当前位置: 首页 > news >正文

2023年美国大学生数学建模C题:预测Wordle结果建模详解+模型代码

目录

前言

一、题目理解

背景

解析

字段含义:

建模要求

二、建模思路

 灰色预测:

​编辑

 二次指数平滑法:

person相关性

只希望各位以后遇到建模比赛可以艾特认识一下我,我可以提供免费的思路和部分源码,以后的数模比赛只要我还有时间肯定会第一时间写出免费开源思路,你们的关注和点赞就是我写作的动力!!!想要了解更多的欢迎联系博主,免费获取代码和更多细化思路。


前言

美赛补全计划第二篇了属实是,正好今天是周五下班晚上通宵研究美滋滋,想当年上一次参加美赛的时候还有两个学妹在给我加油打劲,现在已经孤身一人社畜995,时光一去不复返啊。(要是有学妹给我评论加油,我直接状态拉满哈哈)

对美赛A题感兴趣的同学去看:2023年美国大学生数学建模A题:受干旱影响的植物群落建模详解+模型代码(一)

 还是老样子,思路和模型代码都是免费的,纯爱好。博主参与过十余次数学建模大赛,三次美赛获得过二次M奖一次H奖,国赛二等奖。建模的部分后续将会写出,想要了解更多的欢迎联系博主,免费获取代码和更多细化思路,只希望各位以后遇到建模比赛可以艾特认识一下我,我可以提供免费的思路和部分源码,以后的数模比赛只要我还有时间肯定会第一时间写出免费开源思路,你们的关注和点赞就是我写作的动力!!!大家可以参考。


一、题目理解

首先做MCM要从背景入手了解要做的事情,题目背景:

背景

Wordle是《纽约时报》目前每天提供的一个流行的谜题。玩家试图通过不超过六次的时间猜 测一个五个字母的单词来解决谜题,每次猜测都会得到反馈。对于这个版本,每个猜测都必 须是一个真实的英语单词。不允许猜测不被比赛认定为单词的结果。

《纽约时报》网站上的Wordle说明指出,在你提交文字后,瓷砖的颜色将会改变。黄色 平贴表示该贴中的字母在单词中,但它在错误的位置。绿色的贴表示该贴中的字母在单 词中并且在正确的位置。

图1是一个示例解决方案,在三次尝试中都找到了正确的结果。

 玩家可以在常规模式或困难模式下玩。Wordle的困难模式让玩家的游戏更加困难,因为 一旦玩家找到了一个单词中正确的字母 (平铺是黄色或绿色的) ,这些字母必须在随后 的猜测中使用。

解析

首先我们可以得到该游戏的基本规则,也就是能够在26个字母之类,挑选出五个字母。困难模式下,如果第一次猜中了某个字母,该字母是绿的话那么不用挪动,若该字母为黄的,那么接下来五个位置中必定得填上该字母,当然字母和单词之间也有一定的逻辑关系。那么我们再去看数据集和数据集的解释:

字段含义:

Data日期

Contest number:比赛编号

Word:比赛单词

Number of  reported results:提交人数

Number in hard mode:hrad模型下提交人数

提交次数:

Percent in 
1 try2 tries3 tries4 tries5 tries6 tries7 or more tries (X)

 由于每天的单词是固定的,根据题意说例如,在图2中,2022年7月20日的单词是“TRITE”,结果是通过挖掘Twitter获得。尽管图2中的百分比总和为100%,但在某些情况下由于四舍五入,这可能不是真的。上一句信息不重要,可能就是解释一下为什么概率是整数而已。

建模要求

  • 1.报告结果的数量每天都在变化。建立一个模型来解释这种变化,使用该模型能为2023年3月1日报告的结果数量创建一个预测概率区间序列,单词的任何属性是否会影响在hard模式下游戏人数?解释这种情况。
  • 2.对于给定的未来解决方案,在未来的某个日期,开发一个模型预测报告结果的分布。换句话说,预测未来日期的百分比(1、2、3、4、5、6、X)。挖掘出模型的预测结果到底存在哪些影响预测准确性的因素,举一个你对这个词的预测的具体例子‘EERIE’于2023年3月1日发布。去校验模型的准确性。
  • 3.开发和总结一个模型,按难度分类解决方案词,并识别与每个分类关联的给定单词 的属性。基于你的模型,ERNIE这个词有多难?讨论你的分类模型的准确性。
  • 4. 列出并描述此数据集的其他一些特性。

