线性代数(三) 线性方程组
前言
如何利用行列式,矩阵求解线性方程组。
线性方程组的相关概念

用矩阵方程表示
- 齐次线性方程组:Ax=0;
- 非齐次线性方程组:Ax=b.
可以理解 齐次线性方程组 是特殊的 非齐次线性方程组
如何判断线性方程组的解

- 其中R(A)表示矩阵A的秩
- B表示A的增广矩阵
- n表示末知数个数

增广矩阵

矩阵的秩



秩r<= 未知数的数量n
r=n时,称为满秩
如何求解矩阵A的秩
- 矩阵经过初等变化后秩不变
- r+1阶子式的行列式=0的特性
可以将矩阵转为化

矩阵的秩,就是矩阵初等变换后化成行阶梯形时的非零行的行数。

- 方程组的系数矩阵的秩与方程组增广矩阵的秩相等。方程组里的所有方程都是不冲突的,不会出现等式左边都是“x+y”,右边却一个是“1”,一个是“3”的情况,因为这样会得出1=3的错误等式,令方程组无解。
- 方程组的系数矩阵的秩等于未知数的个数。方程组里的方程,必须有n个是不能相互推出,这个n,便是未知数的个数。像前文举例的“x+y=2”和“2x+2y=4”,便只能属于是一个方程,因为后者可以通过前者乘以2得出。
- 当方程组的系数矩阵的秩与方程组增广矩阵的秩相等且均小于方程组中未知数个数n的时候,方程组有无穷多解。当所有的方程都不冲突,但存在一个或一个以上的方程是可以由其他方程变换过来的,这就相当于n个未知数,却没有n个方程,自然就是无穷多解了。
- 当方程组的系数矩阵的秩小于方程组增广矩阵的秩的时候,方程组无解。存在两个或多个方程有冲突,那别说了,直接无解就是了
增广矩阵求解

其计算过程还是通过消元法来解方程组。
克拉默法则
当矩阵A的行列式det(A)!=0时,可使用行列式的解方程- 克拉默法则求解
求多解

可见上述方程组的解,是一个集合,怎么表示这个集合?

基础解系
指在无穷多组解中,找到一组解,且满足:
- 这组解内的向量线性无关
- 方程组的任意一个解都可由这组向量线性表示
那么这组解(向量组),就称为基础解系
实际上这和极大线性无关组是一回事
再将上述基础解系a,带入齐次线性方程组 A x ⃗ = 0 ⃗ A\vec{x}=\vec{0} Ax=0
通解为
x ⃗ = k 1 ∗ a ⃗ \vec{x}=k_1*\vec{a} x=k1∗a
其中: k 1 k_1 k1取任意常数
通解就是线性方程组解的具体表达方式
向量组



