十六、Spring Cloud Sleuth 分布式请求链路追踪
目录
- 一、概述
- 1、为什么出出现这个技术?需要解决哪些问题
- 2、是什么?
- 3、解决
- 二、搭建链路监控步骤
- 1、下载运行zipkin
- 2、服务提供者
- 3、服务调用者
- 4、测试
一、概述
1、为什么出出现这个技术?需要解决哪些问题

2、是什么?
官网: https://github.com/spring-cloud/spring-cloud-sleuth
spring-cloud-sleuth 提供了一套完整的分布式链路追踪的解决方案 ,并且兼容支持了 zipkin (展现)
3、解决
二、搭建链路监控步骤
1、下载运行zipkin
下载jar包到本地
https://repo1.maven.org/maven2/io/zipkin/zipkin-server/2.14.1/
运行jar包
java -jar zipkin-server-2.14.1-exec.jar
进入控制台
http://localhost:9411/zipkin/

2、服务提供者
1、添加依赖
<!--包含了sleuth和zipkin--><dependency><groupId>org.springframework.cloud</groupId><artifactId>spring-cloud-starter-zipkin</artifactId></dependency>
2、添加配置文件
spring:zipkin:base-url: http://localhost:9411sleuth:sampler:probability: 1
3、测试代码
@GetMapping(value = "/payment/zipkin")public String testZipkin(){return "zipkin ~~~~~~ =========";}
3、服务调用者
1、添加依赖
<!--包含了sleuth和zipkin--><dependency><groupId>org.springframework.cloud</groupId><artifactId>spring-cloud-starter-zipkin</artifactId></dependency>
2、添加配置文件
spring:zipkin:base-url: http://localhost:9411sleuth:sampler:probability: 1
3、测试代码
@GetMapping("/consumer/payment/zipkin")public String testZipKin() {return restTemplate.getForObject(PAYMANT_URL + "/payment/zipkin", String.class);}
4、测试
访问: http://localhost/consumer/payment/zipkin

相关文章:
十六、Spring Cloud Sleuth 分布式请求链路追踪
目录 一、概述1、为什么出出现这个技术?需要解决哪些问题2、是什么?3、解决 二、搭建链路监控步骤1、下载运行zipkin2、服务提供者3、服务调用者4、测试 一、概述 1、为什么出出现这个技术?需要解决哪些问题 2、是什么? 官网&am…...
ElasticSearch DSL语句(bool查询、算分控制、地理查询、排序、分页、高亮等)
文章目录 DSL 查询种类DSL query 基本语法1、全文检索2、精确查询3、地理查询4、function score (算分控制)5、bool 查询 搜索结果处理1、排序2、分页3、高亮 RestClient操作 DSL 查询种类 查询所有:查询所有数据,一般在测试时使…...
【考研数学】概率论与数理统计 | 第一章——随机事件与概率(2,概率基本公式与事件独立)
文章目录 引言四、概率基本公式4.1 减法公式4.2 加法公式4.3 条件概率公式4.4 乘法公式 五、事件的独立性5.1 事件独立的定义5.1.1 两个事件的独立5.1.2 三个事件的独立 5.2 事件独立的性质 写在最后 引言 承接上文,继续介绍概率论与数理统计第一章的内容。 四、概…...
SpringBoot整合RabbitMQ,笔记整理
1创建生产者工程springboot-rabbitmq-produce 2.修改pom.xml文件 <!--父工程--> <parent><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-parent</artifactId><version>2.6.0</version><r…...
搜狗拼音暂用了VSCode及微信小程序开发者工具快捷键Ctrl + Shit + K 搜狗拼音截图快捷键
修改搜狗拼音的快捷键 右键--更多设置--属性设置--按键--系统功能快捷键--系统功能快捷键设置--取消Ctrl Shit K的勾选--勾选截屏并设置为Ctrl Shit A 微信开发者工具设置快捷键 右键--Command Palette--删除行 微信开发者工具快捷键 删除行:Ctrl Shit K 或…...
