当前位置: 首页 > news >正文

【大数据】HADOOP-YARN容量调度器Spark作业实战

目录

      • 需求
      • 配置多队列的容量调度器
      • 验证队列资源

需求

default 队列占总内存的40%,最大资源容量占总资源的60%
ops 队列占总内存的60%,最大资源容量占总资源的80%

配置多队列的容量调度器

  1. 在yarn-site.xml里面配置使用容量调度器
<!-- 使用容量调度器 -->
<property><name>yarn.resourcemanager.scheduler.class</name>   <value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.capacity.CapacityScheduler</value>
</property>
  1. 在capacity-scheduler.xml中配置如下:
    从Apache hadoop 3.1.0开始 CapacityScheduler支持配置绝对值格式的资源量。上面的 yarn.scheduler.capacity..capacity 和 yarn.scheduler.capacity..max-capacity 配置项,可以指定一个绝对资源量如 [memory=10240,vcores=12]。这表示为队列配置10GB的内存和12个Vcore。使用绝对值资源配置时,这2个参数分别对应Yarn web页面中队列信息的__Configured Capacity__和__Configured Max Capacity__
<?xml version="1.0" encoding="UTF-8"?>
<configuration><!-- 表示集群最大app数 --><property><name>yarn.scheduler.capacity.maximum-applications</name><value>10000</value></property><!-- 表示集群上某队列可使用的资源比例 目的是为了限制过多的am数,即app数 --><property><name>yarn.scheduler.capacity.maximum-am-resource-percent</name><value>0.1</value></property><!-- 配置指定调度器使用的资源计算器 --><!-- DefaultResourseCalculator 默认值,只使用内存进行比较 --><!-- DominantResourceCalculator 多维度资源计算,内存、cpu --><property><name>yarn.scheduler.capacity.resource-calculator</name><value>org.apache.hadoop.yarn.util.resource.DominantResourceCalculator</value></property><!-- root队列中有哪些子队列--><property><name>yarn.scheduler.capacity.root.queues</name><value>default,ops</value></property><!-- *******************default队列*********************** --><!-- default 队列占用的资源容量百分比 40% --><property><name>yarn.scheduler.capacity.root.default.capacity</name><value>40</value></property><!-- default 队列占用的最大资源容量百分比 60%--><property><name>yarn.scheduler.capacity.root.default.maximum-capacity</name><value>60</value></property><!-- 允许单个用户最多可获取的队列资源的倍数,默认值1,确保单个用户无论集群有多空闲,永远不会占用超过队列配置的资源当值大于1时,用户可使用的资源将超过队列配置的资源,但应该不能超过队列配置的最大资源--><property><name>yarn.scheduler.capacity.root.default.user-limit-factor</name><value>1</value></property><!-- 队列状态 --><property><name>yarn.scheduler.capacity.root.default.state</name><value>RUNNING</value></property><!-- 限定哪些admin用户可向root队列中提交应用程序 --><property><name>yarn.scheduler.capacity.root.default.acl_submit_applications</name><value>*</value></property><!-- 为root队列指定一个管理员,该管理员可控制该队列的所有应用程序,比如杀死任意一个应用程序等 --><property><name>yarn.scheduler.capacity.root.default.acl_administer_queue</name><value>*</value></property><!-- 配置哪些用户有权配置提交任务优先级 --><property><name>yarn.scheduler.capacity.root.default.acl_application_max_priority</name><value>*</value></property><!-- 任务的超时时间设置:yarn application -appId ${appId} -updateLifeTime Timeout --><!-- 如果application指定了超时时间,则提交到该队列的application能够制定的最大超时时间不能超过该值。--><property><name>yarn.scheduler.capacity.root.default.maximum-application-lifetime</name><value>-1</value></property><!-- 如果application没有指定超时时间,则用default-application-lifetime 作为默认值 --><property><name>yarn.scheduler.capacity.root.default.default-application-lifetime</name><value>-1</value></property><!-- *******************hive队列*********************** --><!-- hive 队列占用的资源容量百分比 60% --><property><name>yarn.scheduler.capacity.root.ops.capacity</name><value>60</value></property><!-- default 队列占用的最大资源容量百分比 80%--><property><name>yarn.scheduler.capacity.root.ops.maximum-capacity</name><value>80</value></property><!-- 允许单个用户最多可获取的队列资源的倍数,默认值1,确保单个用户无论集群有多空闲,永远不会占用超过队列配置的资源当值大于1时,用户可使用的资源将超过队列配置的资源,但应该不能超过队列配置的最大资源--><property><name>yarn.scheduler.capacity.root.ops.user-limit-factor</name><value>1</value></property><!-- 队列状态 --><property><name>yarn.scheduler.capacity.root.ops.state</name><value>RUNNING</value></property><!-- 限定哪些admin用户可向root队列中提交应用程序 --><property><name>yarn.scheduler.capacity.root.ops.acl_submit_applications</name><value>*</value></property><!-- 为root队列指定一个管理员,该管理员可控制该队列的所有应用程序,比如杀死任意一个应用程序等 --><property><name>yarn.scheduler.capacity.root.ops.acl_administer_queue</name><value>*</value></property><!-- 配置哪些用户有权配置提交任务优先级 --><property><name>yarn.scheduler.capacity.root.ops.acl_application_max_priority</name><value>*</value></property><!-- 任务的超时时间设置:yarn application -appId ${appId} -updateLifeTime Timeout --><!-- 如果application指定了超时时间,则提交到该队列的application能够制定的最大超时时间不能超过该值。--><property><name>yarn.scheduler.capacity.root.ops.maximum-application-lifetime</name><value>-1</value></property><!-- 如果application没有指定超时时间,则用default-application-lifetime 作为默认值 --><property><name>yarn.scheduler.capacity.root.opsdefault-application-lifetime</name><value>-1</value></property><!--CapacityScheduler尝试调度机本地容器之后错过的调度机会数。通常,应该将其设置为集群中的节点数。默认情况下在一个架构中设置大约40个节点。应为正整数值。--><property><name>yarn.scheduler.capacity.node-locality-delay</name><value>40</value></property><!--在节点本地延迟时间之外的另外的错过的调度机会的次数,在此之后,CapacityScheduler尝试调度非切换容器而不是机架本地容器.例如:在node-locality-delay = 40和rack-locality-delay = 20的情况下,调度器将在40次错过机会之后尝试机架本地分配,在40 + 20 = 60之后错过机会.使用-1作为默认值,禁用此功能.在这种情况下,根据资源请求中指定的容器和唯一位置的数量以及集群的大小,计算分配关闭交换容器的错失机会的数量--><property><name>yarn.scheduler.capacity.rack-locality-additional-delay</name><value>-1</value></property><!-- 此配置指定用户或组到特定队列的映射 --><property><name>yarn.scheduler.capacity.queue-mappings</name><value>u:root:default,g:root:default,u:%user:%user</value></property><property><name>yarn.scheduler.capacity.queue-mappings-override.enable</name><value>false</value></property><property><name>yarn.scheduler.capacity.per-node-heartbeat.maximum-offswitch-assignments</name><value>1</value></property><property><name>yarn.scheduler.capacity.application.fail-fast</name><value>false</value></property><property><name>yarn.scheduler.capacity.workflow-priority-mappings</name><value></value></property><property><name>yarn.scheduler.capacity.workflow-priority-mappings-override.enable</name><value>false</value></property>
</configuration>

