Lookup Singularity
1. 引言
Lookup Singularity概念 由Barry WhiteHat在2022年11月在zkResearch论坛 Lookup Singularity中首次提出:
- 其主要目的是:让SNARK前端生成仅需做lookup的电路。
- Barry预测这样有很多好处,特别是对于可审计性 以及 形式化验证:
- 更易于审计单个lookup argument和各种lookup tables,不再需要数千行的硬编码电路。
- 承认现有的lookup argument方案具有性能瓶颈 但 预测将得到改进:
- 强调可能需要支持巨大table,如size为 2 128 2^{128} 2128的table。
- Lasso/Jolt可能可实现该愿景?
多年来,ZKP的核心元素为check:
- A ∗ B + D = = C A*B+D==C A∗B+D==C
在构建整个电路过程中,重复运用该check。将这种表示的电路称为R1CS。
但是,对于某些任务,R1CS昂贵得令人望而却步,为此,引入了lookup arguments的大量使用。当前,很多ZKP使用lookup argument + R1CS变种多项式承诺 来构建电路。
仅使用R1CS来构建电路存在一些障碍。为此,人们创建了一些hand tuned circuits,在这些hand tuned circuits中,同时包含了多项式约束和lookup arguments。这些hand tuned circuits是特定的,并不是很容易扩展。
1.1 多项式约束
多项式约束是复杂的。电路实现人员构建大量多项式方程式,整个电路定义为由多项式方程式组成的系统。
对这个“由多项式方程式组成的系统” 的solution,构成了a valid proof。很难对方程组的结果进行推理。目前的形式化验证工具无法求解素数域中的多项式方程。
1.2 Lookup argument
lookup argument为set membership check。lookup argument:
- 首次用于做高效的big integer arithmetic。
- 目前还用作VM的控制流
- 做某些不是snark-friendly的运算
- 并不是对所有运算都是更高效的
- 每个lookup会引入一定的prover开销
- 目前控制使用lookup argument的次数 的原因在于,其对Prover来说是昂贵的。
2. 为何Lookup arguments很好?
2.1 语言
当前的snark friendly语言对于新程序员来说是难学的。其使用了不同于之前范式的素数域和多项式约束。而仅使用lookup arguments的语言可能会更简单。当前的语言擅长做snarks定向计算,但当用于传统计算时要昂贵很多。
而仅有lookup的语言,将:
- 既擅长做snarks定向计算
- 也擅长做传统计算
2.2 安全审查
审计人员不再需要取对一组多项式方程式求解。lookup arguments推理起来要简单得多。
如:某电路具有一个ANDgate,有2个输入bit 变量,输出为这2个输入的AND运算结果。
多项式方案为:
(x)(x-1) = 0
y(y-1) = 0
x*y = out
return(out)
Lookup方案为:
out = get x,y from AND table
return(out)
其中AND lookup table为:

由此可知,Lookup方案要简单得多。因此,对于仅有lookup的电路,要更容易找出bug。
2.3 形式化验证
形式化验证工具需对一组多项式方程式求解。现有的形式化验证工具不擅长求解素数域中的多项式方程——这样会引入大量额外工作。
而仅使用lookup argument的话,则可使用现有的形式化验证工具,同时可能可探索一些其它方案。
lookup argument限制了电路中任意point的有限变量集合,使得可能的变量集合由 2 254 2^{254} 2254 限制为了 2 2 2或 2 16 2^{16} 216。这样甚至可支持做state space enumeration 来确认 “电路是正确的”。
2.4 信息论对比
为高效将程序描述为电路,需构建一个电路来将“某输入”映射为“正确的输出”。可将“电路”看成是“每个prover time second编码的信息”。这似乎是对比“实现电路的不同方式”的一种好角度。
多项式约束具有有限的degree:
- 因为degree会影响Prover time。
- degree会限制可编码的信息。
如degree为5的多项式可将5个输入值 映射为 5个输出值。除非增加degree,否则无法在该多项式中包含更多的值。
很多情况下,这样是ok的,因为是使用多项式约束的structure来做计算。因此,乘法运算对应为多项式运算 A ∗ B = = C A*B==C A∗B==C,而XOR运算不是,需要编码为keys to values。
Lookup argument可包含更多的信息。之前已限制lookup table size为 2 28 2^{28} 228个元素。但近期研究成果表明,circuit size仅受限于可灵活完成的最大trusted setup——会限制table_size。
Baloo: Nearly Optimal Lookup Arguments中指出:
