ccc-pytorch-回归问题(1)
文章目录
- 1.简单回归实战:
- 2.手写数据识别
1.简单回归实战:
用 线性回归拟合二维平面中的100个点

公式:y=wx+by=wx+by=wx+b
损失函数:∑(yreally−y)2\sum(y_{really}-y)^2∑(yreally−y)2
迭代方法:梯度下降法,其中www,bbb更新公式如下:
wN+1=wN−η∗∂loss∂wbN+1=bN−η∗∂loss∂bw_{N+1}=w_N-\eta*\frac{\partial loss}{\partial w}\\ b_{N+1}=b_{N}-\eta*\frac{\partial loss}{\partial b}wN+1=wN−η∗∂w∂lossbN+1=bN−η∗∂b∂loss
其中η\etaη表示学习率,∂\partial∂表示微分
∂loss∂w=2(wx+b−y)x/n∂loss∂b=2(wx+b−y)/n\frac{\partial loss}{\partial w}=2(wx+b-y)x/n\\ \frac{\partial loss}{\partial b}=2(wx+b-y)/n ∂w∂loss=2(wx+b−y)x/n∂b∂loss=2(wx+b−y)/n
项目文件:
计算损失函数:
def compute_loss(b,w,points):total = 0for i in range(0,len(points)):x = points[i,0]y = points[i,1]total += (y-(w*x+b)) ** 2return total / float(len(points))
梯度下降迭代更新:
def gradient(b,w,points,leanrningRate):b_gradient = 0w_gradient = 0N = float(len(points))for i in range(0,len(points)):x = points[i,0]y = points[i,1]b_gradient += (2/N) * (((w * x)+b)-y)w_gradient += (2/N) * (((w * x)+b)-y) * xnew_b = b - (leanrningRate * b_gradient)new_w = w - (leanrningRate * w_gradient)return [new_b , new_w]def graient_descent_runner(points, b, w, learning_rate, num_iterations):new_b = bnew_w = wfor i in range(num_iterations):new_b, new_w = gradient(new_b, new_w, np.array(points), learning_rate)return [new_b, new_w]
主函数运行以及绘图结果:
def run():points = np.genfromtxt("data.csv",delimiter=",")learning_rate = 0.0001initial_b = 0initial_w = 0num_iteractions = 1000print("Starting gradient descent at b = {0}, w = {1}, error = {2}".format(initial_b,initial_w,compute_loss(initial_b,initial_w,points)))print("Runing...")[b, w] = graient_descent_runner(points,initial_b,initial_w,learning_rate,num_iteractions)print("After {0} iterations b = {1}, w = {2}, error = {3}".format(num_iteractions,b,w,compute_loss(b,w,points)))x = np.linspace(20, 80, 5)y = w * x + bpyplot.plot(x, y)pyplot.scatter(points[:, 0], points[:, 1])pyplot.show()if __name__ == '__main__':run()


2.手写数据识别
工具函数库:
import torch
from matplotlib import pyplot as pltdef plot_curve(data):fig = plt.figure()plt.plot(range(len(data)), data, color='blue')plt.legend(['value'], loc='upper right')plt.xlabel('step')plt.ylabel('value')plt.show()def plot_image(img, label, name):fig = plt.figure()for i in range(6):plt.subplot(2, 3, i + 1)plt.tight_layout()plt.imshow(img[i][0]*0.3081+0.1307, cmap='gray', interpolation='none')plt.title("{}: {}".format(name, label[i].item()))plt.xticks([])plt.yticks([])plt.show()def one_hot(label, depth=10):out = torch.zeros(label.size(0), depth)idx = torch.LongTensor(label).view(-1, 1)out.scatter_(dim=1, index=idx, value=1)return out
第一步:导入库和图像数据
import torch
from torch import nn #构建神经网络
from torch.nn import functional as F
