深入浅出Pytorch函数——torch.nn.init.dirac_
分类目录:《深入浅出Pytorch函数》总目录
相关文章:
· 深入浅出Pytorch函数——torch.nn.init.calculate_gain
· 深入浅出Pytorch函数——torch.nn.init.uniform_
· 深入浅出Pytorch函数——torch.nn.init.normal_
· 深入浅出Pytorch函数——torch.nn.init.constant_
· 深入浅出Pytorch函数——torch.nn.init.ones_
· 深入浅出Pytorch函数——torch.nn.init.zeros_
· 深入浅出Pytorch函数——torch.nn.init.eye_
· 深入浅出Pytorch函数——torch.nn.init.dirac_
· 深入浅出Pytorch函数——torch.nn.init.xavier_uniform_
· 深入浅出Pytorch函数——torch.nn.init.xavier_normal_
· 深入浅出Pytorch函数——torch.nn.init.kaiming_uniform_
· 深入浅出Pytorch函数——torch.nn.init.kaiming_normal_
· 深入浅出Pytorch函数——torch.nn.init.trunc_normal_
· 深入浅出Pytorch函数——torch.nn.init.orthogonal_
· 深入浅出Pytorch函数——torch.nn.init.sparse_
torch.nn.init模块中的所有函数都用于初始化神经网络参数,因此它们都在torc.no_grad()模式下运行,autograd不会将其考虑在内。
该函数用 Dirac δ \text{Dirac}\delta Diracδ 函数来填充3-5维输入张量或变量,在卷积层尽可能多的保存输入通道特征。
语法
torch.nn.init.dirac_(tensor, groups=1)
参数
tensor:[Tensor] 一个3~5维张量torch.Tensorgroups:[int]conv层中的组数,默认值为1
返回值
一个torch.Tensor且参数tensor也会更新
实例
w = torch.empty(3, 16, 5, 5)
nn.init.dirac_(w)
w = torch.empty(3, 24, 5, 5)
nn.init.dirac_(w, 3)
函数实现
def dirac_(tensor, groups=1):r"""Fills the {3, 4, 5}-dimensional input `Tensor` with the Diracdelta function. Preserves the identity of the inputs in `Convolutional`layers, where as many input channels are preserved as possible. In caseof groups>1, each group of channels preserves identityArgs:tensor: a {3, 4, 5}-dimensional `torch.Tensor`groups (int, optional): number of groups in the conv layer (default: 1)Examples:>>> w = torch.empty(3, 16, 5, 5)>>> nn.init.dirac_(w)>>> w = torch.empty(3, 24, 5, 5)>>> nn.init.dirac_(w, 3)"""dimensions = tensor.ndimension()if dimensions not in [3, 4, 5]:raise ValueError("Only tensors with 3, 4, or 5 dimensions are supported")sizes = tensor.size()if sizes[0] % groups != 0:raise ValueError('dim 0 must be divisible by groups')out_chans_per_grp = sizes[0] // groupsmin_dim = min(out_chans_per_grp, sizes[1])with torch.no_grad():tensor.zero_()for g in range(groups):for d in range(min_dim):if dimensions == 3: # Temporal convolutiontensor[g * out_chans_per_grp + d, d, tensor.size(2) // 2] = 1elif dimensions == 4: # Spatial convolutiontensor[g * out_chans_per_grp + d, d, tensor.size(2) // 2,tensor.size(3) // 2] = 1else: # Volumetric convolutiontensor[g * out_chans_per_grp + d, d, tensor.size(2) // 2,tensor.size(3) // 2, tensor.size(4) // 2] = 1return tensor
相关文章:
深入浅出Pytorch函数——torch.nn.init.dirac_
分类目录:《深入浅出Pytorch函数》总目录 相关文章: 深入浅出Pytorch函数——torch.nn.init.calculate_gain 深入浅出Pytorch函数——torch.nn.init.uniform_ 深入浅出Pytorch函数——torch.nn.init.normal_ 深入浅出Pytorch函数——torch.nn.init.c…...
[Go版]算法通关村第十三关青铜——数字数学问题之统计问题、溢出问题、进制问题
这里写自定义目录标题 数字统计专题题目:数组元素积的符号思路分析:无需真计算,只需判断负数个数是奇是偶复杂度:时间复杂度 O ( n ) O(n) O(n)、空间复杂度 O ( 1 ) O(1) O(1)Go代码 题目:阶乘尾数0的个数思路分析&am…...
GPT-4一纸重洗:从97.6%降至2.4%的巨大挑战
斯坦福大学和加州大学伯克利分校合作进行的一项 “How Is ChatGPTs Behavior Changing Over Time?” 研究表明,随着时间的推移,GPT-4 的响应能力非但没有提高,反而随着语言模型的进一步更新而变得更糟糕。 研究小组评估了 2023 年 3 月和 20…...