其中的容量也可以采用绝对值来配置

<property><name>yarn.scheduler.capacity.root.default.capacity</name><value>[memory=9830,vcores=9]</value></property><property><name>yarn.scheduler.capacity.root.default.maximum-capacity</name><value>[memory=14745,vcores=14]</value></property><property><name>yarn.scheduler.capacity.root.ops.capacity</name><value>[memory=14745,vcores=14]</value></property><property><name>yarn.scheduler.capacity.root.ops.maximum-capacity</name><value>[memory=19660,vcores=19]</value></property>

不同的队列同时可以使用不同的资源配置格式,也就是说有些队列可以使用百分比格式,有些可以使用绝对值格式,而且实际使用时发现在这种混合配置中,各层级上所有队列的百分比之和必须等于100的约束将不再有效。

  1. 同步到其他节点后,刷新配置
bin/yarn rmadmin -refreshQueues
  1. 查看界面展示
    在这里插入图片描述

验证队列资源

  1. 提交任务,查看队列资源占比情况
    提交任务
bin/spark-submit --class org.apache.spark.examples.SparkPi --master yarn --deploy-mode cluster --driver-memory 2g --executor-memory 2g --executor-cores 1 --num-executors 1 --queue default examples/jars/spark-examples_2.12-3.2.1.jar 100