from torch import optim #最优化工具
import torchvision #视觉工具
from utils import plot_image, plot_curve, one_hotbatch_size = 512
train_loader = torch.utils.data.DataLoader(torchvision.datasets.MNIST('mnist_data', train=True, download=True,transform=torchvision.transforms.Compose([torchvision.transforms.ToTensor(),torchvision.transforms.Normalize((0.1307,), (0.3081,))])),batch_size=batch_size, shuffle=True)test_loader = torch.utils.data.DataLoader(torchvision.datasets.MNIST('mnist_data/', train=False, download=True,transform=torchvision.transforms.Compose([torchvision.transforms.ToTensor(),torchvision.transforms.Normalize((0.1307,), (0.3081,))])),batch_size=batch_size, shuffle=False)x, y = next(iter(train_loader))
print(x.shape, y.shape, x.min(), y.min())
plot_image(x, y, 'image sample')

第二步:新建一个三层的非线性的网层
class Net(nn.Module):def __init__(self):super(Net, self).__init__()#第一层(28*28是图片,256根据经验随机决定)self.fc1 = nn.Linear(28 * 28, 256)self.fc2 = nn.Linear(256, 64)#第三层(十分类输出一定是10)self.fc3 = nn.Linear(64, 10)def forward(self, x):# x: [b, 1, 28, 28]# h1 = relu(xw1+b1) h2 = relu(h1w2+b2) h3 = h2w3+b3x = F.relu(self.fc1(x))x = F.relu(self.fc2(x))x = self.fc3(x)return x
第三步:train训练
net = Net()
# [w1, b1, w2, b2, w3, b3]
optimizer = optim.SGD(net.parameters(), lr=0.01, momentum=0.9)
train_loss = []for epoch in range(3):for batch_idx, (x, y) in enumerate(train_loader):# x: [b, 1, 28, 28], y: [512]# [b, 1, 28, 28] => [b, 784],将整个图片看做特征向量x = x.view(x.size(0), 28*28)# => [b, 10]out = net(x)# [b, 10]y_onehot = one_hot(y)# loss = mse(out, y_onehot)loss = F.mse_loss(out, y_onehot)optimizer.zero_grad()loss.backward()#梯度下降# w' = w - lr*gradoptimizer.step()train_loss.append(loss.item())if batch_idx % 10==0:print(epoch, batch_idx, loss.item())plot_curve(train_loss)

第四步:准确度测试
total_correct = 0
for x,y in test_loader:x = x.view(x.size(0), 28*28)out = net(x)# out: [b, 10] => pred: [b]pred = out.argmax(dim=1)correct = pred.eq(y).sum().float().item()total_correct += correcttotal_num = len(test_loader.dataset)
acc = total_correct / total_num
print('test acc:', acc)x, y = next(iter(test_loader))
out = net(x.view(x.size(0), 28*28))
pred = out.argmax(dim=1)
plot_image(x, pred, 'test')


无注释代码:
import torch
from torch import nn
from torch.nn import functional as F
from torch import optim
import torchvision
from utils import plot_image, plot_curve, one_hotbatch_size = 512
train_loader = torch.utils.data.DataLoader(torchvision.datasets.MNIST('mnist_data', train=True, download=True,transform=torchvision.transforms.Compose([torchvision.transforms.ToTensor(),torchvision.transforms.Normalize((0.1307,), (0.3081,))])),batch_size=batch_size, shuffle=True)test_loader = torch.utils.data.DataLoader(torchvision.datasets.MNIST('mnist_data/', train=False, download=True,transform=torchvision.transforms.Compose([torchvision.transforms.ToTensor(),torchvision.transforms.Normalize((0.1307,), (0.3081,))])),batch_size=batch_size, shuffle=False)x, y = next(iter(train_loader))
