当前位置: 首页 > news >正文

[LeetCode]1237. 找出给定方程的正整数解

题目链接:https://leetcode.cn/problems/find-positive-integer-solution-for-a-given-equation/description/
题目描述:
在这里插入图片描述
样例1:

输入:function_id = 1, z = 5
输出:[[1,4],[2,3],[3,2],[4,1]]
解释:function_id = 1 暗含的函数式子为 f(x, y) = x + y
以下 x 和 y 满足 f(x, y) 等于 5:
x=1, y=4 -> f(1, 4) = 1 + 4 = 5
x=2, y=3 -> f(2, 3) = 2 + 3 = 5
x=3, y=2 -> f(3, 2) = 3 + 2 = 5
x=4, y=1 -> f(4, 1) = 4 + 1 = 5

样例2:

输入:function_id = 2, z = 5
输出:[[1,5],[5,1]]
解释:function_id = 2 暗含的函数式子为 f(x, y) = x * y
以下 x 和 y 满足 f(x, y) 等于 5:
x=1, y=5 -> f(1, 5) = 1 * 5 = 5
x=5, y=1 -> f(5, 1) = 5 * 1 = 5

题目限定:
在这里插入图片描述

方法1:暴力枚举

func findSolution(customFunction func(int, int) int, z int) [][]int {res := make([][]int, 0, 100)for x := 1; x <= 1000; x++ {for y := 1; y<= 1000; y++ {if customFunction(x,y) == z {temp := []int{x, y}res = append(res,temp)}}}return res
}

暴力枚举法每次都从开始找y,x最多枚举1000次,而y每次也会枚举1000次,因此,总的复杂度为O(x*y)。

方法2:枚举+二分查找

func findSolution(customFunction func(int, int) int, z int) (res [][]int)  {for x := 1; x <= 1000; x++ {l, r := 1, 1000for l <= r {mid := (l+r)/2if customFunction(x,mid) == z {res = append(res, []int{x,mid})break} else if customFunction(x,mid) > z {r = mid -1 } else {l = mid + 1}}}return res
}

既然我们知道y每次都从头开始找比较慢,那么我们可以优化y的查找时间,利用二分查找即可将找y的复杂度降到log级别,因此总的时间复杂度为O(xlogy)。

当然,golang中也可以使用sort库的Search方法:

func findSolution(customFunction func(int, int) int, z int) (res [][]int) {for x := 1; x <= 1000; x++ {y := 1 + sort.Search(999, func(y int) bool {return customFunction(x, y+1) >= z})if customFunction(x,y) == z {res = append(res, []int{x,y})}}return res
}

同时需要注意Search的用法,是从[0,n)去查找的,所以类似我们是从0-999中查找出来的下标,最后加上1就表示从1到1000了:

// Search uses binary search to find and return the smallest index i
// in [0, n) at which f(i) is true, assuming that on the range [0, n),
// f(i) == true implies f(i+1) == true. That is, Search requires that
// f is false for some (possibly empty) prefix of the input range [0, n)
// and then true for the (possibly empty) remainder; Search returns
// the first true index. If there is no such index, Search returns n.
// (Note that the “not found” return value is not -1 as in, for instance,
方法3:双指针

func findSolution(customFunction func(int, int) int, z int) (res [][]int)  {y := 1000for x := 1; x <= 1000; x++ {for ; y > 0 ; y-- {if customFunction(x,y) < z {break}if customFunction(x,y) == z {res = append(res, []int{x,y})break}}}return res
}

这种方法关键在于直接利用函数单调递增的特性,一个答案从前往后找,另一个答案从后往前找,下一次寻找一定是基于上一次的结果,因此会少很多次遍历,x最多遍历1000次,y总的遍历次数也最多1000次,因此总的时间复杂度为O(x+y)。

相关文章:

[LeetCode]1237. 找出给定方程的正整数解

题目链接&#xff1a;https://leetcode.cn/problems/find-positive-integer-solution-for-a-given-equation/description/ 题目描述&#xff1a; 样例1&#xff1a; 输入&#xff1a;function_id 1, z 5 输出&#xff1a;[[1,4],[2,3],[3,2],[4,1]] 解释&#xff1a;functi…...

【路径规划】基于A*算法和Dijkstra算法的路径规划(Python代码实现)

&#x1f468;‍&#x1f393;个人主页&#xff1a;研学社的博客&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5;&#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密…...

