当前位置: 首页 > news >正文

桥接模式-java实现

桥接模式

桥接模式的本质,是解决一个基类,存在多个扩展维度的的问题。

比如一个图形基类,从颜色方面扩展和从形状上扩展,我们都需要这两个维度进行扩展,这就意味着,我们需要创建一个图形子类的同时,还要以这个颜色维度进行区分,假如有两个颜色,那么创建一个图形基类,就需要构建两个不同颜色的子类,这样代码非常的冗余且不好维护,随着扩展的增多,子类会越来越多。

image.png

 这时候桥接模式就派上用场了,我们只保留一个维度的扩展作为主维度,并保存着另一个维度的引用,这个引用就像一条桥梁一样,因此称之为桥接模式,另一个维度的抽象可以随意扩展,不会造成主维度的代码有任何的冗余和影响。

image.png

 

适用环境

一个类存在两个(或多个)独立变化的维度,且这两个(多个)维度都需要进行扩展。

如果一个系统需要在构件的抽象化角色和具体化角色之间增加更多的灵活性,避免在两个层次之间建立静态的继承联系,通过桥接模式可以使它们在抽象层建立一个关联关系。

对于那些不希望使用继承或因为多层次继承导致系统类的个数急剧增加的系统,桥接模式尤为适用。

 uml图

 

其中包含如下角色:

Abstraction(抽象类):用于定义抽象类的接口,它一般是抽象类而不是接口,其中定义了一个 Implementor(实现类接口)类型的对象并可以维护该对象,它与 Implementor 之间具有关联关系。

RefinedAbstraction(提炼抽象类):可以理解为,扩展的主维度,扩充由 Abstraction 定义的接口,通常情况下它不再是抽象类而是具体类,它实现了在 Abstraction 中声明的抽象业务方法,在 RefinedAbstraction 中可以调用在 Implementor 中定义的业务方法。

Implementor(实现类接口):定义实现类的接口,这个接口不一定要与 Abstraction 的接口完全一致,事实上这两个接口可以完全不同,一般而言,Implementor 接口仅提供基本操作,而 Abstraction 定义的接口可能会做更多更复杂的操作。Implementor 接口对这些基本操作进行了声明,而具体实现交给其子类。通过关联关系,在 Abstraction 中不仅拥有自己的方法,还可以调用到 Implementor 中定义的方法,使用关联关系来替代继承关系。

ConcreteImplementor(具体实现类):具体实现 Implementor 接口,在不同的 ConcreteImplementor 中提供基本操作的不同实现,在程序运行时,ConcreteImplementor 对象将替换其父类对象,提供给抽象类具体的业务操作方法。

 

 

实例

我们就以上述形状与颜色这两个独立的维度来实现给不同的形状刷上不同颜色的例子来讲解:
ColorAPI :用于画各种颜色的接口

我们就以上述形状与颜色这两个独立的维度来实现给不同的形状刷上不同颜色的例子来讲解:

实现化角色


ColorAPI :用于画各种颜色的接口

public interface ColorApi {//抽象的上色方法void paint();
}

具体实现化角色

ColorApiBlue:画上蓝色的实现类

public class ColorApiBlue implements ColorApi{@Overridepublic void paint() {System.out.println("画上蓝色...");}
}

ColorApiRed:画上红色的实现类

public class ColorApiRed implements ColorApi{@Overridepublic void paint() {System.out.println("画上红色...");}
}

抽象化角色

下面来规划基础图形抽象类Shape

public abstract class Shape {//保存对颜色维度实现化角色的应用protected ColorApi colorApi;//进行颜色渲染操作,这里只进行一个规范public abstract void paint();//注入颜色实现化角色public void setColorApi(ColorApi colorApi) {this.colorApi = colorApi;}
}
  • 修正抽象化角色

往形状方面扩展的子类

Circle

public class Circle extends Shape{@Overridepublic void paint() {System.out.println("我是圆形");super.colorApi.paint();}
}

Square

public class Square extends Shape{@Overridepublic void paint() {//开始进行修正扩展//调用保存的颜色维度实现化角色的染色方法super.colorApi.paint();}
}

客户端代码

public class Client {public static void main(String[] args) {//创建圆形Shape circle=new Circle();//创建红色颜料的实现化角色ColorApi red=new ColorApiRed();//将颜料交给圆形circle.setColorApi(red);//上色circle.paint();}}

输出 

 现在再来看“将抽象部分与他的实现部分分离”这句话,实际上就是在说实现系统可能有多个角度分类(例如例子中的形状与颜色),每一种分类都有可能变化,那么把这种多角度分离出来让他们独立变化,减少他们之间的耦合。

相关文章:

桥接模式-java实现

桥接模式 桥接模式的本质,是解决一个基类,存在多个扩展维度的的问题。 比如一个图形基类,从颜色方面扩展和从形状上扩展,我们都需要这两个维度进行扩展,这就意味着,我们需要创建一个图形子类的同时&#x…...