print(x.shape, y.shape, x.min(), y.min())
plot_image(x, y, 'image sample')class Net(nn.Module):def __init__(self):super(Net, self).__init__()self.fc1 = nn.Linear(28 * 28, 256)self.fc2 = nn.Linear(256, 64)self.fc3 = nn.Linear(64, 10)def forward(self, x):x = F.relu(self.fc1(x))x = F.relu(self.fc2(x))x = self.fc3(x)return xnet = Net()
# [w1, b1, w2, b2, w3, b3]
optimizer = optim.SGD(net.parameters(), lr=0.01, momentum=0.9)
train_loss = []for epoch in range(3):for batch_idx, (x, y) in enumerate(train_loader):x = x.view(x.size(0), 28*28)out = net(x)y_onehot = one_hot(y)loss = F.mse_loss(out, y_onehot)optimizer.zero_grad()loss.backward()optimizer.step()train_loss.append(loss.item())if batch_idx % 10==0:print(epoch, batch_idx, loss.item())plot_curve(train_loss)total_correct = 0
for x,y in test_loader:x = x.view(x.size(0), 28*28)out = net(x)pred = out.argmax(dim=1)correct = pred.eq(y).sum().float().item()total_correct += correcttotal_num = len(test_loader.dataset)
acc = total_correct / total_num
print('test acc:', acc)x, y = next(iter(test_loader))
out = net(x.view(x.size(0), 28*28))
pred = out.argmax(dim=1)
plot_image(x, pred, 'test')
相关文章:
ccc-pytorch-回归问题(1)
文章目录1.简单回归实战:2.手写数据识别1.简单回归实战: 用 线性回归拟合二维平面中的100个点 公式:ywxbywxbywxb 损失函数:∑(yreally−y)2\sum(y_{really}-y)^2∑(yreally−y)2 迭代方法:梯度下降法,…...
【JAVA八股文】框架相关
框架相关1. Spring refresh 流程2. Spring bean 生命周期3. Spring bean 循环依赖解决 set 循环依赖的原理4. Spring 事务失效5. Spring MVC 执行流程6. Spring 注解7. SpringBoot 自动配置原理8. Spring 中的设计模式1. Spring refresh 流程 Spring refresh 概述 refresh 是…...
二叉树的相关列题!!
对于二叉树,很难,很难!笔者也是感觉很难!虽然能听懂课程,但是,对于大部分的练习题并不能做出来!所以感觉很尴尬!!因此,笔者经过先前的那篇博客,已…...
Java设计模式 - 原型模式
简介 原型模式(Prototype Pattern)是用于创建重复的对象,同时又能保证性能。这种类型的设计模式属于创建型模式,它提供了一种创建对象的最佳方式。 这种模式是实现了一个原型接口,该接口用于创建当前对象的克隆。当直…...
深度学习中的 “Hello World“
Here’s an interesting fact—Each month, there are 186.000 Google searches for the keyword “deep learning.” 大家好✨,这里是bio🦖。每月有超18万的人使用谷歌搜索深度学习这一关键词,是什么让人们对深度学习如此感兴趣?接下来请跟随我来揭开深度学习的神秘面纱。…...
购买WMS系统前,有搞清楚与ERP仓库模块的区别吗
经常有朋友在后台询问我们关于WMS系统的问题,他们自己也有ERP系统,但是总觉得好像还差了点什么,不知道是什么。今天,我想通过本文,来向您简要地阐述ERP与WMS系统在仓储管理上的不同之处。 ERP仓库是以财务为导向的&…...
一文吃透 Spring 中的IOC和DI
✅作者简介:2022年博客新星 第八。热爱国学的Java后端开发者,修心和技术同步精进。 🍎个人主页:Java Fans的博客 🍊个人信条:不迁怒,不贰过。小知识,大智慧。 💞当前专栏…...
分布式任务处理:XXL-JOB分布式任务调度框架
文章目录1.业务场景与任务调度2.任务调度的基本实现2.1 多线程方式实现2.2 Timer方式实现2.3 ScheduledExecutor方式实现2.4 第三方Quartz方式实现3.分布式任务调度4.XXL-JOB介绍5.搭建XXL-JOB —— 调度中心5.1 下载与查看XXL-JOB5.2 创建数据库表5.3 修改默认的配置信息5.4 启…...
