深入浅出Pytorch函数——torch.nn.init.dirac_
分类目录:《深入浅出Pytorch函数》总目录
相关文章:
· 深入浅出Pytorch函数——torch.nn.init.calculate_gain
· 深入浅出Pytorch函数——torch.nn.init.uniform_
· 深入浅出Pytorch函数——torch.nn.init.normal_
· 深入浅出Pytorch函数——torch.nn.init.constant_
· 深入浅出Pytorch函数——torch.nn.init.ones_
· 深入浅出Pytorch函数——torch.nn.init.zeros_
· 深入浅出Pytorch函数——torch.nn.init.eye_
· 深入浅出Pytorch函数——torch.nn.init.dirac_
· 深入浅出Pytorch函数——torch.nn.init.xavier_uniform_
· 深入浅出Pytorch函数——torch.nn.init.xavier_normal_
· 深入浅出Pytorch函数——torch.nn.init.kaiming_uniform_
· 深入浅出Pytorch函数——torch.nn.init.kaiming_normal_
· 深入浅出Pytorch函数——torch.nn.init.trunc_normal_
· 深入浅出Pytorch函数——torch.nn.init.orthogonal_
· 深入浅出Pytorch函数——torch.nn.init.sparse_
torch.nn.init模块中的所有函数都用于初始化神经网络参数,因此它们都在torc.no_grad()模式下运行,autograd不会将其考虑在内。
该函数用 Dirac δ \text{Dirac}\delta Diracδ 函数来填充3-5维输入张量或变量,在卷积层尽可能多的保存输入通道特征。
语法
torch.nn.init.dirac_(tensor, groups=1)
参数
tensor:[Tensor] 一个3~5维张量torch.Tensorgroups:[int]conv层中的组数,默认值为1
返回值
一个torch.Tensor且参数tensor也会更新
实例
w = torch.empty(3, 16, 5, 5)
nn.init.dirac_(w)
w = torch.empty(3, 24, 5, 5)
nn.init.dirac_(w, 3)
函数实现
def dirac_(tensor, groups=1):r"""Fills the {3, 4, 5}-dimensional input `Tensor` with the Diracdelta function. Preserves the identity of the inputs in `Convolutional`layers, where as many input channels are preserved as possible. In caseof groups>1, each group of channels preserves identityArgs:tensor: a {3, 4, 5}-dimensional `torch.Tensor`groups (int, optional): number of groups in the conv layer (default: 1)Examples:>>> w = torch.empty(3, 16, 5, 5)>>> nn.init.dirac_(w)>>> w = torch.empty(3, 24, 5, 5)>>> nn.init.dirac_(w, 3)"""dimensions = tensor.ndimension()if dimensions not in [3, 4, 5]:raise ValueError("Only tensors with 3, 4, or 5 dimensions are supported")sizes = tensor.size()if sizes[0] % groups != 0:raise ValueError('dim 0 must be divisible by groups')out_chans_per_grp = sizes[0] // groupsmin_dim = min(out_chans_per_grp, sizes[1])with torch.no_grad():tensor.zero_()for g in range(groups):for d in range(min_dim):if dimensions == 3: # Temporal convolutiontensor[g * out_chans_per_grp + d, d, tensor.size(2) // 2] = 1elif dimensions == 4: # Spatial convolutiontensor[g * out_chans_per_grp + d, d, tensor.size(2) // 2,tensor.size(3) // 2] = 1else: # Volumetric convolutiontensor[g * out_chans_per_grp + d, d, tensor.size(2) // 2,tensor.size(3) // 2, tensor.size(4) // 2] = 1return tensor
相关文章:
深入浅出Pytorch函数——torch.nn.init.dirac_
分类目录:《深入浅出Pytorch函数》总目录 相关文章: 深入浅出Pytorch函数——torch.nn.init.calculate_gain 深入浅出Pytorch函数——torch.nn.init.uniform_ 深入浅出Pytorch函数——torch.nn.init.normal_ 深入浅出Pytorch函数——torch.nn.init.c…...
[Go版]算法通关村第十三关青铜——数字数学问题之统计问题、溢出问题、进制问题
这里写自定义目录标题 数字统计专题题目:数组元素积的符号思路分析:无需真计算,只需判断负数个数是奇是偶复杂度:时间复杂度 O ( n ) O(n) O(n)、空间复杂度 O ( 1 ) O(1) O(1)Go代码 题目:阶乘尾数0的个数思路分析&am…...
GPT-4一纸重洗:从97.6%降至2.4%的巨大挑战
斯坦福大学和加州大学伯克利分校合作进行的一项 “How Is ChatGPTs Behavior Changing Over Time?” 研究表明,随着时间的推移,GPT-4 的响应能力非但没有提高,反而随着语言模型的进一步更新而变得更糟糕。 研究小组评估了 2023 年 3 月和 20…...
