当前位置: 首页 > news >正文

容斥原理 博弈论(多种Nim游戏解法)

目录

  • 容斥原理
    • 容斥原理的简介
    • 能被整除的数(典型例题)
      • 实现思路
      • 代码实现
      • 扩展:用DPS实现
  • 博弈论
    • 博弈论中的相关性质
    • 博弈论的相关结论
    • 先手必败必胜的证明
    • Nim游戏(典型例题)
      • 代码实现
    • 台阶-Nim游戏(典型例题)
      • 实现思路
      • 代码实现
    • Mex函数与SG函数
    • 集合-Nim游戏(典型例题)
      • 代码实现
    • 拆分-Nim游戏(典型例题)
      • 实现思路
      • 代码实现


容斥原理

容斥原理的简介

容斥原理是组合数学中的一个重要原理,讨论了满足某些条件的元素个数问题。

对于 n n n 个集合 A 1 , A 2 , . . . A n A_1,A_2,...A_n A1,A2,...An,定义他们的并集包含的元素个数为 ∣ A 1 ∪ A 2 ∪ . . . ∪ A n ∣ |A_1∪A_2∪...∪A_n| A1A2...An,那么根据容斥原理,有:

∣ A 1 ∪ A 2 ∪ ⋯ ∪ A n ∣ |A_1 \cup A_2 \cup \dots \cup A_n| A1A2An
= ∣ A 1 ∣ + ∣ A 2 ∣ + ⋯ + ∣ A n ∣ = |A_1| + |A_2| + \dots + |A_n| =A1+A2++An
− ∣ A 1 ∩ A 2 ∣ − ⋯ − ∣ A n − 1 ∩ A n ∣ - |A_1 \cap A_2| - \dots - |A_{n-1} \cap A_n| A1A2An1An
+ ∣ A 1 ∩ A 2 ∩ A 3 ∣ + ⋯ + ( − 1 ) n + 1 ∣ A 1 ∩ A 2 ∩ ⋯ ∩ A n ∣ + |A_1 \cap A_2 \cap A_3| + \dots + (-1)^{n+1} |A_1 \cap A_2 \cap \dots \cap A_n| +A1A2A3++(1)n+1A1A2An

(奇数项为正 偶数项为负)

例如:
在这里插入图片描述
根据上图可得
∣ A ∪ B ∪ C ∣ = ∣ A ∣ + ∣ B ∣ + ∣ C ∣ − ∣ A ∩ B ∣ − ∣ B ∩ C ∣ − ∣ A ∩ C ∣ + ∣ A ∩ B ∩ C ∣ |A \cup B \cup C|= |A|+|B|+|C|-|A \cap B| - |B \cap C| - |A \cap C| + |A \cap B \cap C| ABC=A+B+CABBCAC+ABC

对于 n n n 个集合 A 1 , A 2 , . . . A n A_1,A_2,...A_n A1,A2,...An,其项数可以表示为 C n 1 + C n 2 + ⋯ + C n n C_n^1 + C_n^2+\dots+C_n^n Cn1+Cn2++Cnn 通过数学计算可得 C n 1 + C n 2 + ⋯ + C n n = 2 n − 1 C_n^1 + C_n^2+\dots+C_n^n = 2^n - 1 Cn1+Cn2++Cnn=2n1,用此再乘以每项的时间复杂度便可以得到整体时间复杂度。

另外也可以通过数学计算得到 C n 1 − C n 2 + ⋯ + ( − 1 ) n − 1 C n n = 1 C_n^1 - C_n^2+\dots+(-1)^{n-1}C_n^n = 1 Cn1Cn2++(1)n1Cnn=1


能被整除的数(典型例题)

给定一个整数 n n n m m m 个不同的质数 p 1 , p 2 , … , p m p_1,p_2,\dots,p_m p1,p2,,pm

请你求出 1 1 1 ~ n n n 中能被 p 1 , p 2 , … , p m p_1,p_2,\dots,p_m p1,p2,,pm 中的至少一个数整除的整数有多少个。

输入格式:
第一行包含整数 n n n m m m

第二行包含 m m m 个质数

输出格式:
输出一个整数,表示满足条件的整数的个数。

数据范围:
1 ≤ m ≤ 16 1 \leq m \leq 16 1m16
1 ≤ n , p i ≤ 1 0 9 1 \leq n,p_i \leq 10^9 1n,pi109

输入样例:

10 2
2 3

输出样例:

7

实现思路

计算 1 1 1 ~ n n n 中能被 p i p_i pi 一个数整除的整数的方法为 ⌊ n p i ⌋ \huge \lfloor \frac{n}{p_i} \rfloor pin

由于不同质数间存在相同的可被整除的整数情况,这时候直接计算就会导致重叠部分计算多次,因此需要将重复的部分剔除出去,这里使用容斥原理来进行剔除操作。

计算 1 1 1 ~ n n n 中能被 p i , p j , p k p_i,p_j,p_k pi,pj,pk 多个数整除的整数(类似于重叠部分)的方法为 ⌊ n p i ∗ p j ∗ p k ⌋ \huge \lfloor \frac{n}{p_i*p_j*p_k} \rfloor pipjpkn

m m m 个质数看作 m m m 个集合, 由于 m m m 较小,我们可以使用int类型的二进制形式(32 bit)的变量来表示对每个集合的选取情况,1代表选用,0代表未选用。

比如:1110 可看作为选用集合 1 2 3,而集合 0 未选用,这样便可以通过一个int类型遍历来表示当前的集合选用情况。

通过二进制数模拟所有集合选用情况,再利用遍历对二进制数进行解码操作,而后进行正负性相加减便可以得到最终结果。


代码实现

#define _CRT_SECURE_NO_WARNINGS
#include<iostream>
using namespace std;const int N = 20;
int p[N];int main()
{int n, m, res = 0;cin >> n >> m;for (int i = 0; i < m; ++i) cin >> p[i];// 模拟对所有集合的每一种选用情况for (int i = 1; i < 1 << m; ++i) // 从1开始模拟{int t = 1, cnt = 0;for (int j = 0; j < m; ++j) // 将二进制数所表示的选用情况提取出来(解码){if (!(i >> j & 1)) continue;if ((long long)t * p[j] > n)// 当质数间的乘积大于n时,对应的质数重叠情况只有0个{t = -1;break;}t *= p[j];cnt++;}if (t != -1){int sign = (cnt & 1) ? 1 : -1; // 判断奇偶性res = res + n / t * sign;}}cout << res << endl;return 0;
}