–driver-memory 2g --executor-memory 2g --executor-cores 1 --num-executors 1
在这里插入图片描述
在这里插入图片描述
可以看到 向YARN的资源需求是:
amMemory = 2048
amMemoryOverhead = 384

executorMemory = 2048
executorOffHeapMemory. = 0
executorMemoryOverhead = 384

amCores = 1

最终向YARN上申请AM的资源大小为:

am = amMemory + amMemoryOverhead = 2432
executor = executorMemory + executorMemoryOverhead = 2432

capability = <memory:2432,vCores:1>
由于配置的集群资源分配最小单位为1024MB, 因此需要向上取整, 即 3072 MB

这也是为甚么我明明申请的 资源 比较小,但是在yarn上显示的资源总不对,比实际申请的资源要高一些。资源比预期的要高。

这主要是yarn的资源计算是用DominantResourceCalculator来计算管理 cpu、内存的。

spark和yarn上申请的资源没有对的上。

所以最终的资源:
Driver 申请的资源 --driver-memory 2g 实际在yarn中AM申请的资源为 3g1c
Executor 申请的资源 --executor-memory 2g --executor-cores 1 --num-executors 1 实际在yarn中executor申请的资源为 3g1c

最终总的资源为 6g2c

在这里插入图片描述

同理再提交一下 1g1c的

bin/spark-submit --class org.apache.spark.examples.SparkPi --master yarn --deploy-mode cluster --driver-memory 1g --executor-memory 1g --executor-cores 1 --num-executors 2 --queue default examples/jars/spark-examples_2.12-3.2.1.jar 100

–driver-memory 1g --executor-memory 1g --executor-cores 1 --num-executors 2

在这里插入图片描述
所以最终的资源:

Driver 申请的资源 --driver-memory 1g 实际在yarn中AM申请的资源为 1g1c
Executor 申请的资源 --executor-memory 1g --executor-cores 1 --num-executors 2 实际在yarn中executor申请的资源为 4g2c

最终总的资源为 6g3c

  1. 验证队列的最大资源限制
bin/spark-submit --class org.apache.spark.examples.SparkPi --master yarn --deploy-mode cluster --driver-memory 2g --executor-memory 2g --executor-cores 2 --num-executors 5 --queue default examples/jars/spark-examples_2.12-3.2.1.jar 100

在这里插入图片描述
当内存需求超过队列最大资源时

bin/spark-submit --class org.apache.spark.examples.SparkPi --master yarn --deploy-mode cluster --driver-memory 2g --executor-memory 2g --executor-cores 2 --num-executors 6 --queue default examples/jars/spark-examples_2.12-3.2.1.jar 100

在这里插入图片描述

在这里插入图片描述
最终看到申请的资源可以超过队列配置的资源,但是不会超过最大的资源

spark申请的容器为 6 个,但是最终只启动了4个。

希望对正在查看文章的您有所帮助,记得关注、评论、收藏,谢谢您

相关文章:

【大数据】HADOOP-YARN容量调度器Spark作业实战

目录需求配置多队列的容量调度器验证队列资源需求 default 队列占总内存的40%&#xff0c;最大资源容量占总资源的60% ops 队列占总内存的60%&#xff0c;最大资源容量占总资源的80% 配置多队列的容量调度器 在yarn-site.xml里面配置使用容量调度器 <!-- 使用容量调度器…...

平面及其方程

一、曲面和交线的定义 空间解析几何中&#xff0c;任何曲面或曲线都看作点的几何轨迹。在这样的意义下&#xff0c;如果曲面SSS与三元方程&#xff1a; F(x,y,z)0(1)F(x,y,z)0\tag{1} F(x,y,z)0(1) 有下述关系&#xff1a; 曲面 SSS 上任一点的坐标都满足方程(1)(1)(1)不在曲…...

7 配置的封装

概述 IPC设备通常有三种配置信息:一是默认配置,存储了设备所有配置项的默认值,默认配置是只读的,不能修改;二是用户配置,存储了用户修改过的所有配置项;三是私有配置,存储了程序内部使用的一些配置项,比如:固件升级的URL、固件升级标志位等。恢复出厂设置的操作,实际…...

03_Docker 入门

03_Docker 入门 文章目录03_Docker 入门3.1 确保 Docker 已经就绪3.2 运行我们的第一个容器3.3 使用第一个容器3.4 容器命名3.5 重新启动已经停止的容器3.6 附着到容器上3.7 创建守护式容器3.8 容器内部都在干些什么3.9 Docker 日志驱动3.10 查看容器内的进程3.11 Docker 统计信…...