Python包sklearn画ROC曲线和PR曲线
前言 关于ROC和PR曲线的介绍请参考: 机器学习:准确率(Precision)、召回率(Recall)、F值(F-Measure)、ROC曲线、PR曲线 参考: Python下使用sklearn绘制ROC曲线(超详细) Python绘图|Python绘制ROC曲线和PR曲线 源码 …...
snpEff变异注释的一点感想
snpEff变异注释整成人生思考 1.介绍2.安装过程以及构建物种参考数据库3.坑货来了4.结果文件判读5.小tips 1.介绍   SnpEff(Snp Effect)是一个用于预测基因组变异(例如单核苷酸变异、插入、缺失等)对基因功能的影响的生物…...
“保姆级”考研下半年备考时间表
7月-8月 确定考研目标与备考计划 暑假期间是考研复习的关键时期,需要复习的主要内容有:重点关注重要的学科和专业课程,复习相关基础知识和核心概念。制定详细的复习计划并合理安排每天的学习时间,增加真题练习熟悉考试题型和答题技…...
具有弱监督学习的精确3D人脸重建:从单幅图像到图像集的Python实现详解
随着深度学习和计算机视觉技术的飞速发展,3D人脸重建技术在多个领域获得了广泛应用,例如虚拟现实、电影特效、生物识别等。但是,由单幅图像实现高精度的3D人脸重建仍然是一个巨大的挑战。在本文中,我们将探讨如何利用弱监督学习进…...
查询投稿会议的好用网址
会议伴侣 https://www.myhuiban.com/ 艾思科蓝 https://www.ais.cn/...
一元三次方程的解
一元三次方程的解法,点击跳转知乎原文地址 (一)一元三次方程降阶 一元三次方程原型: a x 3 b x 2 c x d 0 a x^3 b x^2 cx d 0 ax3bx2cxd0 代换削元。最简单的方法是线性变化削元。假设x my n, 带入后可以削去未知数…...
aardio开发语言Excel数据表读取修改保存实例练习
import win.ui; /*DSG{{*/ var winform win.form(text"aardio form";right759;bottom479) winform.add( buttonEnd{cls"button";text"末页";left572;top442;right643;bottom473;z6}; buttonExcelRead{cls"button";text"读取Exce…...
webshell绕过
文章目录 webshell前置知识进阶绕过 webshell 前置知识 <?phpecho "A"^""; ?>运行结果 可以看到出来的结果是字符“!”。 为什么会得到这个结果?是因为代码的“A”字符与“”字符产生了异或。 php中,两个变…...
Spring Boot 统一功能处理
目录 1.用户登录权限效验 1.1 Spring AOP 用户统一登录验证的问题 1.2 Spring 拦截器 1.2.1 自定义拦截器 1.2.2 将自定义拦截器加入到系统配置 1.3 拦截器实现原理 1.3.1 实现原理源码分析 2. 统一异常处理 2.1 创建一个异常处理类 2.2 创建异常检测的类和处理业务方法 3. 统一…...
图像处理常见的两种拉流方式
传统算法或者深度学习在进行图像处理之前,总是会首先进行图像的采集,也就是所谓的拉流。解决拉流的方式有两种,一个是直接使用opencv进行取流,另一个是使用ffmpeg进行取流,如下分别介绍这两种方式进行拉流处理。 1、o…...
数据可视化数据调用浅析
数据可视化是现代数据分析和决策支持中不可或缺的一环。它将数据转化为图形、图表和可视化工具,以便更直观地理解和解释数据。在数据可视化的过程中,数据的调用和准备是关键的一步。本文将探讨数据可视化中的数据调用过程,并介绍一些常用的数…...
恒运资本:CPO概念发力走高,兆龙互联涨超10%,华是科技再创新高
CPO概念15日盘中发力走高,截至发稿,华是科技涨超15%再创新高,兆龙互联涨逾11%,中贝通讯涨停,永鼎股份、太辰光涨超5%,天孚通讯涨逾4%。 消息面上,光通讯闻名咨询机构LightCounting近日发布的202…...
【蓝桥杯】[递归]母牛的故事
原题链接:https://www.dotcpp.com/oj/problem1004.html 目录 1. 题目描述 2. 思路分析 3. 代码实现 1. 题目描述 2. 思路分析 我们列一个年份和母牛数量的表格: 通过观察,找规律,我们发现: 当年份小于等于4时&…...