时间复杂度: O ( 2 m ∗ m ) O(2^m*m) O(2mm)

通过公式 C n 1 + C n 2 + ⋯ + C n n = 2 n − 1 C_n^1 + C_n^2+\dots+C_n^n = 2^n - 1 Cn1+Cn2++Cnn=2n1 可得遍历所有项的时间复杂度为 O ( 2 m ) O(2^m) O(2m), 对单独一项的时间复杂度为 O ( m ) O(m) O(m),这是因为使用二进制数来表示情况,所以需要时间复杂度为 O ( m ) O(m) O(m) 的遍历来进行解码操作,提取其中的选取信息。


扩展:用DPS实现

const int N = 20;
int n, m, p[N], res;// num-代表当前质数乘积 
// cur-代表指向质数数组的指针
// cnt-代表所选用集合的总数
void dfs(int num, int cur, int cnt)
{if (cur == m) // 当cur把质数数组都遍历一遍之后代表该种选用情况的结束{if (cnt) // 排除一个质数都不选的选用情况{if (cnt % 2) res += n / num;else res -= n / num;}return;}dfs(num, cur + 1, cnt); // 不选用当前质数的集合dfs(num * p[cur], cur + 1, cnt + 1); // 选用当前质数的集合
}
int main()
{cin >> n >> m;for (int i = 0; i < m; ++i) cin >> p[i];dfs(1, 0, 0);cout << res << endl;return 0;
}

时间复杂度: O ( 2 m ) O(2^m) O(2m)

由于不用二进制数来模拟选取情况,所以也就不需要时间复杂度为 O ( m ) O(m) O(m) 的遍历来从二进制数中提取出选取情况的解码操作。


博弈论

博弈论(Game Theory) 是研究 多方参与者 在某种竞争或合作情况下进行的策略选择相互作用的一门数学理论。它主要研究参与者如何通过各种策略最大化自己的收益。


博弈论中的相关性质

公平组合游戏(Impartial Combinatorial Game, ICG)是组合博弈论中的一个重要概念。

所谓公平组合游戏,是指具有以下特征:

  1. 游戏中只有两个玩家,分先手和后手。
  2. 两者地位完全对等,有同样的可选行动。
  3. 每个位置要么先手必胜,要么后手必胜,不存在平局。
  4. 参与者都会采取最优策略。

注:城建棋类游戏,比如围棋,就不是公平组合游戏。因为围棋交战双方分别只能落黑子和白子,胜负判定也比较复杂,不符合公平组合游戏。

一些典型的公平组合游戏包括:

  • Nim游戏:从几堆物品中拿走任意数量的游戏。
  • 威佐夫游戏:在图上移动棋子吃掉对方的游戏。
  • 没有后效应的游戏:当前行动不会对之后可行动产生影响。

通过对这类游戏规律的研究,发展出了一套完整的理论体系,建立了组合博弈论这一独立的学科分支。公平组合游戏抽象化地反映了很多现实世界的竞争情况。


博弈论的相关结论

先手必胜状态:

  • 在这个游戏状态下,先手玩家有一个必胜策略,可以通过采取相应的游戏行动最终获胜,不论对手如何行动。
  • 即先手玩家可以保证自己赢得游戏。这个游戏状态对先手玩家有利。

先手必败状态:

  • 在这个游戏状态下,先手玩家无论采取何种行动最终都会输,后手玩家存在必胜策略。
  • 即该状态下无论先手玩家如何行动,后手玩家都可以通过相应的行动获取最终的胜利。这个状态对后手玩家有利。
  • 后手玩家可以保证自己赢得游戏。

对于NIM游戏,在两名选手都足够聪明每一步都是最优解的情况下:

a 1 ⊕ a 2 ⊕ ⋯ ⊕ a n = 0 a_1 \oplus a_2 \oplus \dots \oplus a_n = 0 a1a2an=0 先手必败

a 1 ⊕ a 2 ⊕ ⋯ ⊕ a n ≠ 0 a_1 \oplus a_2 \oplus \dots \oplus a_n \neq 0 a1a2an=0 先手必胜

就是把所有堆的石子个数异或起来,结果是零,先手必败,不是零,先手必胜。


先手必败必胜的证明

①当 a 1 ⊕ a 2 ⊕ ⋯ ⊕ a n = 0 a_1 \oplus a_2 \oplus \dots \oplus a_n = 0 a1a2an=0 时,先手必败:

这个结论实际上是基于一个性质,即对于任意一个非负整数 x x x,有 x ⊕ x = 0 x \oplus x = 0 xx=0。基于这个性质,我们可以证明在这种情况下,先手必败。

假设初始状态下,有 a 1 ⊕ a 2 ⊕ ⋯ ⊕ a n = 0 a_1 \oplus a_2 \oplus \dots \oplus a_n = 0 a1a2an=0。考虑以下情况:

  • 如果先手选择 a 1 a_1 a1,那么剩下的异或和就变为 ( a 2 ⊕ ⋯ ⊕ a n ) (a_2 \oplus \dots \oplus a_n) (a2an)
  • 如果先手选择 a 2 a_2 a2,那么剩下的异或和就变为 ( a 1 ⊕ a 3 ⊕ ⋯ ⊕ a n ) (a_1 \oplus a_3 \oplus \dots \oplus a_n) (a1a3an)
  • 以此类推,如果先手选择 a i a_i ai,剩下的异或和就变为 ( a 1 ⊕ ⋯ ⊕ a i − 1 ⊕ a i + 1 ⊕ ⋯ ⊕ a n ) (a_1 \oplus \dots \oplus a_{i-1} \oplus a_{i+1} \oplus \dots \oplus a_n) (a1ai1ai+1an)