- 单个多项式约束中可包含约 5 ∗ 2 254 5*2^{254} 5∗2254位信息。
- Lookup argument可包含 2 254 ∗ table_size 2^{254}*\text{table\_size} 2254∗table_size
当使用多项式约束的structure时,多项式约束是很有用的。但随着更大尺寸的table变得可行,这种优势将消失。
3. 结论
若可仅使用lookup argument来高效定义电路,则将由更简单的工具和电路。
这样,lookup argument 将总是比 多项式约束 效率更高。
未来将关注构建以lookup为中心的ZKP工具。
4. 展望
未来工作:
- 比较现有电路的效率
- 构建仅有lookup的语言示例
- 对不同lookup argument效率做对比,并预测改进空间。
- 寻找lookup argument优于(和劣于)多项式约束的实例:
- 寻找lookup argument 和 多项式约束 的worst case。
- 对现有电路进行benchmark,比对效率:
- lookup argument
- lookup + polynomial constraints
参考资料
[1] Lookup Singularity
[2] The lookup singularity - how zero-knowledge proofs can be made simpler and easier to review.
Justin Thaler系列博客
- SNARK Design
- Rollup项目的SNARK景观
- SNARK原理示例
- SNARK性能及安全——Prover篇
- SNARK性能及安全——Verifier篇
- sum-check protocol in zkproof
- sum-check protocol深入研究
- Lasso、Jolt 以及 Lookup Singularity——Part 1
- Lasso、Jolt 以及 Lookup Singularity——Part 2
lookup系列博客
- PLOOKUP
- PLOOKUP代码解析
- Efficient polynomial commitment schemes for multiple points and polynomials学习笔记
- PLONK + PLOOKUP
- PlonKup: Reconciling PlonK with plookup
- PLONK: permutations over lagrange-bases for oecumenical noninteractive arguments of knowledge 学习笔记
- Plonk代码解析
- RapidUp: Multi-Domain Permutation Protocol for Lookup Tables学习笔记
- Lookup argument总览
- Halo2 学习笔记——设计之Proving system之Lookup argument(1)
- 多变量lookup argument
- cq:fast lookup argument
- Lookup Argument性能优化——Caulk
- 2023年 ZK Hack以及ZK Summit 亮点记
- Research Day 2023:Succinct ZKP最新进展
- Lasso、Jolt 以及 Lookup Singularity——Part 1
- Lasso、Jolt 以及 Lookup Singularity——Part 2
相关文章:
Lookup Singularity
1. 引言 Lookup Singularity概念 由Barry WhiteHat在2022年11月在zkResearch论坛 Lookup Singularity中首次提出: 其主要目的是:让SNARK前端生成仅需做lookup的电路。Barry预测这样有很多好处,特别是对于可审计性 以及 形式化验证ÿ…...
idea 本地版本控制 local history
idea 本地版本控制 local history 如何打开 1 自定义快捷键 settings->keymap->搜索框输入 show history -》Add Keyboard Shortcut -》设置为 CtrlAltL 2 右键文件-》local history -》show history 新建文件 版本1,creating class com.geekmice…这个是初…...
【Freertos基础入门】深入浅出freertos互斥量
文章目录 前言一、互斥量是什么?二、互斥量的使用场景三、互斥量的使用1.创建 2.删除互斥量3.give和take四、示例代码总结 前言 FreeRTOS是一款开源的实时操作系统,提供了许多基本的内核对象,其中包括互斥锁(Mutex)。…...
皮爷咖啡基于亚马逊云科技的数据架构,加速数据治理进程
皮爷咖啡(Peet’s Coffee)是美国精品咖啡品牌,于2017年进入中国,为中国消费者带来传统经典咖啡饮品,并特别呈现更加丰富的品质咖啡饮品体验。通过深入应用亚马逊云科技云原生数据库产品Amazon Redshift以及Amazon DMS等…...