大数据Flink学习圣经:一本书实现大数据Flink自由
学习目标:三栖合一架构师 本文是《大数据Flink学习圣经》 V1版本,是 《尼恩 大数据 面试宝典》姊妹篇。 这里特别说明一下:《尼恩 大数据 面试宝典》5个专题 PDF 自首次发布以来, 已经汇集了 好几百题,大量的大厂面试…...
什么是微服务?
2.微服务的优缺点 优点 单一职责原则每个服务足够内聚,足够小,代码容易理解,这样能聚焦一个指定的业务功能或业务需求;开发简单,开发效率提高,一个服务可能就是专一的只干一件事;微服务能够被小…...
【C++入门到精通】C++入门 —— 容器适配器、stack和queue(STL)
阅读导航 前言stack1. stack概念2. stack特点3. stack使用 queue1. queue概念2. queue特点3. queue使用 容器适配器1. 什么是适配器2. STL标准库中stack和queue的底层结构3. STL标准库中对于stack和queue的模拟实现⭕stack的模拟实现⭕stack的模拟实现 总结温馨提示 前言 文章…...
系统架构设计专业技能 · 软件工程之需求工程
系列文章目录 系统架构设计高级技能 软件架构概念、架构风格、ABSD、架构复用、DSSA(一)【系统架构设计师】 系统架构设计高级技能 系统质量属性与架构评估(二)【系统架构设计师】 系统架构设计高级技能 软件可靠性分析与设计…...
2023国赛数学建模E题思路模型代码 高教社杯
本次比赛我们将会全程更新思路模型及代码,大家查看文末名片获取 之前国赛相关的资料和助攻可以查看 2022数学建模国赛C题思路分析_2022国赛c题matlab_UST数模社_的博客-CSDN博客 2022国赛数学建模A题B题C题D题资料思路汇总 高教社杯_2022国赛c题matlab_UST数模社…...
Baumer工业相机堡盟工业相机如何通过BGAPISDK设置相机的Bufferlist序列(C++)
Baumer工业相机堡盟工业相机如何通过BGAPISDK设置相机的Bufferlist序列(C) Baumer工业相机Baumer工业相机的Bufferlist序列功能的技术背景CameraExplorer如何查看相机Bufferlist功能在BGAPI SDK里通过函数设置相机Bufferlist参数 Baumer工业相机通过BGAP…...
从 Ansible Galaxy 使用角色
从 Ansible Galaxy 使用角色 根据下列要求,创建一个名为 /home/curtis/ansible/roles.yml 的 playbook : playbook 中包含一个 play, 该 play 在 balancers 主机组中的主机上运行并将使用 balancer 角色。 此角色配置一项服务,以…...
ROS与STM32通信(二)-pyserial
文章目录 下位机上位机自定义msg消息发布订阅 ROS与STM32通信一般分为两种, STM32上运行ros节点实现通信使用普通的串口库进行通信,然后以话题方式发布 第一种方式具体实现过程可参考上篇文章ROS与STM32通信-rosserial,上述文章中的收发频率…...
[oneAPI] 使用Bert进行中文文本分类
[oneAPI] 使用Bert进行中文文本分类 Intel Optimization for PyTorch基于BERT的文本分类模型数据预处理数据集定义tokenize建立词表转换为Token序列padding处理与mask 模型 结果OneAPI参考资料 比赛:https://marketing.csdn.net/p/f3e44fbfe46c465f4d9d6c23e38e0517…...
【数据治理】什么是数据库归档
文章目录 前言什么是数据归档 前言 如果您的日常工作中需要对数据库进行管理,那您肯定已经或即将遭遇这样的困惑:随着业务的蓬勃发展,数据库文件的大小逐渐增大,您需要为在线业务提供越来越大的高性能磁盘容量,但数据…...
AI代码补全 案例 - 阿里云智能编码插件Cosy
文章目录 Cosy简介Cosy安装Marketplace安装【推荐】离线安装安装效果Cosy功能体验代码智能补全代码示例搜索API搜索自然语言搜索控制台异常搜索优质文档搜索Cosy体验有感参考Cosy简介 阿里云智能编码插件(Alibaba Cloud AI Coding Assistant)是一款AI编程助手,提供代码智能…...
【Linux】进程信号篇Ⅰ:信号的产生(signal、kill、raise、abort、alarm)、信号的保存(core dump)
文章目录 一、 signal 函数:用户自定义捕捉信号二、信号的产生1. 通过中断按键产生信号2. 调用系统函数向进程发信号2.1 kill 函数:给任意进程发送任意信号2.2 raise 函数:给调用进程发送任意信号2.3 abort 函数:给调用进程发送 6…...
漏洞指北-VulFocus靶场专栏-中级03
漏洞指北-VulFocus靶场专栏-初级03 中级009 🌸gxlcms-cve_2018_14685🌸step1:安装系统 密码rootstep2 进入后台页面 账号密码:admin amdin888step3 查看详细 有phpinfo() 中级010 🌸dedecms-cnvd_2018_01221dz…...