在这些情况下,无论先手如何选择,剩下的异或和都会变成一个非零值。由于异或满足交换律和结合律,这些选择的结果最终都会导致剩余的异或和为一个非零值。因此,无论先手如何操作,最终的游戏状态都会变为一个不满足条件的状态。


②当 a 1 ⊕ a 2 ⊕ ⋯ ⊕ a n ≠ 0 a_1 \oplus a_2 \oplus \dots \oplus a_n \neq 0 a1a2an=0 时,先手必胜:

在这种情况下,异或和不为零。证明先手必胜需要使用归纳法。对于 n = 1 n=1 n=1的情况,只有一个数,先手直接取走即可。

假设对于 n = k n=k n=k,当 a 1 ⊕ a 2 ⊕ ⋯ ⊕ a k ≠ 0 a_1 \oplus a_2 \oplus \dots \oplus a_k \neq 0 a1a2ak=0 时,先手必胜。现在考虑 n = k + 1 n=k+1 n=k+1 的情况。

a 1 ⊕ a 2 ⊕ ⋯ ⊕ a k + 1 a_1 \oplus a_2 \oplus \dots \oplus a_{k+1} a1a2ak+1 分成两部分: x = a 1 ⊕ a 2 ⊕ ⋯ ⊕ a k x = a_1 \oplus a_2 \oplus \dots \oplus a_k x=a1a2ak a k + 1 a_{k+1} ak+1。根据归纳假设,当 x ≠ 0 x \neq 0 x=0 时,先手必胜。此时,先手可以执行以下操作:

  • 如果先手选择取走 a k + 1 a_{k+1} ak+1,那么剩下的异或和变为 x x x,根据归纳假设,先手必胜。
  • 如果先手选择取走 a i a_i ai 1 ≤ i ≤ k 1 \leq i \leq k 1ik),剩下的异或和变为 x ⊕ a i x \oplus a_i xai。由于 x ≠ 0 x \neq 0 x=0 x ⊕ a i x \oplus a_i xai 也不为零,那么根据归纳假设,先手也必胜。

因此,无论哪种情况,先手都有必胜策略。综上所述,当 a 1 ⊕ a 2 ⊕ ⋯ ⊕ a n ≠ 0 a_1 \oplus a_2 \oplus \dots \oplus a_n \neq 0 a1a2an=0 时,先手必胜。


Nim游戏(典型例题)

题目描述:
给定 n n n 堆石子,两位玩家轮流操作,每次操作可以从任意一堆石子中拿走任意数量的石子(可以拿完,但不能不拿),最后无法进行操作的人视为失败。

问如果两人都采用最优策略,先手是否必胜。

输入格式:
第一行包含整数 n n n

第二行包含 n n n 个数字,其中第 i i i 个数字表示第 i i i 堆石子的数量。

输出格式:
如果先手方必胜,则输出 Yes

否则,输出 No

数据范围:
1 ≤ n ≤ 1 0 5 , 1 ≤ 1≤n≤10^5,1≤ 1n105,1每堆石子数 ≤ 1 0 9 ≤10^9 109

输入样例:

2
2 3

输出样例:

Yes

代码实现

#define _CRT_SECURE_NO_WARNINGS
#include<iostream>
using namespace std;int main()
{int n, res = 0;cin >> n;for (int i = 0; i < n; ++i){int tmp;cin >> tmp;res ^= tmp;}if (res) cout << "Yes" << endl;else cout << "No" << endl;return 0;
}

台阶-Nim游戏(典型例题)

题目描述:
现在,有一个 n n n 级台阶的楼梯,每级台阶上都有若干个石子,其中第 i i i 级台阶上有 a i a_i ai 个石子( i ≥ 1 i≥1 i1)。

两位玩家轮流操作,每次操作可以从任意一级台阶上拿若干个石子放到下一级台阶中(不能不拿)。

已经拿到地面上的石子不能再拿,最后无法进行操作的人视为失败。

问如果两人都采用最优策略,先手是否必胜。

输入格式:
第一行包含整数 n n n

第二行包含 n n n 个整数,其中第 i i i 个整数表示第 i i i 级台阶上的石子数 a i a_i ai

输出格式:
如果先手方必胜,则输出 Yes

否则,输出 No

数据范围:
1 ≤ n ≤ 1 0 5 , 1 ≤ a i ≤ 1 0 9 1≤n≤10^5,1≤a_i≤10^9 1n105,1ai109

输入样例:

3
2 1 3

输出样例:

Yes

实现思路

在这里插入图片描述
模拟每次只能向下挪动至下一级台阶的行动,我的想法是将高于台阶1的堆分成多个堆,例如图中台阶5的堆,将这个堆分为5份石子数量相等的台阶1的堆,模拟需要至少5次才能将台阶5的堆拿至地面。

因此可以得到: 2 ⏟ 台阶 1 ⊕ 1 ⊕ 1 ⏟ 台阶 2 ⊕ 3 ⊕ 3 ⊕ 3 ⏟ 台阶 3 ⊕ 2 ⊕ 2 ⊕ 2 ⊕ 2 ⏟ 台阶 4 ⊕ 4 ⊕ 4 ⊕ 4 ⊕ 4 ⊕ 4 ⏟ 台阶 5 \underbrace{2}_{台阶1} \oplus \underbrace{1 \oplus 1}_{台阶2} \oplus \underbrace{3 \oplus 3 \oplus 3}_{台阶3} \oplus \underbrace{2 \oplus 2 \oplus 2 \oplus 2}_{台阶4} \oplus \underbrace{4 \oplus 4 \oplus 4 \oplus 4 \oplus 4}_{台阶5} 台阶1 2台阶2 11台阶3 333台阶4 2222台阶5 44444

由于异或(xor)的特性,相同的数异或等于0,便可以进行优化,当阶数为偶数时,异或结果必定为0,奇数时,异或结果直接就等于台阶上的石子数。

从而可以推导出结论:

  • 如果 奇数 阶台阶的石子个数 异或值不是零,则 先手必胜

  • 如果 奇数 阶台阶的石子个数 异或值是零, 则 先手必败


代码实现

未利用异或特性优化前:

#define _CRT_SECURE_NO_WARNINGS
#include<iostream>
using namespace std;int main()
{int n, res = 0;cin >> n;for (int i = 1; i <= n; ++i){int tmp, cnt = i;cin >> tmp;while (cnt--)	res ^= tmp; // 由台阶数分堆}if (res) cout << "Yes" << endl;else cout << "No" << endl;return 0;
}

利用异或特性优化后:

#define _CRT_SECURE_NO_WARNINGS
#include<iostream>
using namespace std;int main()
{int n, res = 0;cin >> n;for (int i = 1; i <= n; ++i){int tmp;cin >> tmp;if (i & 1) res ^= tmp; // 利用异或特性优化}if (res) cout << "Yes" << endl;else cout << "No" << endl;return 0;
}

Mex函数与SG函数

有向图游戏的概念:

  • 节点和边:有向图游戏由一组节点和连接节点的有向边组成。每个节点表示游戏的一个状态,而有向边表示从一个状态到另一个状态的合法转移。

  • 玩家轮流移动:在有向图游戏中,玩家轮流进行移动。每一步玩家可以从当前状态转移到某个后继状态,选择的后继状态必须遵循游戏的规则。

  • 游戏终止状态:每个有向图游戏都有终止状态,到达终止状态后游戏结束。终止状态可能是获胜状态或失败状态,这取决于游戏的规则。

  • SG 函数和 Mex 函数:SG 函数(Sprague-Grundy 函数)和 Mex 函数是解决有向图游戏的关键工具。SG 函数为每个节点赋予一个非负整数值,表示该节点的状态价值。Mex 函数返回集合中没有出现的最小非负整数。通过 SG 函数和 Mex 函数,可以计算出游戏的最佳策略。

  • 必胜策略(先手必胜)和必败策略(先手必败):在有向图游戏中,存在必胜策略和必败策略。如果一个玩家始终能够采取最佳策略,并且可以确保在有限步内获胜,那么该玩家有必胜策略。相反,如果玩家无论如何都无法避免失败,那么该玩家有必败策略。

  • Nim 游戏和其他变体:Nim 游戏是有向图游戏的一个著名例子,它涉及在堆中取石子。还有许多其他变体的有向图游戏,如拈游戏、Grundy’s Game 等。


Mex(Minimum Excluded value)函数,是一个常见的组合游戏和集合论中的概念。它通常用来解决一类博弈问题,其中两个玩家轮流从一个集合中取元素,每次取一个元素,并且不能重复取已经被取走的元素。当某一玩家无法继续操作时,该玩家输掉游戏。


Mex 函数的定义:对于一个给定的非负整数集合,它返回一个非负整数,表示在这个集合中,不属于集合最小非负整数

mex ( S ) = min ⁡ { x ∣ x ∈ N 0 , x ∉ S } \text{mex}(S) = \min \{ x \mid x \in \mathbb{N}_0, x \notin S \} mex(S)=min{xxN0,x/S}

例如:

S = { 0 , 1 , 2 , 4 } ⇒ m e x ( S ) = 3 S=\{0,1,2,4\} ⇒ mex(S)=3 S={0,1,2,4}mex(S)=3


m e x mex mex函数和 s g sg sg函数用于计算有向图游戏的答案,主要思路是:

  • m e x mex mex函数返回集合 S S S 中没有出现的最小非负整数。
  • s g sg sg函数定义为 s g ( n ) = m e x ( s g ( i 1 ) , s g ( i 2 ) . . . ) sg(n)=mex({sg(i_1),sg(i_2)...}) sg(n)=mex(sg(i1),sg(i2)...),其中 i 1 , i 2 . . . i_1,i_2... i1,i2... 是节点 n n n 的后继节点。
  • 对于图 G G G,定义 s g ( G ) = s g ( h e a d ) sg(G)=sg(head) sg(G)=sg(head),其中head是G的头节点。
  • 对于 n n n 个图 G 1 , G 2 , . . . G n G_1,G_2,...G_n G1,G2,...Gn,它们的 s g sg sg函数值的异或和就是这个有向图游戏的答案。

假设有 n n n 个独立局面,它们的 S G SG SG 值分别为 s g ( G 1 ) , s g ( G 2 ) , . . . , s g ( G n ) sg(G1), sg(G2), ..., sg(Gn) sg(G1),sg(G2),...,sg(Gn),其中 G i G_i Gi 表示第 i i i 个局面。那么整个组合游戏的 S G SG SG s g ( G ) sg(G) sg(G) 可以表示为这些局面 S G SG SG 值的异或和:

s g ( G ) = s g ( G 1 ) ⊕ s g ( G 2 ) ⊕ . . . ⊕ s g ( G n ) sg(G) = sg(G_1) \oplus sg(G_2) \oplus ... \oplus sg(G_n) sg(G)=sg(G1)sg(G2)...sg(Gn)

例如:

以NIM游戏为例,数量为7个石子的一堆,每人抽取轮流只能抽取2或5个石子,不能不抽取,判断先手必胜还是先手必败。
在这里插入图片描述
从末尾开始计算,可以得到 s g ( h e a d ) = 0 sg(head) = 0 sg(head)=0,由于此时只有一堆,即只存在一个有向图,所以 s g ( h e a d ) = 0 sg(head) = 0 sg(head)=0 得到结果先手必败。

对多个有向图的情况(例如多个堆的情况),将每个有向图的sg(head)异或到一起,再根据先手必胜必败的条件,得出对应的结论。


G 1 , G 2 , G 3 , … , G n G_1,G_2,G_3,\dots,G_n G1,G2,G3,,Gn n n n 个有向图,结论为:

先手必败
s g ( G 1 ) ⊕ s g ( G 2 ) ⊕ s g ( G 3 ) ⊕ ⋯ ⊕ s g ( G n ) = 0 sg(G_1) \oplus sg(G_2) \oplus sg(G_3) \oplus \dots \oplus sg(G_n) = 0 sg(G1)sg(G2)sg(G3)sg(Gn)=0
先手必胜
s g ( G 1 ) ⊕ s g ( G 2 ) ⊕ s g ( G 3 ) ⊕ ⋯ ⊕ s g ( G n ) ≠ 0 sg(G_1) \oplus sg(G_2) \oplus sg(G_3) \oplus \dots \oplus sg(G_n) \neq 0 sg(G1)sg(G2)sg(G3)sg(Gn)=0