如果R(A)=m,则表示有解。即得不出上述 y = − z y=-z y=−z y和z变量的相关性

主要参考
《如何理解矩阵的「秩」?》
《线性方程组在什么时候有唯一解/无穷个解/无解?》
《11.2 齐次线性方程组的基础解系和通解》
相关文章:
线性代数(三) 线性方程组
前言 如何利用行列式,矩阵求解线性方程组。 线性方程组的相关概念 用矩阵方程表示 齐次线性方程组:Ax0;非齐次线性方程组:Axb. 可以理解 齐次线性方程组 是特殊的 非齐次线性方程组 如何判断线性方程组的解 其中R(A)表示矩阵A的…...
Apoll 多项式规划求解
一、纵向规划 void QuarticPolynomialCurve1d::ComputeCoefficients(const float x0, const float dx0, const float ddx0, const float dx1,const float ddx1, const float p) {if (p < 0.0) {std::cout << "p should be greater than 0 at line 140." &…...
ssm亚盛汽车配件销售业绩管理统源码和论文PPT
ssm亚盛汽车配件销售业绩管理统源码和论文PPT007 开发工具:idea 数据库mysql5.7(mysql5.7最佳) 数据库链接工具:navcat,小海豚等 开发技术:java ssm tomcat8.5 研究的意义 汽车配件销售类企业近年来得到长足发展,在市场份额不断扩大同时…...
发布属于自己的 npm 包
1 创建文件夹,并创建 index.js 在文件中声明函数,使用module.exports 导出 2 npm 初始化工具包,package.json 填写包的信息(包的名字是唯一的) npm init 可在这里写包的名字,或者一路按回车,后…...
Redis主从复制和哨兵架构图,集成Spring Boot项目实战分享
目录 1. Redis 主从复制2. Redis 哨兵架构3. 集成spring boot项目案列 Redis 主从复制和哨兵架构是 Redis 集群的重要组成部分,用于提高 Redis 集群的可用性和性能。以下是 Redis 主从复制和哨兵架构的详细介绍,包括架构图和 Java 代码详解。 1. Redis …...
java中try-with-resources自动关闭io流
文章目录 java中try-with-resources自动关闭io流0 简要说明try-with-resources java中try-with-resources自动关闭io流 0 简要说明 在传统的输入输出流处理中,我们一般使用的结构如下所示,使用try - catch - finally结构捕获相关异常,最后不…...
Games101学习笔记 -光栅化
光栅化 经过MVP矩阵和视口变换后,我们就可以从相机的角度看到一个和屏幕大小一致的二维平面。 那么把这个看到的二维平面应用到我们的屏幕上的过程就是光栅化。在这儿我们需要补充一个概念-像素: 像素: 一个二位数组,数组中每个…...
Pytorch量化之Post Train Static Quantization(训练后静态量化)
使用Pytorch训练出的模型权重为fp32,部署时,为了加快速度,一般会将模型量化至int8。与fp32相比,int8模型的大小为原来的1/4, 速度为2~4倍。 Pytorch支持三种量化方式: 动态量化(Dynamic Quantization&…...
Sql奇技淫巧之EXIST实现分层过滤
在这样一个场景,我 left join 了很多张表,用这些表的不同列来过滤,看起来非常合理 但是出现的问题是 left join 其中一张或多张表出现了笛卡尔积,且无法消除 FUNCTION fun_get_xxx_helper(v_param_1 VARCHAR2,v_param_2 VARCHAR2…...
Linux下升级jdk1.8小版本
先输入java -version 查看是否安装了jdk java -version (1)如果没有返回值,直接安装新的jdk即可。 (2)如果有返回值,例如: java version "1.8.0_251" Java(TM) SE Runtime Enviro…...
【Mysql】数据库基础与基本操作
🌇个人主页:平凡的小苏 📚学习格言:命运给你一个低的起点,是想看你精彩的翻盘,而不是让你自甘堕落,脚下的路虽然难走,但我还能走,比起向阳而生,我更想尝试逆风…...
87 | Python人工智能篇 —— 机器学习算法 决策树
本教程将深入探讨决策树的基本原理,包括特征选择方法、树的构建过程以及剪枝技术,旨在帮助读者全面理解决策树算法的工作机制。同时,我们将使用 Python 和 scikit-learn 库演示如何轻松地实现和应用决策树,以及如何对结果进行可视化。无论您是初学者还是有一定机器学习经验…...
【计算机视觉】干货分享:Segmentation model PyTorch(快速搭建图像分割网络)
一、前言 如何快速搭建图像分割网络? 要手写把backbone ,手写decoder 吗? 介绍一个分割神器,分分钟搭建一个分割网络。 仓库的地址: https://github.com/qubvel/segmentation_models.pytorch该库的主要特点是&#…...
解析湖仓一体的支撑技术及实践路径
自2021年“湖仓一体”首次写入Gartner数据管理领域成熟度模型报告以来,随着企业数字化转型的不断深入,“湖仓一体”作为新型的技术受到了前所未有的关注,越来越多的企业视“湖仓一体” 为数字化转型的重要基础设施。 01 数据平台的发展历程…...
40.利用欧拉法求解微分方程组(matlab程序)