Linux systemd管理常用的几个小案例

systemd是目前Linux系统上主要的系统守护进程管理工具,配置文件要以.service结尾且放到 /usr/lib/systemd/system/目录下面 1、systemd管理ElasticSearch [Unit] DescriptionElasticsearch Service[Service] Typeforking Userelastic Groupelastic ExecStart/home…...

38、IPv6过渡技术

本节内容作为IPv6相关知识的最后一节内容,同时也作为我们本专栏网络层知识的最后一节内容,主要介绍从IPv4地址到IPv6地址过渡的相关技术。在这里我们只学习各类考试中常考的三种技术。 IPv4向IPv6的过渡 在前面的知识中,我们学习到了两种IP地…...

HMMER-序列分析软件介绍

HMMER是一个软件包,它提供了制作蛋白质和DNA序列域家族概率模型的工具,称为轮廓隐马尔可夫模型、轮廓HMM或仅轮廓,并使用这些轮廓来注释新序列、搜索序列数据库以寻找其他同源物,以及进行深度多重序列比对。HMMER是已知蛋白质和DN…...

【项目学习1】如何将java对象转化为XML字符串

如何将java对象转化为XML字符串 将java对象转化为XML字符串,可以使用Java的XML操作库JAXB,具体操作步骤如下: 主要分为以下几步: 1、创建JAXBContext对象,用于映射Java类和XML。 JAXBContext jaxbContext JAXBConte…...

nginx负载均衡

负载均衡:反向代理来实现 正向代理的配置方法。 1、NGINX的七层代理和四层代理: 七层是最常用的反向代理方式,只能配置在nginx配置文件的http模块。而且配置方法名称:upstream 模块,不能写在server中,也…...

【毕业项目】自主设计HTTP

博客介绍:运用之前学过的各种知识 自己独立做出一个HTTP服务器 自主设计WEB服务器 背景目标描述技术特点项目定位开发环境WWW介绍 网络协议栈介绍网络协议栈整体网络协议栈细节与http相关的重要协议 HTTP背景知识补充特点uri & url & urn网址url HTTP请求和…...

关于安卓jar包修改并且重新发布

背景: 对于某些jar包,其内部是存在bug的,解决的方法无外乎就有以下几种方法: (1)通过反射,修改其赋值逻辑 (2)通过继承,重写其方法 (3&#xff0…...

Java课题笔记~ AspectJ 对 AOP 的实现(掌握)

AspectJ 对 AOP 的实现(掌握) 对于 AOP 这种编程思想,很多框架都进行了实现。Spring 就是其中之一,可以完成面向切面编程。然而,AspectJ 也实现了 AOP 的功能,且其实现方式更为简捷,使用更为方便,而且还支…...

npm 报错 cb() never called!

不知道有没有跟我一样的情况,在使用npm i的时候一直报错:cb() never called! 换了很多个node版本,还是不行,无法解决这个问题 百度也只是让降低node版本请缓存,gpt给出的解决方案也是同样的 但是缓存清过很多次了&a…...

finally有什么作用以及常用场景

在Java中,finally是一个关键字,用于定义一个代码块,该代码块中的代码无论是否发生异常都会被执行。finally块通常用于确保在程序执行过程中资源的释放和清理。 使用场景: 1. 资源释放:finally块经常用于释放打开的资…...

Python web实战之Django URL路由详解

概要 技术栈:Python、Django、Web开发、URL路由 Django是一种流行的Web应用程序框架,它采用了与其他主流框架类似的URL路由机制。URL路由是指将传入的URL请求映射到相应的视图函数或处理程序的过程。 什么是URL路由? URL路由是Web开发中非常…...

10-数据结构-队列(C语言)

队列 目录 目录 队列 一、队列基础知识 二、队列的基本操作 1.顺序存储 ​编辑 (1)顺序存储 (2)初始化及队空队满 (3)入队 (4)出队 (5)打印队列 &…...

面试之快速学习C++11 - 右值 移动构造 std::move

C11右值引用 字面意思,以引用传递的方式使用c右值左值和右值,左值是lvalue loactor value 存储在内存中,有明确存储地址的数据, 右值rvalue read value , 指的是那些可以提供数据值的数据(不一定可以寻址,…...

vue实现5*5宫格当鼠标滑过选中的正方形背景颜色统一变色

vue实现5*5宫格当鼠标滑过选中的正方形背景颜色统一变色 1、实现的效果 2、完整代码展示 <template><div id"app" mouseleave"handleMouseLeave({row: 0, col: 0 })"><div v-for"rowItem in squareNumber" :key"rowItem…...

2023-08-09 LeetCode每日一题(整数的各位积和之差)

2023-08-09每日一题 一、题目编号 1281. 整数的各位积和之差二、题目链接 点击跳转到题目位置 三、题目描述 给你一个整数 n&#xff0c;请你帮忙计算并返回该整数「各位数字之积」与「各位数字之和」的差。 示例1&#xff1a; 示例2&#xff1a; 提示&#xff1a; 1 …...