Python 为什么要 if __name__ == “__main__“:

各位读者&#xff0c;你们知道以下两个Python文件有什么区别吗&#xff1f; main1.py def main():output Helloprint(output)if __name__ "__main__":main()main2.py output Hello print(output)当我们直接运行 main1.py 与 main2.py 的时候&#xff0c;程序都…...

455. 分发饼干、376. 摆动序列、53. 最大子数组和

455.分发饼干 题目描述&#xff1a; 假设你是一位很棒的家长&#xff0c;想要给你的孩子们一些小饼干。但是&#xff0c;每个孩子最多只能给一块饼干。 对每个孩子 i&#xff0c;都有一个胃口值 g[i]&#xff0c;这是能让孩子们满足胃口的饼干的最小尺寸&#xff1b;并且每块…...

基于Springbot+微信小程序的购药平台的设计与实现

基于Springbot微信小程序的购药平台的设计与实现 ✌全网粉丝20W,csdn特邀作者、博客专家、CSDN新星计划导师、java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取项目下载方式&#x1f345; 一、…...

aws lambda rust的sdk和自定义运行时

rust的aws sdk 参考资料 https://docs.aws.amazon.com/sdk-for-rust/latest/dg/getting-started.htmlhttps://awslabs.github.io/aws-sdk-rust/https://github.com/awslabs/aws-sdk-rusthttps://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rust_dev_preview rus sd…...

[安装之3] 笔记本加装固态和内存条教程(超详细)

由于笔记本是几年前买的了&#xff0c;当时是4000&#xff0c;现在用起来感到卡顿&#xff0c;启动、运行速度特别慢&#xff0c;就决定换个固态硬盘&#xff0c;加个内存条&#xff0c;再给笔记本续命几年。先说一下加固态硬盘SSD的好处&#xff1a;1.启动快 2.读取延迟小 3.写…...

极客时间左耳听风-高效学习

左耳听风——高效学习篇 P95 | 高效学习&#xff1a;端正学习态度 本人真实⬇️⬇️⬇️⬇️ “ 大部分人都认为自己爱学习&#xff0c;但是&#xff1a; 他们都是只有意识没有行动&#xff0c;他们是动力不足的人。 他们都不知道自己该学什么&#xff0c;他们缺乏方向和目标。…...

MSR寄存器访问

1.介绍 MSR是CPU的一组64位寄存器&#xff0c;每个MSR都有它的地址值&#xff08;如下图所示&#xff09;&#xff0c;可以分别通过RDMSR 和WRMSR 两条指令进行读和写的操作。 如图中为8个P-state寄存器&#xff0c;地址分别为0xC001 0064 ~ 0xC001 006B&#xff0c;每个寄存…...

ArcGIS:模型构建器实现批量按掩膜提取影像

用研究区域的矢量数据来裁剪栅格数据集时&#xff0c;一般我们使用ArcGIS中的【按掩膜提取工具】。如果需要裁剪的栅格数据太多&#xff0c;处理起来非常的麻烦&#xff0c;虽然ArcGIS中有批处理的功能&#xff0c;但是还是需要手动选择输入输出数据。 如下图&#xff0c;鼠标…...

算法刷题打卡第94天: 找出给定方程的正整数解

找出给定方程的正整数解 难度&#xff1a;中等 给你一个函数 f(x, y) 和一个目标结果 z&#xff0c;函数公式未知&#xff0c;请你计算方程 f(x,y) z 所有可能的正整数 数对 x 和 y。满足条件的结果数对可以按任意顺序返回。 尽管函数的具体式子未知&#xff0c;但它是单调…...

浅析SAS协议(1):基本介绍

文章目录概述SAS协议发展历程SAS技术特性SAS设备拓扑SAS phySAS地址SAS设备类型SAS协议分层参考链接概述 SAS&#xff0c;全称Serial Attached SCSI&#xff0c;即串行连结SCSI&#xff0c;是一种采用了串行总线的高速互连技术。通过物理上使用串行总线连结&#xff0c;在链路…...