二、建模思路

首先对Number of  reported results提出来观察时序序列数据波动:

可以看出游戏一开始推出的时候是一个很明显的上升曲线,直到四月达到峰值之后,游玩人数开始逐渐下降,也就是过了游戏的吸引时期。后面的数据相对于比较平缓,我们仅取最近三个月的数据观察,其中有个别很明显的噪音我们将它用均值填补:

 很明显的一个下降趋势,这里直接使用灰色时序预测最好了,当然你也可以选择用其他的时序预测模型:

 灰色预测:

 二次指数平滑法:

这里我建议还是用二次指数平滑法,不然灰色预测级比校验过不了:

该数据未通过级比检验
灰参数a: 0.00318897487491340454746069354996507172472774982452392578125 ,灰参数u: 30374.0096777603102964349091053009033203125
原数据样本标准差: 2104.8922894686443
残差样本标准差: 1804.1606900649451
后验差比: 0.8571273214746702
小误差概率p: 0.7142857142857143

 对Word这行数据处理,首先我把我考虑到的因素列出:

单词难度-参考元音以及辅音区别划分,将该word直接切分,而且每个单词都是独一无二的,359天一个单词都没重复:

 

person相关性

 从而去对元音和辅音计数划分单词每个不同的含义,而且再对hard进行关联分析,这里还是老样子使用person分析即可:

 有数据做这题属实简单啊,接着我们下一步再对整个预测区间做一个模型即可:

 


 

只希望各位以后遇到建模比赛可以艾特认识一下我,我可以提供免费的思路和部分源码,以后的数模比赛只要我还有时间肯定会第一时间写出免费开源思路,你们的关注和点赞就是我写作的动力!!!想要了解更多的欢迎联系博主,免费获取代码和更多细化思路。
 

相关文章:

2023年美国大学生数学建模C题:预测Wordle结果建模详解+模型代码

目录 前言 一、题目理解 背景 解析 字段含义: 建模要求 二、建模思路 灰色预测: ​编辑 二次指数平滑法: person相关性 只希望各位以后遇到建模比赛可以艾特认识一下我,我可以提供免费的思路和部分源码,以后…...

5、HAL库驱动W25Qxx

一、 SPI通信驱动W25Qxx 1、使用驱动文件快速配置工程代码驱动W25Qxx (此驱动文件只适合W25Qxx 16M及以下型号,因为访问地址位数不同) 注:本次使用SPI的方式进行访问W25Qxx Flash进行数据读写,关于W25Qxx芯片不会做…...

git rebase 洐合(变基)

洐合 把一个分支整合到另一个分支的办法有两种:merge(合并) 和 rebase(衍合) 为什么使用? 使提交记录更简洁 三种情况 第一种: 合并多条commit记录 git rebase -i HEAD~合并数量 HEAD~3&a…...

Kubernetes 1.18学习笔记

文章目录一、Kubernetes 概述和架构1、kubernetes 基本介绍2、Kubernetes 功能3、Kubernetes 架构组件4、Kubernetes 核心概念5、Kubernetes 工作原理二、Kubernetes 集群搭建1、系统环境准备1.1 安装要求1.2 系统初始化2、客户端工具kubeadm搭建2.1 安装步骤2.2 安装组件2.3 集…...

AJAX技术

AJAX技术 浏览器是多进程的,简单的说就是,浏览器每打开一个标签页,就相当于创建了一个独立的浏览器进程。但是js是基于单线程的,而这个线程就是浏览器的js引擎,浏览器无论在什么时候都只且只有一个线程在运行JavaScri…...

华为OD机试 - 最大排列(JS)

最大排列 题目 给定一组整数,重排序后输出一个最大的整数 输入 数字组合 输出 最大的整数 示例一 输入 10 9输出 910解题思路 我们可以读入一个字符串,将字符串中的单词按照每个单词的字典序长度,字典序从大到小的顺序排序&#x…...

Prometheus Docker安装及监控自身

前提环境: Docker环境 涉及参考文档: 安装Prometheus开始 Prometheusnode_exporter Agent组件 一、部署Prometheus 1、启动容器将文件拷贝出来 docker run -d prom/prometheus2、容器将文件拷贝出来 docker cp 容器ID:/usr/share/prometheus/conso…...