【源码解析】Ribbon和Feign实现不同服务不同的配置
Ribbon服务实现不同服务,不同配置是通过RibbonClient和RibbonClients两个注解来实现的。RibbonClient注册的某个Client配置类。RibbonClients注册的全局默认配置类。 Feign实现不同服务,不同配置,是根据FeignClient来获取自定义的配置。 示…...
【webpack5】一些常见优化配置及原理介绍(二)
这里写目录标题介绍sourcemap定位报错热模块替换(或热替换,HMR)oneOf精准解析指定或排除编译开启缓存多进程打包移除未引用代码配置babel,减小代码体积代码分割(Code Split)介绍预获取/预加载(prefetch/pre…...
力扣sql简单篇练习(十九)
力扣sql简单篇练习(十九) 1 查询结果的质量和占比 1.1 题目内容 1.1.1 基本题目信息 1.1.2 示例输入输出 1.2 示例sql语句 # 用count是不会统计为null的数据的 SELECT query_name,ROUND(AVG(rating/position),2) quality,ROUND(count(IF(rating<3,rating,null))/count(r…...
线段树c++
前言 在谈论到种种算法知识与数据结构的时候,线段树无疑总是与“简单”和“平常”联系起来的。而这些特征意味着,线段树作为一种常用的数据结构,有常用性,基础性和易用性等诸多特点。因此,今天我来讲一讲关于线段树的话题。 定义 首先,线段树是一棵“树”,而且是一棵…...
HTML+CSS+JavaScript学习笔记~ 从入门到精通!
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录前言一、HTML1. 什么是HTML?一个完整的页面:<!DOCTYPE> 声明中文编码2.HTML基础①标签头部元素标题段落注释水平线文本格式化②属性3.H…...
LeetCode 430. 扁平化多级双向链表
原题链接 难度:middle\color{orange}{middle}middle 题目描述 你会得到一个双链表,其中包含的节点有一个下一个指针、一个前一个指针和一个额外的 子指针 。这个子指针可能指向一个单独的双向链表,也包含这些特殊的节点。这些子列表可以有一…...
2.5|iot|第1章嵌入式系统概论|操作系统概述|嵌入式操作系统
目录 第1章: 嵌入式系统概论 1.嵌入式系统发展史 2.嵌入式系统定义* 3.嵌入式系统特点* 4.嵌入式处理器的特点 5.嵌入式处理分类 6.嵌入式系统的应用领域及嵌入式系统的发展趋势 第8章:Linux内核配置 1.内核概述 2.内核代码结构 第1章…...
一文教会你使用ChatGPT画图
引言 当今,ChatGPT在各行各业都有着广泛的应用,其自然语言处理技术也日益成熟。ChatGPT是一种被广泛使用的技术,除了能够生成文本,ChatGPT还可以用于绘图,这为绘图技术的学习和应用带来了新的可能性。本文将介绍如何利用ChatGPT轻松绘制各种形状,为对绘图技术感兴趣的读…...
Java资料分享
随着Java开发的薪资越来越高,越来越多人开始学习 Java 。在众多编程语言中,Java学习难度还是偏高的,逻辑性也比较强,但是为什么还有那么多人要学Java呢?Java语言是目前流行的互联网等企业的开发语言,是市面…...
yum/vim工具的使用
yum 我们生活在互联网发达的时代,手机电脑也成为了我们生活的必须品,在你的脑海中是否有着这样的记忆碎片,在一个明媚的早上你下定决心准备发奋学习,“卸载”了你手机上的所有娱乐软件,一心向学!可是到了下…...