EditPlus连接Linux系统远程操作文件

EditPlus是一套功能强大的文本编辑器&#xff01; 1.File ->FTP->FTP Settings&#xff1b; 2.Add->Description->FTP server->Username->Password->Subdirectory->Advanced Options 注意&#xff1a;这里的Subdirectory设置的是以后上传文件的默认…...

JVM 垃圾回收

垃圾回收算法 标记-清除算法&#xff08;Mark and Sweep&#xff09; 标记-清除算法分为两个阶段。在标记阶段&#xff0c;垃圾收集器会标记所有活动对象&#xff1b;在清除阶段&#xff0c;垃圾收集器会清除所有未标记的对象。标记-清除算法存在的问题是会产生内存碎片&#…...

编程中的宝藏:二分查找

二分查找 假设你需要在电话簿中找到一个以字母 “K” 开头的名字&#xff08;虽然现在谁还在用电话簿呢&#xff01;&#xff09;。你可以从头开始翻页&#xff0c;直到进入以 “K” 打头的部分。然而&#xff0c;更明智的方法是从中间开始&#xff0c;因为你知道以 “K” 打头…...

计算机网络 数据链路层

...

定时器任务——若依源码分析

分析util包下面的工具类schedule utils&#xff1a; ScheduleUtils 是若依中用于与 Quartz 框架交互的工具类&#xff0c;封装了定时任务的 创建、更新、暂停、删除等核心逻辑。 createScheduleJob createScheduleJob 用于将任务注册到 Quartz&#xff0c;先构建任务的 JobD…...

HBuilderX安装(uni-app和小程序开发)

下载HBuilderX 访问官方网站&#xff1a;https://www.dcloud.io/hbuilderx.html 根据您的操作系统选择合适版本&#xff1a; Windows版&#xff08;推荐下载标准版&#xff09; Windows系统安装步骤 运行安装程序&#xff1a; 双击下载的.exe安装文件 如果出现安全提示&…...

Java多线程实现之Thread类深度解析

Java多线程实现之Thread类深度解析 一、多线程基础概念1.1 什么是线程1.2 多线程的优势1.3 Java多线程模型 二、Thread类的基本结构与构造函数2.1 Thread类的继承关系2.2 构造函数 三、创建和启动线程3.1 继承Thread类创建线程3.2 实现Runnable接口创建线程 四、Thread类的核心…...

大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计

随着大语言模型&#xff08;LLM&#xff09;参数规模的增长&#xff0c;推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长&#xff0c;而KV缓存的内存消耗可能高达数十GB&#xff08;例如Llama2-7B处理100K token时需50GB内存&a…...

HarmonyOS运动开发:如何用mpchart绘制运动配速图表

##鸿蒙核心技术##运动开发##Sensor Service Kit&#xff08;传感器服务&#xff09;# 前言 在运动类应用中&#xff0c;运动数据的可视化是提升用户体验的重要环节。通过直观的图表展示运动过程中的关键数据&#xff0c;如配速、距离、卡路里消耗等&#xff0c;用户可以更清晰…...

iOS性能调优实战:借助克魔(KeyMob)与常用工具深度洞察App瓶颈

在日常iOS开发过程中&#xff0c;性能问题往往是最令人头疼的一类Bug。尤其是在App上线前的压测阶段或是处理用户反馈的高发期&#xff0c;开发者往往需要面对卡顿、崩溃、能耗异常、日志混乱等一系列问题。这些问题表面上看似偶发&#xff0c;但背后往往隐藏着系统资源调度不当…...

归并排序:分治思想的高效排序

目录 基本原理 流程图解 实现方法 递归实现 非递归实现 演示过程 时间复杂度 基本原理 归并排序(Merge Sort)是一种基于分治思想的排序算法&#xff0c;由约翰冯诺伊曼在1945年提出。其核心思想包括&#xff1a; 分割(Divide)&#xff1a;将待排序数组递归地分成两个子…...

【版本控制】GitHub Desktop 入门教程与开源协作全流程解析

目录 0 引言1 GitHub Desktop 入门教程1.1 安装与基础配置1.2 核心功能使用指南仓库管理日常开发流程分支管理 2 GitHub 开源协作流程详解2.1 Fork & Pull Request 模型2.2 完整协作流程步骤步骤 1: Fork&#xff08;创建个人副本&#xff09;步骤 2: Clone&#xff08;克隆…...

ubuntu中安装conda的后遗症

缘由: 在编译rk3588的sdk时&#xff0c;遇到编译buildroot失败&#xff0c;提示如下&#xff1a; 提示缺失expect&#xff0c;但是实测相关工具是在的&#xff0c;如下显示&#xff1a; 然后查找借助各个ai工具&#xff0c;重新安装相关的工具&#xff0c;依然无解。 解决&am…...

深入解析 ReentrantLock:原理、公平锁与非公平锁的较量

ReentrantLock 是 Java 中 java.util.concurrent.locks 包下的一个重要类,用于实现线程同步,支持可重入性,并且可以选择公平锁或非公平锁的实现方式。下面将详细介绍 ReentrantLock 的实现原理以及公平锁和非公平锁的区别。 ReentrantLock 实现原理 基本架构 ReentrantLo…...