【leetcode 力扣刷题】数组交集(数组、set、map都可实现哈希表)
数组交集 349. 两个数组的交集排序+双指针数组实现哈希表unordered_setunordered_map 350. 两个数组的交集Ⅱ排序 双指针数组实现哈希表unordered_map 349. 两个数组的交集 题目链接:349. 两个数组的交集 题目内容如下,理解题意:…...
MySQL 8.0.31 登录提示caching_sha2_password问题解决方法
MySQL 8.0.31 登录提示caching_sha2_password问题解决方法 MySQL 8.0.31 使用了 caching_sha2_password 作为默认的身份验证插件,这可能导致一些旧的客户端和库无法连接到服务器。以下是一些解决此类问题的常见步骤和建议: 确保MySQL服务正在运行&#…...
[Google] DeepMind Gemini: 新一代LLM结合AlphaGo技术将力压 GPT-4|未来 AI 领域的新巨头
2016年,Google DeepMind 人工智能实验室孕育出的 AlphaGo 人工智能程序在围棋赛场上一举击败冠军选手,成为历史的见证者。如今,DeepMind 联合创始人兼首席执行官 Demis Hassabis 表示,他们的工程师正借鉴 AlphaGo 的技术研发一款名…...
Maven高级
目录 一、分模块开发与设计 1. 分模块开发的意义 2. 分模块开发(模块拆分) (1)创建Maven模块 (2)书写模块代码 (3)通过maven指令安装模块到本地仓库(install指令&…...
【网络】每天掌握一个Linux命令 - iftop
在Linux系统中,iftop是网络管理的得力助手,能实时监控网络流量、连接情况等,帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...
Java 加密常用的各种算法及其选择
在数字化时代,数据安全至关重要,Java 作为广泛应用的编程语言,提供了丰富的加密算法来保障数据的保密性、完整性和真实性。了解这些常用加密算法及其适用场景,有助于开发者在不同的业务需求中做出正确的选择。 一、对称加密算法…...
使用Matplotlib创建炫酷的3D散点图:数据可视化的新维度
文章目录 基础实现代码代码解析进阶技巧1. 自定义点的大小和颜色2. 添加图例和样式美化3. 真实数据应用示例实用技巧与注意事项完整示例(带样式)应用场景在数据科学和可视化领域,三维图形能为我们提供更丰富的数据洞察。本文将手把手教你如何使用Python的Matplotlib库创建引…...
LangChain知识库管理后端接口:数据库操作详解—— 构建本地知识库系统的基础《二》
这段 Python 代码是一个完整的 知识库数据库操作模块,用于对本地知识库系统中的知识库进行增删改查(CRUD)操作。它基于 SQLAlchemy ORM 框架 和一个自定义的装饰器 with_session 实现数据库会话管理。 📘 一、整体功能概述 该模块…...
GitHub 趋势日报 (2025年06月06日)
📊 由 TrendForge 系统生成 | 🌐 https://trendforge.devlive.org/ 🌐 本日报中的项目描述已自动翻译为中文 📈 今日获星趋势图 今日获星趋势图 590 cognee 551 onlook 399 project-based-learning 348 build-your-own-x 320 ne…...
关于uniapp展示PDF的解决方案
在 UniApp 的 H5 环境中使用 pdf-vue3 组件可以实现完整的 PDF 预览功能。以下是详细实现步骤和注意事项: 一、安装依赖 安装 pdf-vue3 和 PDF.js 核心库: npm install pdf-vue3 pdfjs-dist二、基本使用示例 <template><view class"con…...
Chromium 136 编译指南 Windows篇:depot_tools 配置与源码获取(二)
引言 工欲善其事,必先利其器。在完成了 Visual Studio 2022 和 Windows SDK 的安装后,我们即将接触到 Chromium 开发生态中最核心的工具——depot_tools。这个由 Google 精心打造的工具集,就像是连接开发者与 Chromium 庞大代码库的智能桥梁…...
水泥厂自动化升级利器:Devicenet转Modbus rtu协议转换网关
在水泥厂的生产流程中,工业自动化网关起着至关重要的作用,尤其是JH-DVN-RTU疆鸿智能Devicenet转Modbus rtu协议转换网关,为水泥厂实现高效生产与精准控制提供了有力支持。 水泥厂设备众多,其中不少设备采用Devicenet协议。Devicen…...
WebRTC调研
WebRTC是什么,为什么,如何使用 WebRTC有什么优势 WebRTC Architecture Amazon KVS WebRTC 其它厂商WebRTC 海康门禁WebRTC 海康门禁其他界面整理 威视通WebRTC 局域网 Google浏览器 Microsoft Edge 公网 RTSP RTMP NVR ONVIF SIP SRT WebRTC协…...
如何通过git命令查看项目连接的仓库地址?
要通过 Git 命令查看项目连接的仓库地址,您可以使用以下几种方法: 1. 查看所有远程仓库地址 使用 git remote -v 命令,它会显示项目中配置的所有远程仓库及其对应的 URL: git remote -v输出示例: origin https://…...
