【数据挖掘】使用 Python 分析公共数据【01/10】

一、说明
本文讨论了如何使用 Python 使用 Pandas 库分析官方 COVID-19 病例数据。您将看到如何从实际数据集中收集见解,发现乍一看可能不那么明显的信息。特别是,本文中提供的示例说明了如何获取有关疾病在不同国家/地区传播速度的信息。
二、准备您的工作环境
要继续操作,您需要在 Python 环境中安装 Pandas 库。如果您还没有它,您可以使用 pip 命令安装它:
pip install pandas
然后,您需要选择一个实际的数据集来使用。对于本文中提供的示例,我需要一个数据集,其中包含按国家/地区和日期划分的COVID-19确诊病例总数的信息。这样的数据集可以从 Novel Coronavirus (COVID-19) Cases Data - Humanitarian Data Exchange 下载为CSV文件:time_series_covid19_confirmed_global_narrow.csv
三、加载数据并准备进行分析
在将下载的 CSV 文件读取到 pandas 数据帧之前,我手动删除了不必要的第二行:
#adm1+name,#country+name,#geo+lat,#geo+lon,#date,#affected+infected+value+num
然后我把它读到熊猫数据帧中:
>>> import pandas as pd
>>> df= pd.read_csv("/home/usr/dataset/time_series_covid19_confirmed_global_narrow.csv")
Let’s now take a closer look at the file structure. The simplest way to do it is with the head method of the dataframe object:
>>> df.head()Province/State Country/Region Lat Long Date Value
0 NaN Afghanistan 33.0 65.0 2020–04–01 237
1 NaN Afghanistan 33.0 65.0 2020–03–31 174
2 NaN Afghanistan 33.0 65.0 2020–03–30 170
3 NaN Afghanistan 33.0 65.0 2020–03–29 120
4 NaN Afghanistan 33.0 65.0 2020–03–28 110
由于我们不打算执行考虑受影响国家在地理上彼此距离有多近的复杂分析,因此我们可以安全地从数据集中删除地理纬度和地理经度列。这可以按如下方式完成:
<span style="background-color:#f2f2f2"><span style="color:#242424">>>> df.drop("Lat", axis=1, inplace=True)
>>> df.drop("Long", axis=1, inplace=True)</span></span>
我们现在的内容应该如下所示:
>>> df.head()Province/State Country/Region Date Value
0 NaN Afghanistan 2020–04–01 237
1 NaN Afghanistan 2020–03–31 174
2 NaN Afghanistan 2020–03–30 170
3 NaN Afghanistan 2020–03–29 120
4 NaN Afghanistan 2020–03–28 110
在我们开始删除不必要的行之前,了解数据集中有多少行也会很有趣:
>>> df.count
…[18176 rows x 4 columns]>
四、压缩数据集
浏览数据集中的行,您可能会注意到某些国家/地区的信息是按地区(例如中国)详细说明的。但您需要的是整个国家的合并数据。要完成此合并步骤,您可以按如下方式将 groupby 操作应用于数据集:
>>> df = df.groupby(['Country/Region','Date']).sum().reset_index()
此操作应该减少数据集中的行数,消除省/州列:
>>> df.count
...[12780 rows x 3 columns]
五、执行分析
假设您需要在初始阶段确定疾病在不同国家的传播速度。比如说,你想知道从至少报告1500例病例的那一天起,疾病达到100例需要多少天。
首先,您需要过滤掉受影响不大且确诊病例人数尚未达到大量国家/地区。这可以按如下方式完成:
>>> df = df.groupby(['Country/Region'])
>>> df = df.filter(lambda x: x['Value'].mean() > 1000)
然后,您可以仅检索满足指定条件的那些行:
>>> df = df.loc[(df['Value'] > 100) & (df['Value'] < 1500)]
完成这些操作后,应显著减少行数。
>>> df.count