集合-Nim游戏(典型例题)

题目描述:
给定 n n n 堆石子以及一个由 k k k 个不同正整数构成的数字集合 S S S

现在有两位玩家轮流操作,每次操作可以从任意一堆石子中拿取石子,每次拿取的石子数量必须包含于集合 S S S,最后无法进行操作的人视为失败。

问如果两人都采用最优策略,先手是否必胜。

输入格式:
第一行包含整数 k k k,表示数字集合 S S S 中数字的个数。

第二行包含 k k k 个整数,其中第 i i i 个整数表示数字集合 S S S 中的第 i i i 个数 s i s_i si

第三行包含整数 n n n

第四行包含 n n n 个整数,其中第 i i i 个整数表示第 i i i 堆石子的数量 h i h_i hi

输出格式:
如果先手方必胜,则输出 Yes

否则,输出 No

数据范围:
1 ≤ n , k ≤ 100 , 1 ≤ s i , h i ≤ 10000 1≤n,k≤100,1≤s_i,h_i≤10000 1n,k100,1si,hi10000

输入样例:

2
2 3

输出样例:

Yes

代码实现

#define _CRT_SECURE_NO_WARNINGS
#include<iostream>
#include<cstring>
#include<unordered_set>
using namespace std;const int N = 110, M = 10010;
int a[N], f[M], k, n;int sg(int x)
{if (~f[x]) return f[x]; // 记忆化搜索:保证每种状态只会被算一次unordered_set<int> s; // 用哈希表存储当前节点的集合所存有的非负数的元素for (int i = 0; i < k; ++i){int num = a[i];if (x >= num) s.insert(sg(x - num)); // 将新的状态加进来}for (int i = 0;; i++) if (!s.count(i)) return f[x] = i; // 找出不存在集合当中的最小值并返回
}
int main()
{int res = 0;memset(f, -1, sizeof f);cin >> k;for (int i = 0; i < k; ++i) cin >> a[i];cin >> n;for (int i = 0; i < n; ++i){int x;cin >> x;res ^= sg(x); // 求出每堆石子的SG值将其异或}if (res) cout << "Yes" << endl;else cout << "No" << endl;return 0;
}

拆分-Nim游戏(典型例题)

题目描述:
给定 n n n 堆石子,两位玩家轮流操作,每次操作可以取走其中的一堆石子,然后放入两堆 规模更小 的石子(新堆规模可以为 0 0 0,且两个新堆的石子总数可以大于取走的那堆石子数),最后无法进行操作的人视为失败。

问如果两人都采用最优策略,先手是否必胜。

输入格式:
第一行包含整数 n n n

第二行包含 n n n 个整数,其中第 i i i 个整数表示第 i i i 堆石子的数量 a i a_i ai

输出格式:
如果先手方必胜,则输出 Yes

否则,输出 No

数据范围:
1 ≤ n , a i ≤ 100 1≤n,a_i≤100 1n,ai100

输入样例:

2
2 3

输出样例:

Yes

实现思路

取走其中的一堆石子,然后放入两堆 规模更小 的石子,相当于将一个局面拆分成了两个局面,由SG函数理论:多个独立局面的SG值,等于这些局面SG值的 异或和

s g ( G ) = s g ( G 1 ) ⊕ s g ( G 2 ) ⊕ . . . ⊕ s g ( G n ) sg(G) = sg(G_1) \oplus sg(G_2) \oplus ... \oplus sg(G_n) sg(G)=sg(G1)sg(G2)...sg(Gn)


代码实现

#define _CRT_SECURE_NO_WARNINGS
#include<iostream>
#include<cstring>
#include<unordered_set>
using namespace std;const int N = 110, M = 10010;
int f[N], n;int sg(int x)
{if (~f[x]) return f[x];unordered_set<int> s;for (int i = 0; i < x; ++i){for (int j = 0; j <= i; ++j)s.insert(sg(i) ^ sg(j));}for (int i = 0;; i++) if (!s.count(i)) return f[x] = i;
}
int main()
{memset(f, -1, sizeof f);cin >> n;int res = 0;while (n--){int x;cin >> x;res ^= sg(x);}if (res) cout << "Yes" << endl;else cout << "No" << endl;return 0;
}

相关文章:

容斥原理 博弈论(多种Nim游戏解法)

目录 容斥原理容斥原理的简介能被整除的数&#xff08;典型例题&#xff09;实现思路代码实现扩展&#xff1a;用DPS实现 博弈论博弈论中的相关性质博弈论的相关结论先手必败必胜的证明Nim游戏&#xff08;典型例题&#xff09;代码实现 台阶-Nim游戏&#xff08;典型例题&…...

【C++】函数指针

2023年8月18日&#xff0c;周五上午 今天在B站看Qt教学视频的时候遇到了 目录 语法和typedef或using结合我的总结 语法 返回类型 (*指针变量名)(参数列表)以下是一些示例来说明如何声明不同类型的函数指针&#xff1a; 声明一个不接受任何参数且返回void的函数指针&#xf…...

VBA技术资料MF45:VBA_在Excel中自定义行高

【分享成果&#xff0c;随喜正能量】可以不光芒万丈&#xff0c;但不要停止发光。有的人陷入困境&#xff0c;不是被人所困&#xff0c;而是自己束缚自己&#xff0c;这时"解铃还须系铃人"&#xff0c;如果自己无法放下&#xff0c;如何能脱困&#xff1f; 。 我给V…...

【Git】Git中的钩子

Git Book——Git的自定义钩子 Git中的钩子分为两大类&#xff1a; 1、客户端钩子&#xff1a;由诸如提交和合并这样的操作所调用 2、服务端钩子&#xff1a;由诸如接收被推送的提交这样的联网操作 客户端钩子&#xff1a; 提交工作流钩子 pre-commit&#xff1a;在提交信息前…...

java 工程管理系统源码+项目说明+功能描述+前后端分离 + 二次开发 em

Java版工程项目管理系统 Spring CloudSpring BootMybatisVueElementUI前后端分离 功能清单如下&#xff1a; 首页 工作台&#xff1a;待办工作、消息通知、预警信息&#xff0c;点击可进入相应的列表 项目进度图表&#xff1a;选择&#xff08;总体或单个&#xff09;项目显…...