大数据Flink学习圣经:一本书实现大数据Flink自由
学习目标:三栖合一架构师 本文是《大数据Flink学习圣经》 V1版本,是 《尼恩 大数据 面试宝典》姊妹篇。 这里特别说明一下:《尼恩 大数据 面试宝典》5个专题 PDF 自首次发布以来, 已经汇集了 好几百题,大量的大厂面试…...
什么是微服务?
2.微服务的优缺点 优点 单一职责原则每个服务足够内聚,足够小,代码容易理解,这样能聚焦一个指定的业务功能或业务需求;开发简单,开发效率提高,一个服务可能就是专一的只干一件事;微服务能够被小…...
【C++入门到精通】C++入门 —— 容器适配器、stack和queue(STL)
阅读导航 前言stack1. stack概念2. stack特点3. stack使用 queue1. queue概念2. queue特点3. queue使用 容器适配器1. 什么是适配器2. STL标准库中stack和queue的底层结构3. STL标准库中对于stack和queue的模拟实现⭕stack的模拟实现⭕stack的模拟实现 总结温馨提示 前言 文章…...
系统架构设计专业技能 · 软件工程之需求工程
系列文章目录 系统架构设计高级技能 软件架构概念、架构风格、ABSD、架构复用、DSSA(一)【系统架构设计师】 系统架构设计高级技能 系统质量属性与架构评估(二)【系统架构设计师】 系统架构设计高级技能 软件可靠性分析与设计…...
2023国赛数学建模E题思路模型代码 高教社杯
本次比赛我们将会全程更新思路模型及代码,大家查看文末名片获取 之前国赛相关的资料和助攻可以查看 2022数学建模国赛C题思路分析_2022国赛c题matlab_UST数模社_的博客-CSDN博客 2022国赛数学建模A题B题C题D题资料思路汇总 高教社杯_2022国赛c题matlab_UST数模社…...
Baumer工业相机堡盟工业相机如何通过BGAPISDK设置相机的Bufferlist序列(C++)
Baumer工业相机堡盟工业相机如何通过BGAPISDK设置相机的Bufferlist序列(C) Baumer工业相机Baumer工业相机的Bufferlist序列功能的技术背景CameraExplorer如何查看相机Bufferlist功能在BGAPI SDK里通过函数设置相机Bufferlist参数 Baumer工业相机通过BGAP…...
从 Ansible Galaxy 使用角色
从 Ansible Galaxy 使用角色 根据下列要求,创建一个名为 /home/curtis/ansible/roles.yml 的 playbook : playbook 中包含一个 play, 该 play 在 balancers 主机组中的主机上运行并将使用 balancer 角色。 此角色配置一项服务,以…...
ROS与STM32通信(二)-pyserial
文章目录 下位机上位机自定义msg消息发布订阅 ROS与STM32通信一般分为两种, STM32上运行ros节点实现通信使用普通的串口库进行通信,然后以话题方式发布 第一种方式具体实现过程可参考上篇文章ROS与STM32通信-rosserial,上述文章中的收发频率…...
[oneAPI] 使用Bert进行中文文本分类
[oneAPI] 使用Bert进行中文文本分类 Intel Optimization for PyTorch基于BERT的文本分类模型数据预处理数据集定义tokenize建立词表转换为Token序列padding处理与mask 模型 结果OneAPI参考资料 比赛:https://marketing.csdn.net/p/f3e44fbfe46c465f4d9d6c23e38e0517…...
【数据治理】什么是数据库归档
文章目录 前言什么是数据归档 前言 如果您的日常工作中需要对数据库进行管理,那您肯定已经或即将遭遇这样的困惑:随着业务的蓬勃发展,数据库文件的大小逐渐增大,您需要为在线业务提供越来越大的高性能磁盘容量,但数据…...
AI代码补全 案例 - 阿里云智能编码插件Cosy
文章目录 Cosy简介Cosy安装Marketplace安装【推荐】离线安装安装效果Cosy功能体验代码智能补全代码示例搜索API搜索自然语言搜索控制台异常搜索优质文档搜索Cosy体验有感参考Cosy简介 阿里云智能编码插件(Alibaba Cloud AI Coding Assistant)是一款AI编程助手,提供代码智能…...
【Linux】进程信号篇Ⅰ:信号的产生(signal、kill、raise、abort、alarm)、信号的保存(core dump)
文章目录 一、 signal 函数:用户自定义捕捉信号二、信号的产生1. 通过中断按键产生信号2. 调用系统函数向进程发信号2.1 kill 函数:给任意进程发送任意信号2.2 raise 函数:给调用进程发送任意信号2.3 abort 函数:给调用进程发送 6…...
漏洞指北-VulFocus靶场专栏-中级03
漏洞指北-VulFocus靶场专栏-初级03 中级009 🌸gxlcms-cve_2018_14685🌸step1:安装系统 密码rootstep2 进入后台页面 账号密码:admin amdin888step3 查看详细 有phpinfo() 中级010 🌸dedecms-cnvd_2018_01221dz…...