… Country/Region Date Value
685 Austria 2020–03–08 104
686 Austria 2020–03–09 131
687 Austria 2020–03–10 182
688 Austria 2020–03–11 246
689 Austria 2020–03–12 302
… … … …
12261 United Kingdom 2020–03–11 459
12262 United Kingdom 2020–03–12 459
12263 United Kingdom 2020–03–13 802
12264 United Kingdom 2020–03–14 1144
12265 United Kingdom 2020–03–15 1145[118 rows x 3 columns]
此时,您可能需要查看整个数据集。这可以通过以下代码行完成:
>>> print(df.to_string())Country/Region Date Value
685 Austria 2020–03–08 104
686 Austria 2020–03–09 131
687 Austria 2020–03–10 182
688 Austria 2020–03–11 246
689 Austria 2020–03–12 302
690 Austria 2020–03–13 504
691 Austria 2020–03–14 655
692 Austria 2020–03–15 860
693 Austria 2020–03–16 1018
694 Austria 2020–03–17 1332
1180 Belgium 2020–03–06 109
1181 Belgium 2020–03–07 169…
剩下的就是计算每个国家/地区的行数。
>>> df.groupby(['Country/Region']).size()
>>> print(df.to_string())Country/Region
Austria 10
Belgium 13
China 4
France 9
Germany 10
Iran 5
Italy 7
Korea, South 7
Netherlands 11
Spain 8
Switzerland 10
Turkey 4
US 9
United Kingdom 11
上述清单回答了某个国家从报告至少1500例病例之日起,该疾病需要多少天才能达到大约100例确诊病例的问题。
六、后记
本系列文本,从这里开头,后边我们将陆续深入进行数据分析过程叙述。
Yuli Vasiliev – Medium
相关文章:
【数据挖掘】使用 Python 分析公共数据【01/10】
一、说明 本文讨论了如何使用 Python 使用 Pandas 库分析官方 COVID-19 病例数据。您将看到如何从实际数据集中收集见解,发现乍一看可能不那么明显的信息。特别是,本文中提供的示例说明了如何获取有关疾病在不同国家/地区传播速度的信息。 二、准备您的…...
html怎么插入视频?视频如何插入页面
html怎么插入视频?视频如何插入页面 HTML 的功能强大,基本所有的静态效果都可以在此轻松呈现,各种视频网站内有大量的视频内容,本篇文章教你如何在 html 中插入视频 代码如下: <!DOCTYPE html> <html> …...
游戏服务端性能测试
导语:近期经历了一系列的性能测试,涵盖了Web服务器和游戏服务器的领域。在这篇文章中,我将会对游戏服务端所做的测试进行详细整理和记录。需要注意的是,本文着重于记录,而并非深入的编程讨论。在这里,我将与…...
【使用Zookeeper当作注册中心】自己定制负载均衡常见策略
自己定制负载均衡常见策略 一、前言随机(Random)策略的实现轮询(Round Robin)策略的实现哈希(Hash)策略 一、前言 大伙肯定知道,在分布式开发中,目前使用较多的注册中心有以下几个&…...
设计模式十七:迭代器模式(Iterator Pattern)
迭代器模式(Iterator Pattern)是一种行为型设计模式,它提供了一种访问聚合对象(例如列表、集合、数组等)中各个元素的方法,而无需暴露其内部表示。迭代器模式将遍历元素和访问元素的责任分离开来࿰…...
Python制作爱心并打包成手机端可执行文件
前言 本文是想要将python代码打包成在手机上能执行的文件 尝试了几个库, 有这也那样的限制,最终还是选了BeeWare 环境:python3.7.x 开始 找到打包有相关工具os-android-apk-builder,buildozer,cx_Freezeÿ…...
使用docker-compose.yml快速搭建开发、部署环境(nginx、tomcat、mysql、jar包、各种程序)以及多容器通信和统一配置
目录 docker-compose语法(更多说明可查看下面代码)imagehostnamecontainer_namevolumesnetworks yml文件的使用启动停止 开发环境(这里以python为例)部署环境nginxmysqltomcatjar包打包后的可执行程序 常见问题与解决方案多个容器…...