内网渗透(三十九)之横向移动篇-pass the ticket 票据传递攻击(PTT)横向攻击
系列文章第一章节之基础知识篇 内网渗透(一)之基础知识-内网渗透介绍和概述 内网渗透(二)之基础知识-工作组介绍 内网渗透(三)之基础知识-域环境的介绍和优点 内网渗透(四)之基础知识-搭建域环境 内网渗透(五)之基础知识-Active Directory活动目录介绍和使用 内网渗透(六)之基…...
Unity性能优化之纹理格式终极篇
知识早班车:1、当n大于1时,2的n次幂一定能被4整除;证明:2^n 2^2*2^(n-1) 4*2^(n-1)2、4的倍数不一定都是2的次幂;证明:4*3 12;12不是2的次幂3、Pixel(像素)是组成图片…...
后进先出(LIFO)详解
LIFO 是 Last In, First Out 的缩写,中文译为后进先出。这是一种数据结构的工作原则,类似于一摞盘子或一叠书本: 最后放进去的元素最先出来 -想象往筒状容器里放盘子: (1)你放进的最后一个盘子(…...
(十)学生端搭建
本次旨在将之前的已完成的部分功能进行拼装到学生端,同时完善学生端的构建。本次工作主要包括: 1.学生端整体界面布局 2.模拟考场与部分个人画像流程的串联 3.整体学生端逻辑 一、学生端 在主界面可以选择自己的用户角色 选择学生则进入学生登录界面…...
在鸿蒙HarmonyOS 5中实现抖音风格的点赞功能
下面我将详细介绍如何使用HarmonyOS SDK在HarmonyOS 5中实现类似抖音的点赞功能,包括动画效果、数据同步和交互优化。 1. 基础点赞功能实现 1.1 创建数据模型 // VideoModel.ets export class VideoModel {id: string "";title: string ""…...
服务器硬防的应用场景都有哪些?
服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式,避免服务器受到各种恶意攻击和网络威胁,那么,服务器硬防通常都会应用在哪些场景当中呢? 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...
测试markdown--肇兴
day1: 1、去程:7:04 --11:32高铁 高铁右转上售票大厅2楼,穿过候车厅下一楼,上大巴车 ¥10/人 **2、到达:**12点多到达寨子,买门票,美团/抖音:¥78人 3、中饭&a…...
linux 错误码总结
1,错误码的概念与作用 在Linux系统中,错误码是系统调用或库函数在执行失败时返回的特定数值,用于指示具体的错误类型。这些错误码通过全局变量errno来存储和传递,errno由操作系统维护,保存最近一次发生的错误信息。值得注意的是,errno的值在每次系统调用或函数调用失败时…...
【python异步多线程】异步多线程爬虫代码示例
claude生成的python多线程、异步代码示例,模拟20个网页的爬取,每个网页假设要0.5-2秒完成。 代码 Python多线程爬虫教程 核心概念 多线程:允许程序同时执行多个任务,提高IO密集型任务(如网络请求)的效率…...
【从零学习JVM|第三篇】类的生命周期(高频面试题)
前言: 在Java编程中,类的生命周期是指类从被加载到内存中开始,到被卸载出内存为止的整个过程。了解类的生命周期对于理解Java程序的运行机制以及性能优化非常重要。本文会深入探寻类的生命周期,让读者对此有深刻印象。 目录 …...
五子棋测试用例
一.项目背景 1.1 项目简介 传统棋类文化的推广 五子棋是一种古老的棋类游戏,有着深厚的文化底蕴。通过将五子棋制作成网页游戏,可以让更多的人了解和接触到这一传统棋类文化。无论是国内还是国外的玩家,都可以通过网页五子棋感受到东方棋类…...
【FTP】ftp文件传输会丢包吗?批量几百个文件传输,有一些文件没有传输完整,如何解决?
FTP(File Transfer Protocol)本身是一个基于 TCP 的协议,理论上不会丢包。但 FTP 文件传输过程中仍可能出现文件不完整、丢失或损坏的情况,主要原因包括: ✅ 一、FTP传输可能“丢包”或文件不完整的原因 原因描述网络…...