【leetcode 力扣刷题】数组交集(数组、set、map都可实现哈希表)
数组交集 349. 两个数组的交集排序+双指针数组实现哈希表unordered_setunordered_map 350. 两个数组的交集Ⅱ排序 双指针数组实现哈希表unordered_map 349. 两个数组的交集 题目链接:349. 两个数组的交集 题目内容如下,理解题意:…...
MySQL 8.0.31 登录提示caching_sha2_password问题解决方法
MySQL 8.0.31 登录提示caching_sha2_password问题解决方法 MySQL 8.0.31 使用了 caching_sha2_password 作为默认的身份验证插件,这可能导致一些旧的客户端和库无法连接到服务器。以下是一些解决此类问题的常见步骤和建议: 确保MySQL服务正在运行&#…...
[Google] DeepMind Gemini: 新一代LLM结合AlphaGo技术将力压 GPT-4|未来 AI 领域的新巨头
2016年,Google DeepMind 人工智能实验室孕育出的 AlphaGo 人工智能程序在围棋赛场上一举击败冠军选手,成为历史的见证者。如今,DeepMind 联合创始人兼首席执行官 Demis Hassabis 表示,他们的工程师正借鉴 AlphaGo 的技术研发一款名…...
Maven高级
目录 一、分模块开发与设计 1. 分模块开发的意义 2. 分模块开发(模块拆分) (1)创建Maven模块 (2)书写模块代码 (3)通过maven指令安装模块到本地仓库(install指令&…...
网络六边形受到攻击
大家读完觉得有帮助记得关注和点赞!!! 抽象 现代智能交通系统 (ITS) 的一个关键要求是能够以安全、可靠和匿名的方式从互联车辆和移动设备收集地理参考数据。Nexagon 协议建立在 IETF 定位器/ID 分离协议 (…...
AI Agent与Agentic AI:原理、应用、挑战与未来展望
文章目录 一、引言二、AI Agent与Agentic AI的兴起2.1 技术契机与生态成熟2.2 Agent的定义与特征2.3 Agent的发展历程 三、AI Agent的核心技术栈解密3.1 感知模块代码示例:使用Python和OpenCV进行图像识别 3.2 认知与决策模块代码示例:使用OpenAI GPT-3进…...
解锁数据库简洁之道:FastAPI与SQLModel实战指南
在构建现代Web应用程序时,与数据库的交互无疑是核心环节。虽然传统的数据库操作方式(如直接编写SQL语句与psycopg2交互)赋予了我们精细的控制权,但在面对日益复杂的业务逻辑和快速迭代的需求时,这种方式的开发效率和可…...
家政维修平台实战20:权限设计
目录 1 获取工人信息2 搭建工人入口3 权限判断总结 目前我们已经搭建好了基础的用户体系,主要是分成几个表,用户表我们是记录用户的基础信息,包括手机、昵称、头像。而工人和员工各有各的表。那么就有一个问题,不同的角色…...
【Zephyr 系列 10】实战项目:打造一个蓝牙传感器终端 + 网关系统(完整架构与全栈实现)
🧠关键词:Zephyr、BLE、终端、网关、广播、连接、传感器、数据采集、低功耗、系统集成 📌目标读者:希望基于 Zephyr 构建 BLE 系统架构、实现终端与网关协作、具备产品交付能力的开发者 📊篇幅字数:约 5200 字 ✨ 项目总览 在物联网实际项目中,**“终端 + 网关”**是…...
JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作
一、上下文切换 即使单核CPU也可以进行多线程执行代码,CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短,所以CPU会不断地切换线程执行,从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...
初学 pytest 记录
安装 pip install pytest用例可以是函数也可以是类中的方法 def test_func():print()class TestAdd: # def __init__(self): 在 pytest 中不可以使用__init__方法 # self.cc 12345 pytest.mark.api def test_str(self):res add(1, 2)assert res 12def test_int(self):r…...
浪潮交换机配置track检测实现高速公路收费网络主备切换NQA
浪潮交换机track配置 项目背景高速网络拓扑网络情况分析通信线路收费网络路由 收费汇聚交换机相应配置收费汇聚track配置 项目背景 在实施省内一条高速公路时遇到的需求,本次涉及的主要是收费汇聚交换机的配置,浪潮网络设备在高速项目很少,通…...
A2A JS SDK 完整教程:快速入门指南
目录 什么是 A2A JS SDK?A2A JS 安装与设置A2A JS 核心概念创建你的第一个 A2A JS 代理A2A JS 服务端开发A2A JS 客户端使用A2A JS 高级特性A2A JS 最佳实践A2A JS 故障排除 什么是 A2A JS SDK? A2A JS SDK 是一个专为 JavaScript/TypeScript 开发者设计的强大库ÿ…...
基于Java+VUE+MariaDB实现(Web)仿小米商城
仿小米商城 环境安装 nodejs maven JDK11 运行 mvn clean install -DskipTestscd adminmvn spring-boot:runcd ../webmvn spring-boot:runcd ../xiaomi-store-admin-vuenpm installnpm run servecd ../xiaomi-store-vuenpm installnpm run serve 注意:运行前…...
