分一维差分二维差分&#xf…...

太原网站建设世纪优创/最好的网络营销软件

来都来了,怎么说也你也踩下我的说说是吧,求回复...

天津平台网站建设设计/seo网站营销推广公司

[传送门] 问题: 树状数组: 单点修改,区间查询 感觉 还是挺简单的嘛 就一个lowbit CODE #include <bits/stdc.h> using namespace std; const int N 5e510; typedef long long ll; ll a[N],c[N]; ll n,m;ll lowbit(ll x) {return x&(-x); } void updata(ll i,…...

如何快速自己做网站/品牌营销的四大策略

一&#xff09;概念pendingIntent字面意义&#xff1a;延迟的intent&#xff0c;等待的&#xff0c;未决定的Intent。 主要用来在某个事件完成后执行特定的Action。 pendingIntent是一种特殊的Intent。 主要的区别在于Intent的执行是立刻的&#xff0c; 而pendingIntent的执行不…...

百度网站怎么优化排名/seo推广的公司

组件的生命周期一、引出生命周期二、生命周期流程图&#xff08;旧16.x&#xff09;三、生命周期流程图&#xff08;新 17.x&#xff09;四、生命周期总结一、引出生命周期 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8&qu…...