蓝桥杯 stm32 PWM 设置占空比

本文代码使用 HAL 库。 文章目录 前言一、创建CubeMX 工程 ,占空比分析:二、相关函数:1. 获取 CNT函数2.设置CNT为 0 函数(计算器清零)3.开启TIM2_CH1的输入捕获中断函数4.TIM 回调函数三、设置上升沿,下降沿四、在lcd上显示 R40 占空比 详细代码五、设置占空比,输出 PW…...

React 合成事件理解

1 事件三个阶段 捕获、目标、处理 &#xff08;具体百度&#xff0c;后面有空补全&#xff09;2import React from "react";class Test extends React.Component {parentRef;childRef;constructor(props) {super(props);this.parentRef React.createRef();this.chil…...

202302|读书笔记——国图点滴

杂志剪影|看一本赚一本系列 anywhere 随心而行随心而动&#xff0c;极简相生复古文艺 热情洋溢 色彩斑斓 极致优雅 深邃魅力 新生绽放 灿若星空 异彩纷呈含苞待放 惊艳绽放 爱在云端 空中婚礼 暗夜浪漫 策马逐梦橘影相映 浆果红唇 梦幻无暇 永无止境浮光掠影 微酥清风低调奢华…...

Linux 操作系统原理 — NUMA 架构中的多线程调度开销与性能优化

目录 文章目录 目录前言NUMA 架构中的多线程性能开销1、跨 Node 的 Memory 访问开销2、跨 Core 的多线程 Cache 同步开销3、多线程上下文切换开销4、多线程模式切换开销5、中断处理的开销6、TLB 缓存失效的开销7、内存拷贝的开销NUMA 架构中的性能优化:使用多核编程代替多线程…...

OpenGL - 如何理解 VAO 与 VBO 之间的关系

系列文章目录 LearnOpenGL 笔记 - 入门 01 OpenGLLearnOpenGL 笔记 - 入门 02 创建窗口LearnOpenGL 笔记 - 入门 03 你好&#xff0c;窗口LearnOpenGL 笔记 - 入门 04 你好&#xff0c;三角形 文章目录系列文章目录1. 前言2. 渲染管线的入口 - 顶点着色器2.1 顶点着色器处理过…...

Linux中sed的使用

语法&#xff1a; sed [选项] [sed内置命令字符] [输入文件]选项&#xff1a; 参数说明-n取消默认色的输出常与sed内置命令p一起使用-i直接将修改结果写入文件&#xff0c;不用-i&#xff0c;sed修改的是内存数据-e多次编译&#xff0c;不需要管道符了-r支持正则扩展 sed的内…...

[软件工程导论(第六版)]第1章 软件工程学概述(复习笔记)

文章目录1.1 软件危机1.1.1 软件危机的介绍1.1.2 产生软件危机的原因1.1.3 消除软件危机的途径1.2 软件工程1.2.1 软件工程的介绍1.2.2 软件工程的基本原理1.2.3 软件工程方法学1.3 软件生命周期组成1.4 软件过程概念1.4.1 瀑布模型1.4.2 快速原型模型1.4.3 增量模型1.4.4 螺旋…...

ISP相关

Internet Service Provider&#xff0c;网络提供商/运营商&#xff0c;如电信、联通、移动等。 1. 与ISP互联的出口带宽 IDC或云提供商会与各运营商互联&#xff0c;互联的具体带宽数值一旦泄露&#xff0c;就会被恶意的攻击者利用。例如&#xff0c;若DDos攻击者知道了被攻击…...

vTESTstudio - VT System CAPL Functions - VT2004(续1)

成熟,就是某一个突如其来的时刻,把你的骄傲狠狠的踩到地上,任其开成花或者烂成泥。vtsStartStimulation - 启动激励输出功能&#xff1a;自动激励输出注意&#xff1a;在启动激励输出之前&#xff0c;一定要设置好输出模式Target&#xff1a;目标通道变量空间名称&#xff0c;例…...

WeakMap弱引用

let obj{name:张三} //{name:张三}这个对象能够被读取到&#xff0c;因为obj这个变量名对它的引用 ​ //将引用覆盖掉 objnull //这个对象将会被从内存中移除&#xff0c;因为我们已经失去了对他的所有引用 let obj{name:张三} let arr[obj] ​ objnull //对象{name:张三}不会…...

Springboot 使用quartz 定时任务 增删改查

前段时间公司项目用到了 定时任务 所以写了一篇定时任务的文章 &#xff0c;浏览量还不错 &#xff0c; Springboot 整合定时任务 ) 所以就准备写第二篇&#xff0c; 如果你是一名Java工程师&#xff0c;你也可以会看到如下的页面 &#xff0c;去添加定时任务 定时任务展示 :…...