93.【Vue-细刷-02】

Vue-02(十六)、基本列表渲染 (v-for)1.使用v-for遍历数组2.使用v-for遍历对象3.使用v-for遍历字符串(十七)、列表过滤 (filter())1.⭐JS中Change属性的原生状态⭐2.使用watch监听实现3.const {xxx} this 在Vue的作用⭐⭐4.JS箭头函数参数的简写⭐5.使用computed进行计算实现(最…...

Allegro负片层不显示反盘的原因和解决办法

Allegro负片层不显示反盘的原因和解决办法 在用Allegro做PCB设计的时候,负片设计是较为常用的一种方式,有时会出现打开负片层却看不到反盘的情况,如下图 L2层是负片层 L2层仍然只能看到盘 如何才能看到反盘显示的效果,具体操作如下 首先确定L2层层叠里面设置的是负片...

ACM数论 裴蜀定理(贝祖定理)

一.内容定义 「裴蜀定理」&#xff0c;又称贝祖定理&#xff08;Bzouts lemma&#xff09;。是一个关于最大公约数的定理。其内容定义为&#xff1a;对于不全为零的任意整数 a 和 b&#xff0c;记二者的最大公约数为 g 即 gcd(a,b) g&#xff0c;则对于任意整数 x 和 y 都一定…...

基础篇—CSS Position(定位)解析

CSS Position(定位) position 属性指定了元素的定位类型。 position 属性的五个值: relativefixedabsolutesticky元素可以使用的顶部,底部,左侧和右侧属性定位。然而,这些属性无法工作,除非是先设定position属性。他们也有不同的工作方式,这取决于定位方法。 1、static…...

正则表达式与grep

基本正则表达式BRE集合 匹配字符匹配次数位置锚定 符号作用^尖角号&#xff0c;用于模式的最正常&#xff0c;如“^haha”&#xff0c;匹配以haha单词开头的行$美元符&#xff0c;用于模式的最右侧&#xff0c;如“haha$”&#xff0c;表示haha单词结尾的行^$组合符&#xff…...

开发必备的IDEA 插件!效率提升 50 倍!

日常开发中&#xff0c;面向百度编程的程序员&#xff0c;很多时候&#xff0c;你跟大佬级别的差距&#xff0c;可能不仅仅是知识面的差距&#xff0c;还有就是开发效率的差距。以下是我常用的几个IDEA插件&#xff0c;废话不多说&#xff0c;直接肝干货&#xff01; 1. Codot…...

aws eks 集群访问ecr仓库拉取镜像的认证逻辑

本文主要讨论三个问题 ecr帮助程序在docker上如何配置eks集群访问ecr仓库的逻辑kubelet授权ecr的源码分析 ecr帮助程序 在docker环境下&#xff0c;可以通过在$HOME/.docker/config.json中指定凭证管理程序 docker login aws同样提供了证书助手&#xff0c;避免手动执行ecr认…...

Linux Socket Buffer介绍

一. 前言 Linux内核网络子系统的实现之所以灵活高效&#xff0c;主要是在于管理网络数据包的缓冲器-socket buffer设计得高效合理。在Linux网络子系统中&#xff0c;socket buffer是一个关键的数据结构&#xff0c;它代表一个数据包在内核中处理的整个生命周期。 二. Socket Bu…...

ACL与NAT

ACL---访问控制列表&#xff0c;是一种策略控制工具 功能&#xff1a;1.定义感兴趣流量&#xff08;数据层面 &#xff09; 2.定义感兴趣路由&#xff08;控制层面&#xff09; ACL 条目表项组成&#xff1a; 编号规则&#xff1a;步数或者跳数默认值为5&#xff0c;…...

使用gdb来debug程序并查找Segmentation fault原因

GDB 调试前言GDB基础用法1.启动及退出调试2.设置参数3.执行程序4.流程控制5.设置断点6.输出信息7.查看栈帧8.info命令9.显示源码GDB调试coredump文件关注公众号【程序员DeRozan】&#xff0c;回复【1207】&#xff0c;免费获取计算机经典资料及现金红包 前言 在开发程序时&…...

vbs简单语法及简单案例

文章目录一、简单语法1、变量2、输入3、输出4、选择语句5、循环二、用记事本编译中文乱码问题三、制作一个简单vbs脚本表白一、简单语法 1、变量 语法&#xff1a; dim 变量名例&#xff1a; dim a,b a1 b2 msgbox ab运行&#xff1a; 2、输入 语法&#xff1a;InputBox(…...