C++ string类详解
⭐️ string string 是表示字符串的字符串类,该类的接口与常规容器的接口基本一致,还有一些额外的操作 string 的常规操作,在使用 string 类时,需要使用 #include <string> 以及 using namespace std;。 ✨ 帮助文档&…...
深入浅出Pytorch函数——torch.nn.init.ones_
分类目录:《深入浅出Pytorch函数》总目录 相关文章: 深入浅出Pytorch函数——torch.nn.init.calculate_gain 深入浅出Pytorch函数——torch.nn.init.uniform_ 深入浅出Pytorch函数——torch.nn.init.normal_ 深入浅出Pytorch函数——torch.nn.init.c…...
一、docker及mysql基本语法
文章目录 一、docker相关命令二、mysql相关命令 一、docker相关命令 (1)拉取镜像:docker pull <镜像ID/image> (2)查看当前docker中的镜像:docker images (3)删除镜像&#x…...
【计算机网络】13、ARP 包:广播自己的 mac 地址和 ip
机器启动时,会向外广播自己的 mac 地址和 ip 地址,这个即称为 arp 协议。范围是未经过路由器的部分,如下图的蓝色部分,范围内的设备都会在本地记录 mac 和 ip 的绑定信息,若有重复则覆盖更新(例如先收到 ma…...
通过微软Azure调用GPT的接口API-兼容平替OpenAI官方的注意事项
众所周知,我们是访问不通OpenAI官方服务的,但是我们可以自己通过代理或者使用第三方代理访问接口 现在新出台的规定禁止使用境外的AI大模型接口对境内客户使用,所以我们需要使用国内的大模型接口 国内的效果真的很差,现在如果想使…...
回归预测 | MATLAB实现BO-SVM贝叶斯优化支持向量机多输入单输出回归预测(多指标,多图)
回归预测 | MATLAB实现BO-SVM贝叶斯优化支持向量机多输入单输出回归预测(多指标,多图) 目录 回归预测 | MATLAB实现BO-SVM贝叶斯优化支持向量机多输入单输出回归预测(多指标,多图)效果一览基本介绍程序设计…...
GAN!生成对抗网络GAN全维度介绍与实战
目录 一、引言1.1 生成对抗网络简介1.2 应用领域概览1.3 GAN的重要性 二、理论基础2.1 生成对抗网络的工作原理2.1.1 生成器生成过程 2.1.2 判别器判别过程 2.1.3 训练过程训练代码示例 2.1.4 平衡与收敛 2.2 数学背景2.2.1 损失函数生成器损失判别器损失 2.2.2 优化方法优化代…...
自动驾驶仿真:基于Carsim开发的加速度请求模型
文章目录 前言一、加速度输出变量问题澄清二、配置Carsim动力学模型三、配置Carsim驾驶员模型四、添加VS Command代码五、Run Control联合仿真六、加速度模型效果验证 前言 1、自动驾驶行业中,算法端对于纵向控制的功能预留接口基本都是加速度,我们需要…...
.netcore grpc客户端工厂及依赖注入使用
一、客户端工厂概述 gRPC 与 HttpClientFactory 的集成提供了一种创建 gRPC 客户端的集中方式。可以通过依赖包Grpc.Net.ClientFactory中的AddGrpcClient进行gRPC客户端依赖注入AddGrpcClient函数提供了许多配置项用于处理一些其他事项;例如AOP、重试策略等 二、案…...
C语言入门_Day7 逻辑运算
目录: 前言 1.逻辑运算 2.优先级 3.易错点 4.思维导图 前言 算术运算用来进行数据的计算和处理;比较运算是用来比较不同的数据,进而来决定下一步怎么做;除此以外还有一种运算叫做逻辑运算,它的应用场景也是用来影…...
什么是Eureka?以及Eureka注册服务的搭建
导包 <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0"xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation"http://maven.apache.org/POM/4.0.0 htt…...
Docker安装并配置镜像加速器,镜像、容器的基本操作
目录 1.安装docker服务,配置镜像加速器 (1)安装依赖的软件包 (2)设置yum源,我配置的阿里仓库 (3)选择一个版本安装 (4)启动docker服务,并设置…...