华为OD机试 - 猜字谜(Python) | 机试题+算法思路 【2023】

最近更新的博客 华为OD机试 - 热点网络统计 | 备考思路,刷题要点,答疑 【新解法】 华为OD机试 - 查找单入口空闲区域 | 备考思路,刷题要点,答疑 【新解法】 华为OD机试 - 好朋友 | 备考思路,刷题要点,答疑 【新解法】 华为OD机试 - 找出同班小朋友 | 备考思路,刷题要点…...

Linux常用命令汇总

1、tcpdump抓包 tcpdump这个命令是用来抓包的&#xff0c;默认情况下这个命令是没有的&#xff0c;需要安装一下&#xff1a; yum install -y tcpdump 使用这个命令的时候最好是加上你网卡的名称&#xff0c;不然可能使用不了&#xff1a; tcpdump -nn -i {网卡名称} 网卡名称…...

1.TCP、UDP区别、TCP/IP七层、四层模型、应用层协议(计网)

文章目录1.OSI 七层模型是什么&#xff1f;每一层的作用是什么&#xff1f;2.TCP/IP 四层模型是什么&#xff1f;每一层的作用是什么&#xff1f;应用层&#xff08;Application layer&#xff09;传输层&#xff08;Transport layer&#xff09;网络层&#xff08;Network lay…...

气敏电阻的原理,结构,分类及应用场景总结

🏡《总目录》 目录 1,概述2,结构3,工作原理4,分类4.1,加热方式分类4.2,材料分类4.3,氧化还原分类5,应用场景6,总结1,概述 气敏电阻是指电阻值随着环境中某种气体的浓度变化而变化的电阻,本文对其工作原理,结构,分类和应用场景进行总结。 2,结构 气敏电阻由防爆…...

实验10 拓扑排序与最短路径2022

A. DS图—图的最短路径&#xff08;无框架&#xff09;题目描述给出一个图的邻接矩阵&#xff0c;输入顶点v&#xff0c;用迪杰斯特拉算法求顶点v到其它顶点的最短路径。输入第一行输入t&#xff0c;表示有t个测试实例第二行输入顶点数n和n个顶点信息第三行起&#xff0c;每行输…...

C/C++每日一练(20230218)

目录 1. 整数转罗马数字 2. 跳跃游戏 II 3. 买卖股票的最佳时机 IV 1. 整数转罗马数字 罗马数字包含以下七种字符&#xff1a; I&#xff0c; V&#xff0c; X&#xff0c; L&#xff0c;C&#xff0c;D 和 M。 字符 数值 I 1 V 5 X …...

【C语言】预编译

&#x1f6a9;write in front&#x1f6a9; &#x1f50e;大家好&#xff0c;我是謓泽&#xff0c;希望你看完之后&#xff0c;能对你有所帮助&#xff0c;不足请指正&#xff01;共同学习交流&#x1f50e; &#x1f3c5;2021年度博客之星物联网与嵌入式开发TOP5&#xff5…...

音频信号处理笔记(一)

相关课程&#xff1a;【音频信号处理及深度学习教程】 文章目录01 信号的时域分析1.1 分帧1.1.1 幅值包络1.1.2 均方根能量0 信号的叠加&#xff1a;https://teropa.info/harmonics-explorer/ 一个复杂信号分解成若干简单信号分量之和。不同个频率信号的叠加: 由于和差化积&a…...

【深度学习】模型评估

上一章——多分类问题和多标签分类问题 文章目录算法诊断模型评估交叉验证测试算法诊断 如果你为问题拟合了一个假设函数&#xff0c;我们应当如何判断假设函数是否适当拟合了&#xff1f;我们可以通过观察代价函数的图像&#xff0c;当代价函数达到最低点的时候&#xff0c;此…...

AcWing《蓝桥杯集训·每日一题》—— 3777 砖块

AcWing《蓝桥杯集训每日一题》—— 3777. 砖块 文章目录AcWing《蓝桥杯集训每日一题》—— 3777. 砖块一、题目二、解题思路三、解题思路本次博客我是通过Notion软件写的&#xff0c;转md文件可能不太美观&#xff0c;大家可以去我的博客中查看&#xff1a;北天的 BLOG&#xf…...