管理类联考——逻辑——真题篇——按知识分类——汇总篇——二、论证逻辑——支持加强——第三节——分类3——类比题干支持
文章目录 第三节 支持加强-分类3-类比题干支持真题(2017-28)-支持加强-正面支持-表达“确实如此”真题(2017-36)-支持加强-正面支持-表达“确实如此”真题(2017-39)-支持加强-正面支持-方法有效或方法可行,但多半不选择方法无恶果真题(2017-50)-支持加强真题(2018-2…...
搜索旋转排序数组
整数数组 nums 按升序排列,数组中的值 互不相同 。 在传递给函数之前,nums 在预先未知的某个下标 k(0 < k < nums.length)上进行了 旋转,使数组变为 [nums[k], nums[k1], …, nums[n-1], nums[0], nums[1], …, …...
Steam搬砖项目:最长久稳定的副业!
项目应该大家都有听说话,但是细节问题,如何操作可能有些不是很清楚,今天在这里简单分享一下。 这个Steam搬砖项目主要赚钱汇率差和价值差,是一个细分领取的小项目。 不用引流,时间也是比较自由的,你可以兼…...
最小化安装移动云大云操作系统--BCLinux-R8-U8-Server-x86_64-230802版
CentOS 结束技术支持,转为RHEL的前置stream版本后,国内开源Linux服务器OS生态转向了开源龙蜥和开源欧拉两大开源社区,对应衍生出了一系列商用Linux服务器系统。BC-Linux V8.8是中国移动基于龙蜥社区Anolis OS 8.8版本深度定制的企业级X86服务…...
神经网络基础-神经网络补充概念-05-导数
概念 导数是微积分中的一个概念,用于描述函数在某一点的变化率。在数学中,函数的导数表示函数值随着自变量的微小变化而产生的变化量,即斜率或变化率。 假设有一个函数 f(x),其中 x 是自变量,y f(x) 是因变量。函数…...
kubernetes — 安装Ingress
1、 Ingress 1、安装-Nginx-Ingress kubectl apply -f https://raw.githubusercontent.com/kubernetes/ingress-nginx/controller-v1.8.1/deploy/static/provider/cloud/deploy.yaml 2、设为默认的Ingress [rootk8s01 ~]# vim default_ingress.yaml apiVersion: networking.…...
SSR使用HTTPS
1.安装 npm i browser-sync 2. 再angular.json里配置 "serve-ssr": {"builder": "nguniversal/builders:ssr-dev-server","options": {"ssl": true,"sslCert": "./node_modules/browser-sync/certs/server…...
Spring Boot中使用validator如何实现接口入参自动检验
文章目录 一、背景二、使用三、举例 一、背景 在项目开发过程中,经常会对一些字段进行校验,比如字段的非空校验、字段的长度校验等,如果在每个需要的地方写一堆if else 会让你的代码变的冗余笨重且相对不好维护,如何更加规范和优…...
thinkphp 5 实现UNION ALL 3个联表查询,并且带上搜索条件,名称,时间,手机号
在ThinkPHP 5中实现带有搜索条件、名称、时间和手机号的3个联表查询(UNION ALL),您可以按照以下步骤进行操作: 确保已经配置好数据库连接信息和相关的模型。 使用union()方法来构建3个联表查询,同时在每个查询中添加所…...
React 之 Router - 路由详解
一、Router的基本使用 1. 安装react-router react-router会包含一些react-native的内容,web开发并不需要 npm install react-router-dom 2. 设置使用模式 BrowserRouter或HashRouter Router中包含了对路径改变的监听,并且会将相应的路径传递给子组件Bro…...
框架分析(1)-IT人必须会
框架分析(1)-IT人必须会 专栏介绍当今主流框架前端框架后端框架移动应用框架数据库框架测试框架 Angular关键特点和功能:组件化架构双向数据绑定依赖注入路由功能强大的模板语法测试友好 优缺点分析优点缺点 总结 专栏介绍 link 主要对目前市…...