点云处理PCL常用函数与工具

点云处理PCL常用函数与工具 文章目录点云处理PCL常用函数与工具前言一、点云读取与保存数据读取数据保存自定义的点云保存格式二、点云显示点云显示-根据颜色点云显示-根据指定轴数值点云显示-根据指定信息显示多组点云显示三、点云滤波直通滤波统计滤波均匀下采样滤波VoxelGri…...

FyListen 在 MVP 架构中的内存优化表现

FyListen 在 MVP 中的内存优化表现 本文只是分享个人开源框架的内存优化测试,你可以直接跳到最后,参考内存泄漏的分析过程! 项目地址: https://github.com/StudyNoteOfTu/fylisten2-alpha1 由于使用到 AOP,所以直接…...

Qt代码单元测试以及报告生成

简介 单元测试是所有测试中最底层的一类测试,是第一个环节,也是最重要的一个环节,是唯一一次有保证能够代码覆盖率达到100%的测试,是整个软件测试过程的基础和前提,单元测试防止了开发的后期因bug过多而失控&#xff0…...

vscode构建Vue3.0项目(vite,vue-cli)

构建Vue3.0项目构建Vue3.0项目1.使用Vite构建vue项目的方法以及步骤1. 安装vite2. 运行vite vue 项目3.说明2.使用vue-cli构建vue项目的方法以及步骤1.安装全局vue cli —— 脚手架2、VSCode3.报错4.运行构建Vue3.0项目 1.使用Vite构建vue项目的方法以及步骤 1. 安装vite n…...

【2023】华为OD机试真题Java-题目0215-优雅数组

优雅数组 题目描述 如果一个数组中出现次数最多的元素出现大于等于 k k k 次,被称为k-优雅数组, k k k 也可以被称为优雅阈值。 例如,数组[1, 2, 3, 1, 2, 3, 1],它是一个3-优雅数组,因为元素1出现次数大于等于3次...

通过Prowork每日自动提醒待处理工作任务

对于中小团队来说,由于不需要繁琐的流程和高频的异地沟通,需要一款更适合中小团队的日程和项目管理工具。而Prowork就是这样一款敏捷高效的协同平台。Prowork与以往各种项目管理⼯具最⼤的不同在于,其弱化流程和弱化权限的特性,不…...

Linux自定义系统服务

文章目录一. Linux系统服务二. 自定义系统服务一. Linux系统服务 Linux 系统服务有时也称为守护程序,是在Linux启动时自动加载并在Linux退出时自动停止的系统任务,CentOS 7.x开始,CentOS开始使用 systemd服务来代替 daemon ,原来…...

mongodb lambda 查询插件

需求背景需要一个像mybatis plus 一样的基于lambda, 且面向对象的查询mongo数据的插件。在网上找了很久,没有发现有类似功能的插件。于是自己手写了一个,借助mongoTemplate屏蔽了底层查询语句的实现细节。在此基础上,实现了查询的统一封装。技…...

C++设计模式(16)——责任链模式

亦称: 职责链模式、命令链、CoR、Chain of Command、Chain of Responsibility 意图 责任链模式是一种行为设计模式, 允许你将请求沿着处理者链进行发送。 收到请求后, 每个处理者均可对请求进行处理, 或将其传递给链上的下个处理…...

springmvc+jsp电影院购票售票选座推荐网站java ssm

本电影购票推荐网站以SSM作为框架,B/S模式以及MySql作为后台运行的数据库。本系统主要包括以下功能模块:个人中心、用户管理、电影信息管理、电影类型管理、影院信息管理、系统管理、订单管理等模块,通过这些模块的实现能够基本满足日常电影购…...

ASEMI高压MOS管4N65SE,4N65SE参数,4N65SE特征

编辑-Z ASEMI高压MOS管4N65SE参数: 型号:4N65SE 漏极-源极电压(VDS):650V 栅源电压(VGS):30V 漏极电流(ID):4A 功耗(PD&#xf…...

第46章 自定义静态与数据库动态授权依赖注入的定义实现

1 数据库动态授权表授权原理 2 准备工作 2.1 重构Program.cs using Framework.Infrastructure.Extensions; var builder WebApplication.CreateBuilder(args); //如果启动项中不存在“appsettings.json”文件,则通过.Net(Core)的内置方法自动新建“appsettings.…...