CleanMyMac X软件下载及详细功能介绍

mac平台的知名系统清理应用CleanMyMac在经历了一段时间的测试后&#xff0c;全新设计的X正式上线。与CleanMyMac3相比&#xff0c;新版本的UI设计焕然一新&#xff0c;采用了完全不同的风格。使用Windows电脑时&#xff0c;很多人会下载各类优化软件&#xff0c;而在Mac平台中&…...

pytorch零基础实现语义分割项目(一)——数据概况及预处理

语义分割之数据加载项目列表前言数据集概况数据组织形式数据集划分数据预处理均值与方差结尾项目列表 语义分割项目&#xff08;一&#xff09;——数据概况及预处理 语义分割项目&#xff08;二&#xff09;——标签转换与数据加载 语义分割项目&#xff08;三&#xff09…...

ARM+LINUX嵌入式学习路线

嵌入式学习是一个循序渐进的过程&#xff0c;如果是希望向嵌入式软件方向发展的话&#xff0c;目前最常见的是嵌入式Linux方向&#xff0c;关注这个方向&#xff0c;大概分3个阶段&#xff1a; 1、嵌入式linux上层应用&#xff0c;包括QT的GUI开发 2、嵌入式linux系统开发 3、…...

echart在微信小程序的使用

echart在微信小程序的使用 echarts不显示在微信小程序 <!-- 微信小程序的echart的使用 --> <view class"container"><ec-canvas id"mychart-dom-bar" canvas-id"mychart-bar" ec"{{ ec }}"></ec-canvas> &l…...

51单片机最强模块化封装(5)

文章目录 前言一、创建timer文件,添加timer文件路径二、timer文件编写三、模块化测试总结前言 今天这篇文章将为大家封装定时器模块,定时器是工程项目中必不可少的,希望大家能够将定时器理解清楚并且运用自如。 一、创建timer文件,添加timer文件路径 这里的操作就不过多…...

链表学习之判断链表是否回文

链表解题技巧 额外的数据结构&#xff08;哈希表&#xff09;&#xff1b;快慢指针&#xff1b;虚拟头节点&#xff1b; 判断链表是否回文 要求&#xff1a;时间辅助度O(N)&#xff0c;空间复杂度O(1) 方法1&#xff1a;栈&#xff08;不考虑空间复杂度&#xff09; 遍历一…...

【Linux06-基础IO】4.5万字的基础IO讲解

前言 本期分享基础IO的知识&#xff0c;主要有&#xff1a; 复习C语言文件操作文件相关的系统调用文件描述符fd理解Linux下一切皆文件缓冲区文件系统软硬链接动静态库的理解和制作动静态编译 博主水平有限&#xff0c;不足之处望请斧正&#xff01; C语言文件操作 #再谈文件…...

有中文网站 怎么做英文网站/百度推广话术全流程

1、项目的典型用户与场景 2、对其他组评价 强强联手队项目做得很好&#xff0c;不过如果能够把连网操作就更好了。 滑稽队项目的前台设计挺好&#xff0c;如果把包车的信息都放进数据库就更好了。 梦之翼队的项目做得不错&#xff0c;可以看出他们做得非常的认真&#xff0c;但…...

wordpress5.0.2/友联互换

ONVIF开发经验总结 ONVIF开发经验总结....................................................................................................... 1 一、 利用gsoap2.8.14生成Onvif相关源代码................................................................ 2 1. 生…...

不花钱建网站/站长工具seo综合查询 分析

美国当地时间 8 月 19 日&#xff0c;旨在促进 Linux 普及的非营利团体 Open SourceDevelopmentLab&#xff08;OSDL&#xff0c;开放源码开发实验室&#xff09;发布了用来自动测试 Linux 内核的“ScalableTestPlatform&#xff08;STP&#xff09;”环境的最新版本 Version3.…...

flash 做网站教程/优化大师官网

集合框架(collections framework)首先要明确&#xff0c;集合代表了一组对象(和数组一样&#xff0c;但数组长度不能变&#xff0c;而集合能)。Java中的集合框架定义了一套规范&#xff0c;用来表示、操作集合&#xff0c;使具体操作与实现细节解耦。其实说白了&#xff0c;可以…...

保定建网站需要多少钱/全网网站推广

php中在做文件下载的时候&#xff0c;其中要加上这么一些header信息&#xff1a; 1 2 3 4 header("Content-type: application/octet-stream"); header("Accept-Ranges: bytes"); header("Accept-Length:".$fileSize); //请用Content-Length he…...

怎么区分网站是模板做的/淘宝新店怎么快速做起来

为什么80%的码农都做不了架构师&#xff1f;>>> canvas 英音 /knvəs/ 美音 /knvəs/ 帆布&#xff0c; 画布 canvas的基本介绍 canvas是html5中新增的一个画布标签。这个标签的默认宽高为300*150设置canvas标签的宽高需要使用表格的形式&#xff0c;width和height…...