前端面试的游览器部分(7)每天10个小知识点
目录 系列文章目录前端面试的游览器部分(1)每天10个小知识点前端面试的游览器部分(2)每天10个小知识点前端面试的游览器部分(3)每天10个小知识点前端面试的游览器部分(4)每天10个小知…...
认识Junit
1. 前言 2. Junit注解 2.1. 常用的注解 2.1.1. Test 表示当前方法是一个测试方法(不需要main来执行) Test void Test01() throws InterruptedException {System.out.println("测试用例1");WebDriver webDriver new ChromeDriver();webDriver.get("https:/…...
idea大量爆红问题解决
问题描述 在学习和工作中,idea是程序员不可缺少的一个工具,但是突然在有些时候就会出现大量爆红的问题,发现无法跳转,无论是关机重启或者是替换root都无法解决 就是如上所展示的问题,但是程序依然可以启动。 问题解决…...
MongoDB学习和应用(高效的非关系型数据库)
一丶 MongoDB简介 对于社交类软件的功能,我们需要对它的功能特点进行分析: 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具: mysql:关系型数据库&am…...
【磁盘】每天掌握一个Linux命令 - iostat
目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat(I/O Statistics)是Linux系统下用于监视系统输入输出设备和CPU使…...
Nuxt.js 中的路由配置详解
Nuxt.js 通过其内置的路由系统简化了应用的路由配置,使得开发者可以轻松地管理页面导航和 URL 结构。路由配置主要涉及页面组件的组织、动态路由的设置以及路由元信息的配置。 自动路由生成 Nuxt.js 会根据 pages 目录下的文件结构自动生成路由配置。每个文件都会对…...
Qt Http Server模块功能及架构
Qt Http Server 是 Qt 6.0 中引入的一个新模块,它提供了一个轻量级的 HTTP 服务器实现,主要用于构建基于 HTTP 的应用程序和服务。 功能介绍: 主要功能 HTTP服务器功能: 支持 HTTP/1.1 协议 简单的请求/响应处理模型 支持 GET…...
【JavaSE】绘图与事件入门学习笔记
-Java绘图坐标体系 坐标体系-介绍 坐标原点位于左上角,以像素为单位。 在Java坐标系中,第一个是x坐标,表示当前位置为水平方向,距离坐标原点x个像素;第二个是y坐标,表示当前位置为垂直方向,距离坐标原点y个像素。 坐标体系-像素 …...
有限自动机到正规文法转换器v1.0
1 项目简介 这是一个功能强大的有限自动机(Finite Automaton, FA)到正规文法(Regular Grammar)转换器,它配备了一个直观且完整的图形用户界面,使用户能够轻松地进行操作和观察。该程序基于编译原理中的经典…...
C++:多态机制详解
目录 一. 多态的概念 1.静态多态(编译时多态) 二.动态多态的定义及实现 1.多态的构成条件 2.虚函数 3.虚函数的重写/覆盖 4.虚函数重写的一些其他问题 1).协变 2).析构函数的重写 5.override 和 final关键字 1&#…...
基于SpringBoot在线拍卖系统的设计和实现
摘 要 随着社会的发展,社会的各行各业都在利用信息化时代的优势。计算机的优势和普及使得各种信息系统的开发成为必需。 在线拍卖系统,主要的模块包括管理员;首页、个人中心、用户管理、商品类型管理、拍卖商品管理、历史竞拍管理、竞拍订单…...
莫兰迪高级灰总结计划简约商务通用PPT模版
莫兰迪高级灰总结计划简约商务通用PPT模版,莫兰迪调色板清新简约工作汇报PPT模版,莫兰迪时尚风极简设计PPT模版,大学生毕业论文答辩PPT模版,莫兰迪配色总结计划简约商务通用PPT模版,莫兰迪商务汇报PPT模版,…...