使用RDP可视化远程桌面连接Linux系统
使用RDP可视化远程桌面连接Linux系统 远程桌面连接Linux安装安装包准备服务器安装xrdp远程连接 远程桌面连接Linux 通常使用SSH来连接服务器,进行命令行操作,但是这次需要远程调试生产环境的内网服务器,进行浏览器访问内网网站,至…...
数据可视化diff工具jsondiffpatch使用学习
1.jsondiffpatch 简介 jsondiffpatch 是一个用于比较和生成 JSON 数据差异的 JavaScript 库。它可以将两个 JSON 对象进行比较,并生成一个描述它们之间差异的 JSON 对象。这个差异对象可以用于多种用途,例如: 生成可视化的差异报告应用差异…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)
HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院挂号小程序
一、开发准备 环境搭建: 安装DevEco Studio 3.0或更高版本配置HarmonyOS SDK申请开发者账号 项目创建: File > New > Create Project > Application (选择"Empty Ability") 二、核心功能实现 1. 医院科室展示 /…...
电脑插入多块移动硬盘后经常出现卡顿和蓝屏
当电脑在插入多块移动硬盘后频繁出现卡顿和蓝屏问题时,可能涉及硬件资源冲突、驱动兼容性、供电不足或系统设置等多方面原因。以下是逐步排查和解决方案: 1. 检查电源供电问题 问题原因:多块移动硬盘同时运行可能导致USB接口供电不足&#x…...
.Net Framework 4/C# 关键字(非常用,持续更新...)
一、is 关键字 is 关键字用于检查对象是否于给定类型兼容,如果兼容将返回 true,如果不兼容则返回 false,在进行类型转换前,可以先使用 is 关键字判断对象是否与指定类型兼容,如果兼容才进行转换,这样的转换是安全的。 例如有:首先创建一个字符串对象,然后将字符串对象隐…...
DiscuzX3.5发帖json api
参考文章:PHP实现独立Discuz站外发帖(直连操作数据库)_discuz 发帖api-CSDN博客 简单改造了一下,适配我自己的需求 有一个站点存在多个采集站,我想通过主站拿标题,采集站拿内容 使用到的sql如下 CREATE TABLE pre_forum_post_…...
MySQL体系架构解析(三):MySQL目录与启动配置全解析
MySQL中的目录和文件 bin目录 在 MySQL 的安装目录下有一个特别重要的 bin 目录,这个目录下存放着许多可执行文件。与其他系统的可执行文件类似,这些可执行文件都是与服务器和客户端程序相关的。 启动MySQL服务器程序 在 UNIX 系统中,用…...
轻量级Docker管理工具Docker Switchboard
简介 什么是 Docker Switchboard ? Docker Switchboard 是一个轻量级的 Web 应用程序,用于管理 Docker 容器。它提供了一个干净、用户友好的界面来启动、停止和监控主机上运行的容器,使其成为本地开发、家庭实验室或小型服务器设置的理想选择…...
中科院1区顶刊|IF14+:多组学MR联合单细胞时空分析,锁定心血管代谢疾病的免疫治疗新靶点
中科院1区顶刊|IF14:多组学MR联合单细胞时空分析,锁定心血管代谢疾病的免疫治疗新靶点 当下,免疫与代谢性疾病的关联研究已成为生命科学领域的前沿热点。随着研究的深入,我们愈发清晰地认识到免疫系统与代谢系统之间存在着极为复…...
【大厂机试题解法笔记】矩阵匹配
题目 从一个 N * M(N ≤ M)的矩阵中选出 N 个数,任意两个数字不能在同一行或同一列,求选出来的 N 个数中第 K 大的数字的最小值是多少。 输入描述 输入矩阵要求:1 ≤ K ≤ N ≤ M ≤ 150 输入格式 N M K N*M矩阵 输…...
7种分类数据编码技术详解:从原理到实战
在数据分析和机器学习领域,分类数据(Categorical Data)的处理是一个基础但至关重要的环节。分类数据指的是由有限数量的离散值组成的数据类型,如性别(男/女)、颜色(红/绿/蓝)或产品类…...