前端 -- 基础 网页、HTML、 WEB标准 扫盲详解
什么是网页 : 网页是构成网站的基本元素,它通常由 图片、链接、文字、声音、视频等元素组成。 通常我们看到的网页 ,常见以 .html 或 .htm 后缀结尾的文件, 因此俗称 HTML 文件 什么是 HTML : HTML 指的是 超文本标记语言,…...
分布式锁实现方式
分布式锁 1 分布式锁介绍 1.1 什么是分布式 一个大型的系统往往被分为几个子系统来做,一个子系统可以部署在一台机器的多个 JVM(java虚拟机) 上,也可以部署在多台机器上。但是每一个系统不是独立的,不是完全独立的。需要相互通信ÿ…...
C语言小练习(一)
🌞 “人生是用来体验的,不是用来绎示完美的,接受迟钝和平庸,允许出错,允许自己偶尔断电,带着遗憾,拼命绽放,这是与自己达成和解的唯一办法。放下焦虑,和不完美的自己和解…...
Flask-flask系统运行后台轮询线程
对于有些flask系统,后台需要启动轮询线程,执行特定的任务,以下是一个简单的例子。 globals/daemon.py import threading from app.executor.ops_service import find_and_run_ops_task_todo_in_redisdef context_run_func(app, func):with …...
【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表
1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...
镜像里切换为普通用户
如果你登录远程虚拟机默认就是 root 用户,但你不希望用 root 权限运行 ns-3(这是对的,ns3 工具会拒绝 root),你可以按以下方法创建一个 非 root 用户账号 并切换到它运行 ns-3。 一次性解决方案:创建非 roo…...
CVE-2020-17519源码分析与漏洞复现(Flink 任意文件读取)
漏洞概览 漏洞名称:Apache Flink REST API 任意文件读取漏洞CVE编号:CVE-2020-17519CVSS评分:7.5影响版本:Apache Flink 1.11.0、1.11.1、1.11.2修复版本:≥ 1.11.3 或 ≥ 1.12.0漏洞类型:路径遍历&#x…...
C++.OpenGL (20/64)混合(Blending)
混合(Blending) 透明效果核心原理 #mermaid-svg-SWG0UzVfJms7Sm3e {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-icon{fill:#552222;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-text{fill…...
Vue 模板语句的数据来源
🧩 Vue 模板语句的数据来源:全方位解析 Vue 模板(<template> 部分)中的表达式、指令绑定(如 v-bind, v-on)和插值({{ }})都在一个特定的作用域内求值。这个作用域由当前 组件…...
HTML前端开发:JavaScript 获取元素方法详解
作为前端开发者,高效获取 DOM 元素是必备技能。以下是 JS 中核心的获取元素方法,分为两大系列: 一、getElementBy... 系列 传统方法,直接通过 DOM 接口访问,返回动态集合(元素变化会实时更新)。…...
接口 RESTful 中的超媒体:REST 架构的灵魂驱动
在 RESTful 架构中,** 超媒体(Hypermedia)** 是一个核心概念,它体现了 REST 的 “表述性状态转移(Representational State Transfer)” 的本质,也是区分 “真 RESTful API” 与 “伪 RESTful AP…...
OCC笔记:TDF_Label中有多个相同类型属性
注:OCCT版本:7.9.1 TDF_Label中有多个相同类型的属性的方案 OCAF imposes the restriction that only one attribute type may be allocated to one label. It is necessary to take into account the design of the application data tree. For exampl…...
< 自用文 OS有关 新的JD云主机> 国内 京东云主机 2C4G 60G 5Mb 498/36月 Ubuntu22
攒了这么久,废话一些: 前几周很多事儿,打算回北京,开个清真的德克萨斯烤肉店,写了一篇 : < 自用文 Texas style Smoker > 美式德克萨斯烟熏炉 从设计到实现 (第一部分&…...
MQTT协议:物联网时代的通信基石
MQTT协议:物联网时代的通信基石 在当今快速发展的物联网(IoT)时代,设备之间的通信变得尤为重要。MQTT(Message Queuing Telemetry Transport)协议作为一种轻量级的消息传输协议,正逐渐成为物联…...