Java # JVM

一、1.8之前 运行时数据区&#xff08;进程共享&#xff09; 运行时常量池为什么要有方法区&#xff1a; jvm完成类装载后&#xff0c;需要将class文件中的常量池转入内存&#xff0c;保存在方法区中为什么是常量&#xff1a; 常量对象操作较多&#xff0c;为了避免频繁创建和…...

vscode远程连接Linux失败,提示过程试图写入的管道不存在(三种解决办法)

vscode报错如下&#xff1a; 一、第一种情况 原因是本地的known_hosts文件记录服务器信息与现服务器的信息冲突了&#xff0c;导致连接失败。 解决方案就是把本地的known_hosts的原服务器信息全部删掉&#xff0c;然后重新连接。 二、第二种情况 在编写配置文件config时&…...

elaticsearch(1)

1.简介 Elasticsearch是一个开源的高扩展的分布式全文检索引擎&#xff0c;它可以近乎实时的存储、检索数据&#xff1b;本身扩展性很好&#xff0c;可以扩展到上百台服务器&#xff0c;处理PB级别的数据。 Elasticsearch也使用Java开发并使用Lucene作为其核心来实现所有索引…...

使用pnpm workspace管理Monorepo架构

在开发项目的过程中&#xff0c;我们需要在一个仓库中管理多个项目&#xff0c;每个项目有独立的依赖、脚手架&#xff0c;这种形式的项目结构我们称之为Monorepo&#xff0c;pnpm workspace就是管理这类项目的方案之一。 一、pnpm简介 1、pnpm概述 pnpm代表performance npm…...

Ubuntu16.04-ros-kinetic环境搭建笔记=1=

tips&#xff1a;搬运资料&#xff0c;留个记录 安装Ubuntu Ubuntu官网下载地址 安装 虚拟机安装Ubuntu 最好断网安装Ubuntu&#xff0c;可以节约时间 Ubuntu基础设置 Ubuntu换国内源 换成清华源 sudo apt upgradeVMwareTool安装 把这个压缩包拖到桌面&#xff0c;否则只读…...

应用层自定义协议(组织数据的格式)

概念 在进行网络传输数据的时候&#xff0c;通常是将要传输的数据组织成一个字符串&#xff0c;再将字符串转换为一个字节流进行网络传输数据&#xff0c;而数据组织的格式是多种多样的&#xff0c;我们只需要保证&#xff0c;客户端和服务器对于字符串的组织和解析统一即可 现…...

5种常见的3D游戏艺术风格及工具栈

在游戏开发领域&#xff0c;3D 艺术风格已成为为玩家创造身临其境、引人入胜的体验的重要组成部分。 随着技术的进步&#xff0c;创造令人惊叹的 3D 视觉效果的可能性已经大大扩展&#xff0c;为游戏开发人员提供了广泛的选择。 在本文中&#xff0c;我们将探讨当今游戏开发中…...

【玩转Linux操作】crond的基本操作

&#x1f38a;专栏【玩转Linux操作】 &#x1f354;喜欢的诗句&#xff1a;更喜岷山千里雪 三军过后尽开颜。 &#x1f386;音乐分享【Counting Stars 】 欢迎并且感谢大家指出小吉的问题&#x1f970; 文章目录 &#x1f354;概述&#x1f354;命令⭐常用选项 &#x1f354;练…...

设置Linux 静态IP

LInux虚拟机默认的IP地址是动态获取的 作为服务器&#xff0c;我们一般还需要把IP地址设置为静态的 设置静态IP vim /etc/sysconfig/network-scripts/ifcfg-ens33 TYPEEthernet PROXY_METHODnone BROWSER_ONLYno # BOOTPROTOdhcp 动态获取 BOOTPROTOstatic IPADDR"192.16…...

JMeter接口自动化测试实例—JMeter引用javaScript

Jmeter提供了JSR223 PreProcessor前置处理器&#xff0c;通过该工具融合了Java 8 Nashorn 脚本引擎&#xff0c;可以执行js脚本以便对脚本进行前置处理。其中比较典型的应用就是通过执行js脚本对前端数据进行rsa加密&#xff0c;如登录密码加密。但在这里我就简单的应用javaScr…...

javascript期末作业【三维房屋设计】 【源码+文档下载】

1、引入three.js库 官网下载three.js 库 放置目录并引用 引入js文件: 设置场景&#xff08;scene&#xff09; &#xff08;1&#xff09;创建场景对象 &#xff08;2&#xff09;设置透明相机 1,透明相机的优点 透明相机机制更符合于人的视角,在场景预览和游戏场景多有使用…...

数组详解

1. 一维数组的创建和初始化 1.1 数组的创建 数组是一组相同类型元素的集合。 数组的创建方式&#xff1a; type_t arr_name [const_n]; //type_t 是指数组的元素类型 //const_n 是一个常量表达式&#xff0c;用来指定数组的大小 数组创建的实例&#xff1a; //代码1 int a…...

【记录COCO数据集格式】实例分割的annotations.json的内部格式

在此记录一下实例分割coco的annotations.json的格式 annotations.json,整体是一个字典: { "info": {"description": null,"url": null, "version": null, "year": 2023, "contributor": null, "date_created…...

mac 关于获取手机信息 终端指令

iOS真机命令&#xff08;自动化测试&#xff09; 获取设备的的UDID idevice_id --list # 显示当前所连接设备的 udid instruments -s devices # 列出所有设备&#xff0c;包括真机、模拟器、mac ideviceinfo 可以在返回的数据中找到 udid idevice_id -l 苹果手机 safari打开网…...

ios消息推送例子

通过Apple推送服务&#xff0c;将消息发送给特定的ios客户端&#xff0c;这是服务器端实例代码。需要客户端的voip key值&#xff0c;以及相应的客户端回调接口&#xff0c;支持ios9.0以上版本。 下载地址&#xff1a;https://download.csdn.net/download/m0_37567738/8821559…...