1.简述 求解微分方程的时候,如果不能将求出结果的表达式,则可以对利用数值积分对微分方程求解,获取数值解。欧拉方法是最简单的一种数值解法。前面介绍过MATLAB实例讲解欧拉法求解微分方程,今天实例讲解欧拉法求解一阶微分方程组。…...
OpenAI-Translator 实战总结
最近在极客时间学习《AI 大模型应用开发实战营》,自己一边跟着学一边开发了一个进阶版本的 OpenAI-Translator,在这里简单记录下开发过程和心得体会,供有兴趣的同学参考 功能概览 通过openai的chat API,实现一个pdf翻译器实现一个…...
【工业机器人】用于轨迹规划和执行器分析的机械手和移动机器人模型(MatlabSimulink)
💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...
开源在线文档服务OnlyOffice
开源在线文档服务OnlyOffice应用启动与示例运行 - 掘金 ONLYOFFICE API 文档 - Example - IDEA运行Java示例 | ONLYOFFICE中文网 NEXTCLOUDonlyoffice的搭建和使用_nextcloud onlyoffice_莫冲的博客-CSDN博客 OnlyOffice java 部署使用,文件流方式 预览文件 | 言曌博…...
汽车基本常识
目录 电源KL30KL15 零部件简称 电源 KL30 KL15 零部件简称 VCU:整车控制器 直接网络管理节点 CDU:充电系统控制器 MCU:电机控制器 TCU:变速箱控制器 ABS:防抱死系统 EPS:助力转向 T-Box:远程…...
百度资深PMO阚洁受邀为第十二届中国PMO大会演讲嘉宾
百度在线网络技术(北京)有限公司资深PMO阚洁女士受邀为由PMO评论主办的2023第十二届中国PMO大会演讲嘉宾,演讲议题:运筹于股掌之间,决胜于千里之外 —— 360斡旋项目干系人。大会将于8月12-13日在北京举办,…...
MPNet:旋转机械轻量化故障诊断模型详解python代码复现
目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...
从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路
进入2025年以来,尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断,但全球市场热度依然高涨,入局者持续增加。 以国内市场为例,天眼查专业版数据显示,截至5月底,我国现存在业、存续状态的机器人相关企…...
前端导出带有合并单元格的列表
// 导出async function exportExcel(fileName "共识调整.xlsx") {// 所有数据const exportData await getAllMainData();// 表头内容let fitstTitleList [];const secondTitleList [];allColumns.value.forEach(column > {if (!column.children) {fitstTitleL…...
vue3 字体颜色设置的多种方式
在Vue 3中设置字体颜色可以通过多种方式实现,这取决于你是想在组件内部直接设置,还是在CSS/SCSS/LESS等样式文件中定义。以下是几种常见的方法: 1. 内联样式 你可以直接在模板中使用style绑定来设置字体颜色。 <template><div :s…...
Spring Boot+Neo4j知识图谱实战:3步搭建智能关系网络!
一、引言 在数据驱动的背景下,知识图谱凭借其高效的信息组织能力,正逐步成为各行业应用的关键技术。本文聚焦 Spring Boot与Neo4j图数据库的技术结合,探讨知识图谱开发的实现细节,帮助读者掌握该技术栈在实际项目中的落地方法。 …...
DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”
目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...
C++课设:简易日历程序(支持传统节假日 + 二十四节气 + 个人纪念日管理)
名人说:路漫漫其修远兮,吾将上下而求索。—— 屈原《离骚》 创作者:Code_流苏(CSDN)(一个喜欢古诗词和编程的Coder😊) 专栏介绍:《编程项目实战》 目录 一、为什么要开发一个日历程序?1. 深入理解时间算法2. 练习面向对象设计3. 学习数据结构应用二、核心算法深度解析…...
【网络安全】开源系统getshell漏洞挖掘
审计过程: 在入口文件admin/index.php中: 用户可以通过m,c,a等参数控制加载的文件和方法,在app/system/entrance.php中存在重点代码: 当M_TYPE system并且M_MODULE include时,会设置常量PATH_OWN_FILE为PATH_APP.M_T…...
前端中slice和splic的区别
1. slice slice 用于从数组中提取一部分元素,返回一个新的数组。 特点: 不修改原数组:slice 不会改变原数组,而是返回一个新的数组。提取数组的部分:slice 会根据指定的开始索引和结束索引提取数组的一部分。不包含…...
基于鸿蒙(HarmonyOS5)的打车小程序
1. 开发环境准备 安装DevEco Studio (鸿蒙官方IDE)配置HarmonyOS SDK申请开发者账号和必要的API密钥 2. 项目结构设计 ├── entry │ ├── src │ │ ├── main │ │ │ ├── ets │ │ │ │ ├── pages │ │ │ │ │ ├── H…...