学板绘课程学费一般多少钱

学板绘课程学费一般多少钱&#xff1f;培训机构的费用和师资、模式有关&#xff0c;价格贵不贵要结合相同类型的机构多多对比。因为好些平台做了很多的宣传广告&#xff0c;运营成本很高&#xff0c; 终羊毛出在羊身上&#xff0c;这样的机构知名度很高&#xff0c;但是性价比不…...

48.在ROS中实现local planner(1)- 实现一个可以用的模板

有了之前45.在ROS中实现global planner&#xff08;1&#xff09;- 实现一个可以用模板的global planner的经验, 现在再去创建一个local planner的包就容易多了 1. 创建包 创建 cd ~/pibot_ros/ros_ws/src # 这里可以使用自己的ros workspace catkin_create_pkg sample_loc…...

jenkins基础部署

一、jenkins是什么1.Jenkins的前身是Hudson&#xff0c;采用JAVA编写的持续集成开源工具。Hudson由Sun公司在2004年启动&#xff0c;第一个版本于2005年在java.net发布。2007年开始Hudson逐渐取代CruiseControl和其他的开源构建工具的江湖地位。在2008年的JavaOne大会上在开发者…...

Unity3D -知识点(1)

1.场景视图鼠标滚轮&#xff1a;场景放大缩小鼠标右键&#xff1a;场景左右平移场景编辑器中&#xff0c;能看到什么&#xff1f;网格&#xff0c;每一格大小为1unit&#xff0c;建模不同&#xff0c;规定不同&#xff0c;(对应屏幕上100个像素)世界坐标系y轴向上为正x轴向右为…...

【学习笔记】NOIP暴零赛3

博弈(game) 观察到博弈过程中胜负态不会发生改变&#xff0c;那么求出从每个棋子出发能走的最长链&#xff0c;然后背包即可。 复杂度O(nm)O(nm)O(nm)。 #include<bits/stdc.h> #define ll long long #define pb push_back using namespace std; const int mod9982443…...

网站建设开发ppt模板/百度百科词条入口

Python 初学者的经验总结 python须知 1.区分大小写&#xff08;sql语言不区分大小写&#xff09;&#xff0c;类第一个字母大写&#xff0c;函数方法第一个字母小写。 2.对空格很依赖&#xff08;其他编程语言依赖大括号&#xff09; 3.Errors出错不可怕&#xff0c;只是计…...

郑州网站建设服务商/电商数据分析

http://www.2cto.com/kf/201501/374051.html 线程对象属于一次性消耗品&#xff0c;一般线程执行完run方法之后&#xff0c;线程就正常结束了&#xff0c;线程结束之后就报废了&#xff0c;不能再次start&#xff0c;只能新建一个线程对象。但有时run方法是永远不会结束的。例如…...

棋牌app开发价格表/seo技术服务外包公司

战舰少女R经验怎么计算呢?新版经验计算要注意些什么呢?下面小编为大家带来战舰少女R新版经验计算攻略,一起看看吧.我们以7-5~8-3(非航空战点)为基准&#xff0c;消耗20%油20%弹&#xff0c;S胜720经验。天国的 E6A E6B&#xff0c;消耗10%弹&#xff0c;S胜396经验。8-2B&…...

邢台做网站哪个网络公司好/百度在线使用

sys.ps1、sys.ps2:字符串&#xff0c;指定解释器的首要和次要提示符。仅当解释器处于交互模式时&#xff0c;它们才有定义。这种情况下&#xff0c;它们的初值为 >>> 和 ... 。如果赋给其中某个变量的是非字符串对象&#xff0c;则每次解释器准备读取新的交互式命令时…...

怎么知道网站的域名/微信营销推广

一&#xff0c;Mllib的数据格式 1&#xff0c;本地向量 本地向量是存储在本地节点上的&#xff0c;其基本数据类型是Vector&#xff0c;其有两个子集&#xff0c;分别是密集的与稀疏的&#xff0c;我们一般使用Vectors工厂类来实现。如&#xff1a; Vectors.dese(1.0,2.0,3.…...

免费网站建设就去186一6159一6345/企业网络推广计划书

如何在php中使用Access_token获取微信基础接口凭证发布时间&#xff1a;2021-02-05 18:07:43来源&#xff1a;亿速云阅读&#xff1a;94作者&#xff1a;Leah本篇文章给大家分享的是有关如何在php中使用Access_token获取微信基础接口凭证&#xff0c;小编觉得挺实用的&#xff…...