LabVIEW开发最小化5G系统测试平台

LabVIEW开发最小化5G系统测试平台 由于具有大量存储能力和数据的应用程序的智能手机的激增&#xff0c;当前一代产品被迫提高其吞吐效率。正交频分复用由于其卓越的品质&#xff0c;如单抽头均衡和具有成本效益的实施&#xff0c;现在被广泛用作物理层技术。这些好处是以严格的…...

如何用输入函数为数组赋值

在编写程序时我们经常使用数组&#xff0c;而数组的大小可能是很大的但是我们并不需要为每个元素都自己赋值&#xff0c;我们可能会自定义输入数组元素个数&#xff0c;我们应该如何实现通过输入函数为数组赋值呢&#xff1f; 目录 第一种&#xff1a; 第二种&#xff1a; 第一…...

【Python COM】Word 自动纵向合并相同内容单元格

使用场景 docxtempl 库不支持动态纵向合并单元格&#xff0c;所以写了这段代码用来曲线救国。 使用方法 需要纵向合并的单元格加上在文本末尾加上“【纵向合并】”&#xff0c;然后调用此函数&#xff0c;就会自动纵向合并相同内容的单元格。 代码 需要安装 pywin32 库。 …...

maven 环境变量的配置

1、安装好maven /home/sunyuhua/dev/apache-maven-3.9.32、编辑环境变量 vi /etc/profile.d/maven.shexport MAVEN_HOME/home/sunyuhua/dev/apache-maven-3.9.3 export PATH$PATH:$MAVEN_HOME/bin3、执行source source /etc/profile4、检验 mvn -version5、附注&#xff1a…...

flutter-设置开屏页 解决开屏白屏问题

flutter_native_splash 当您的应用程序打开时&#xff0c;本机应用程序会短暂加载 Flutter。默认情况下&#xff0c;在此期间&#xff0c;本机应用程序会显示白色启动屏幕。该包自动生成 iOS、Android 和 Web 本机代码&#xff0c;用于自定义本机启动画面背景颜色和启动图像。支…...

简单理解Linux中的一切皆文件

一款操作系统要管理各种各样不同的硬件&#xff0c;因为硬件的不同所以它们使用的文件系统也不同。但是按道理来说&#xff0c;文件系统的不同对于用户来说可不是一件好事&#xff0c;操作不同的硬件就要使用不同的方法。 但是Linux有一切皆文件。 简单来说&#xff0c;Linux…...

Kubernetes的endpoint

简介 Kubernetes的endpoint&#xff08;终结点&#xff09;是用于将服务绑定到集群中其他组件的网络地址。Endpoint为服务提供了一个稳定的虚拟IP地址&#xff0c;它会负责将流量从Service路由到后端Pod。 下面是使用Kubernetes的endpoint的详细步骤&#xff1a; 创建一个Se…...

第四章,向量组,2-矩阵等价与向量组等价的关系

第四章&#xff0c;向量组&#xff0c;2-矩阵等价与向量组等价的关系 矩阵乘法与线性表示矩阵等价与向量组等价 玩转线性代数(23)线性组合与线性表示的应用的笔记&#xff0c;相关证明以及例子见原文 矩阵乘法与线性表示 设有 A m ∗ n B n ∗ l C m ∗ l A_{m*n}B_{n*l}C_{m…...

Flink源码之StreamTask启动流程

每个ExecutionVertex分配Slot后&#xff0c;JobMaster就会向Slot所在的TaskExecutor提交RPC请求执行Task&#xff0c;接口为TaskExecutorGateway::submitTask CompletableFuture<Acknowledge> submitTask(TaskDeploymentDescriptor tdd, JobMasterId jobMasterId, RpcTi…...

【BASH】回顾与知识点梳理(三十)

【BASH】回顾与知识点梳理 三十 三十. 进程的观察30.1 ps &#xff1a;将某个时间点的进程运作情况撷取下来仅观察自己的 bash 相关进程&#xff1a; ps -l观察系统所有进程&#xff1a; ps aux 30.2 top&#xff1a;动态观察进程的变化30.3 pstree 该系列目录 --> 【BASH】…...

亿赛通电子文档安全管理系统任意文件上传漏洞复现

0x01 产品简介 亿赛通电子文档安全管理系统&#xff08;简称&#xff1a;CDG&#xff09;是一款电子文档安全加密软件&#xff0c;该系统利用驱动层透明加密技术&#xff0c;通过对电子文档的加密保护&#xff0c;防止内部员工泄密和外部人员非法窃取企业核心重要数据资产&…...

java:数据库连接池

概念 举个例子来说吧&#xff0c;假设我们开了一家餐馆&#xff0c;客人来了&#xff0c;我们就请一个服务员&#xff0c;使用完后再把他开除了&#xff0c;下个客人再来了&#xff0c;我们再请一个&#xff0c;使用完再开除。 这是不是我们现在使用 JDBC 连接数据库的场景&a…...

可视化绘图技巧100篇基础篇(三)-条形图(一)

目录 前言 适用场景 图例 条形图分类 多系列条形图 单系列条形图...

如何使用Redis实现附近商家查询

导读 在日常生活中&#xff0c;我们经常能看见查询附近商家的功能。 常见的场景有&#xff0c;比如你在点外卖的时候&#xff0c;就可能需要按照距离查询附近几百米或者几公里的商家。 本文将介绍如何使用Redis实现按照距离查询附近商户的功能&#xff0c;并以SpringBoot项目…...

于vue3+vite+element pro + pnpm开源项目

河码桌面是一个基于vue3viteelement pro pnpm 创建的monorepo项目&#xff0c;项目采用的是类操作系统的web界面&#xff0c;操作起来简单又方便&#xff0c;符合用户习惯&#xff0c;又没有操作系统的复杂&#xff01; 有两个两个分支&#xff0c;一个是web版本&#xff0c;…...