Go语言面试题

请解释 Go 语言中的 goroutine 是什么。请解释 Go 语言中的 channel 是什么,并举例说明它的用途。请解释 Go 语言中的 interface 是什么,并举例说明它的用途。请解释 Go 语言中的 map 和 slice 是什么,并举例说明它们的用途。请解释 Go 语言中…...

内存分配函数malloc kmalloc vmalloc

内存分配函数malloc kmalloc vmalloc malloc实现步骤: 1)请求大小调整:首先,malloc 需要调整用户请求的大小,以适应内部数据结构(例如,可能需要存储额外的元数据)。通常,这包括对齐调整,确保分配的内存地址满足特定硬件要求(如对齐到8字节或16字节边界)。 2)空闲…...

JavaScript 中的 ES|QL:利用 Apache Arrow 工具

作者:来自 Elastic Jeffrey Rengifo 学习如何将 ES|QL 与 JavaScript 的 Apache Arrow 客户端工具一起使用。 想获得 Elastic 认证吗?了解下一期 Elasticsearch Engineer 培训的时间吧! Elasticsearch 拥有众多新功能,助你为自己…...

如何在网页里填写 PDF 表格?

有时候,你可能希望用户能在你的网站上填写 PDF 表单。然而,这件事并不简单,因为 PDF 并不是一种原生的网页格式。虽然浏览器可以显示 PDF 文件,但原生并不支持编辑或填写它们。更糟的是,如果你想收集表单数据&#xff…...

人机融合智能 | “人智交互”跨学科新领域

本文系统地提出基于“以人为中心AI(HCAI)”理念的人-人工智能交互(人智交互)这一跨学科新领域及框架,定义人智交互领域的理念、基本理论和关键问题、方法、开发流程和参与团队等,阐述提出人智交互新领域的意义。然后,提出人智交互研究的三种新范式取向以及它们的意义。最后,总结…...

无人机侦测与反制技术的进展与应用

国家电网无人机侦测与反制技术的进展与应用 引言 随着无人机(无人驾驶飞行器,UAV)技术的快速发展,其在商业、娱乐和军事领域的广泛应用带来了新的安全挑战。特别是对于关键基础设施如电力系统,无人机的“黑飞”&…...

MySQL 8.0 事务全面讲解

以下是一个结合两次回答的 MySQL 8.0 事务全面讲解,涵盖了事务的核心概念、操作示例、失败回滚、隔离级别、事务性 DDL 和 XA 事务等内容,并修正了查看隔离级别的命令。 MySQL 8.0 事务全面讲解 一、事务的核心概念(ACID) 事务是…...

WebRTC从入门到实践 - 零基础教程

WebRTC从入门到实践 - 零基础教程 目录 WebRTC简介 基础概念 工作原理 开发环境搭建 基础实践 三个实战案例 常见问题解答 1. WebRTC简介 1.1 什么是WebRTC? WebRTC(Web Real-Time Communication)是一个支持网页浏览器进行实时语音…...

解析奥地利 XARION激光超声检测系统:无膜光学麦克风 + 无耦合剂的技术协同优势及多元应用

在工业制造领域,无损检测(NDT)的精度与效率直接影响产品质量与生产安全。奥地利 XARION开发的激光超声精密检测系统,以非接触式光学麦克风技术为核心,打破传统检测瓶颈,为半导体、航空航天、汽车制造等行业提供了高灵敏…...

AI语音助手的Python实现

引言 语音助手(如小爱同学、Siri)通过语音识别、自然语言处理(NLP)和语音合成技术,为用户提供直观、高效的交互体验。随着人工智能的普及,Python开发者可以利用开源库和AI模型,快速构建自定义语音助手。本文由浅入深,详细介绍如何使用Python开发AI语音助手,涵盖基础功…...

数学建模-滑翔伞伞翼面积的设计,运动状态计算和优化 !

我们考虑滑翔伞的伞翼面积设计问题以及运动状态描述。滑翔伞的性能主要取决于伞翼面积、气动特性以及飞行员的重量。我们的目标是建立数学模型来描述滑翔伞的运动状态,并优化伞翼面积的设计。 一、问题分析 滑翔伞在飞行过程中受到重力、升力和阻力的作用。升力和阻力与伞翼面…...