18-组件化开发 根组件

组件化开发 & 根组件: 1. 组件化:一个页面可以拆分成一个个组件&#xff0c;每个组件有着自己独立的结构、样式、行为. 好处:便于维护&#xff0c;利于复用->提升开发效率 组件分类: 普通组件 , 根组件 2. 根组件:整个应用最上层的组件&#xff0c;包裹所有普通小组件…...

springboot集成ES

1.引入pom依赖2.application 配置3.JavaBean配置以及ES相关注解 3.1 Student实体类3.2 Teacher实体类3.3 Headmaster 实体类4. 启动类配置5.elasticsearchRestTemplate 新增 5.1 createIndex && putMapping 创建索引及映射 5.1.1 Controller层5.1.2 service层5.1.3 ser…...

Maven 生成编译时间和版本Java类

本文使用Maven插件来自动生成一个 Version.java 类&#xff0c;可以在Java代码中使用里面对应的常量&#xff0c;获取当前版本号和构建时间。 Maven编译后自动生成的 Version.java 文件内容如下所示&#xff1a; package com.shanhy.demo;public final class Version {public…...

关于uniapp微信小程序scroll-view组件使用show-scrollbar隐藏不了滚动条

这里关于使用 scroll-view组件 时候有滚动条 想要隐藏滚动条但是使用show-scrollbar没有效果 这时候又使用类名隐藏滚动条 使用id隐藏滚动条都不行 解决方法&#xff1a;在使用 scroll-view组件 的页面或者app 页面加上以下代码就可以了 ::-webkit-scrollbar {displa…...

CSS:filter滤镜 详解(用法 + 代码 + 例子 + 效果)

文章目录 filter 滤镜blur() 模糊度例子 渐变光晕 brightness() 元素亮度contrast() 对比度grayscale() 元素灰度hue-rorate() 色相opacity() 透明度invert() 反转颜色saturate() 饱和度 backdrop-filter 蒙版&#xff0c;滤镜例子 卷轴展开 filter 滤镜 动图为效果添加前后对…...

【Unity每日一记】Physics.Raycast 相关_Unity中的“X光射线”

&#x1f468;‍&#x1f4bb;个人主页&#xff1a;元宇宙-秩沅 &#x1f468;‍&#x1f4bb; hallo 欢迎 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! &#x1f468;‍&#x1f4bb; 本文由 秩沅 原创 &#x1f468;‍&#x1f4bb; 收录于专栏&#xff1a;uni…...

软件报错msvcr90.dll丢失的解决方法,亲测可以修复

我曾经遇到过一个令人头疼的问题&#xff1a;msvcr90.dll丢失。这个问题导致了我的程序无法正常运行&#xff0c;让我感到非常苦恼。然而&#xff0c;在经过一番努力后&#xff0c;我终于成功地修复了这个问题&#xff0c;这让我感到非常欣慰和满足。 msvcr90.dll丢失的原因可能…...

第一百一十八回 如何获取蓝牙连接状态

文章目录 知识回顾实现方法示例代码我们在上一章回中介绍了如何连接蓝牙设备相关的内容,本章回中将介绍如何获取蓝牙连接状态.闲话休提,让我们一起Talk Flutter吧。 知识回顾 我们在上一章回中介绍如何连接蓝牙设备,但是如何知道蓝牙设备是否连接成功呢?这就需要我们去获取…...

C++11并发与多线程笔记(12) windows临界区、其他各种mutex互斥量

C11并发与多线程笔记&#xff08;12&#xff09; windows临界区、其他各种mutex互斥量 1、windows临界区2、自动析构技术3、递归独占互斥量 std::recursive_mutex4、带超时的互斥量 std::timed_mutex 和 std::recursive_timed_mutex4.1 std::timed_mutex&#xff1a;是带超时的…...

[MAUI]在.NET MAUI中实现可拖拽排序列表

文章目录 创建可拖放控件创建绑定服务类拖拽&#xff08;Drag&#xff09;拖拽悬停&#xff0c;经过&#xff08;DragOver&#xff09;释放&#xff08;Drop&#xff09; 创建页面元素最终效果项目地址 .NET MAUI 中提供了拖放(drag-drop)手势识别器&#xff0c;允许用户通过拖…...

Linux 内核内存管理 pfn_to_online_page宏

文章目录 一、Memory Hotplug1.1 简介1.2 热插拔事件通知机制 二、pfn_to_online_page2.1 pfn_to_online_page2.2 pfn_to_section_nr2.3 online_section_nr 参考资料 一、Memory Hotplug 1.1 简介 Linux 内存热插拔&#xff08;Memory Hotplug&#xff09;是指在运行时动态增…...

『C语言初阶』第八章 -结构体

前言 今天小羊又来给铁汁们分享关于C语言的结构体&#xff0c;在C语言中&#xff0c;结构体类型属于一种构造类型&#xff08;其他的构造类型还有&#xff1a;数组类型&#xff0c;联合类型&#xff09;&#xff0c;今天我们主要简单了解一下结构体。 一、结构体是什么&#x…...

chatgpt汇编,两个关于chatgpt的问题

1.用C写一个高级的可自主学习的AI语言模型 编写一个高级的可自主学习的AI语言模型是一个复杂且庞大的工程&#xff0c;需要深入的专业知识和大量的时间精力。下面是一个简化的示例&#xff0c;演示如何使用C实现一个基本的可自主学习的AI语言模型。 首先&#xff0c;你需要定…...

ps丢失d3dcompiler_47.dll怎么办,启动无反应,分享三个解决方法

d3dcompiler_47.dll64位是windows系统中重要的dll文件&#xff0c;缺少了它可能会引起部分软件或者游戏不能运行。 如果系统出现“找不到d3dcompiler_47.dll”或“d3dcompiler_47.dll丢失”等错误信息&#xff0c;那么我们就该着手修复它。 先带了解一下d3dcompiler_47.dll是什…...

第三章nginx详解

nginx&#xff1a;高性能&#xff0c;轻量级的web服务软件。 特点&#xff1a; 1&#xff0c;稳定性高。&#xff08;没有apache稳定&#xff09; 2&#xff0c;系统资源消耗地较低。&#xff08;处理http请求的并发能力非常高&#xff0c;单台物理服务器可以处理30000-5000…...