倒残差结构
倒残差结构:
倒残差结构是MobileNetV2中引入的一种设计,用于增强网络的表达能力和特征提取能力,同时保持轻量级的特点。它的核心思想是在每个瓶颈块中,先使用一个扩张卷积(Dilated Convolution),然后再应用一个融合卷积(Pointwise Convolution),以增加非线性性和跨通道的特征表达。
- 扩张卷积(Dilated Convolution):在瓶颈块的中间层,应用了一个扩张卷积。扩张卷积通过在卷积核中引入一定的空洞(dilation),扩大了卷积核的感受野。这有助于网络捕捉更广阔的上下文信息,从而提高了特征的丰富性。
- 融合卷积(Pointwise Convolution):扩张卷积后,使用1x1的融合卷积来进行特征的融合和压缩。这个融合卷积将扩张卷积得到的特征进行通道的线性组合,从而加强了特征之间的交互。
以下是一个更详细的PyTorch代码示例:
import torch
import torch.nn as nn
from torchsummary import summary# 3、倒残差结构
class ConvBNReLU(nn.Sequential):def __init__(self, in_channel, out_channel, kernel_size=3, stride=1, groups=1):padding = (kernel_size - 1) // 2super(ConvBNReLU, self).__init__(nn.Conv2d(in_channel, out_channel, kernel_size, stride, padding, groups=groups, bias=False),nn.BatchNorm2d(out_channel),nn.ReLU(inplace=True))class InvertedResidual(nn.Module):def __init__(self, in_channel, out_channel, stride, expand_ratio):super(InvertedResidual, self).__init__()hidden_channel = in_channel * expand_ratio#expand_ratio:扩展因子self.use_shortcut = stride == 1 and in_channel == out_channellayers = []if expand_ratio != 1:layers.append(ConvBNReLU(in_channel, hidden_channel, kernel_size=1))#hxwxk-->hxwx(tk)layers.extend([#layers.extend() 是 Python 中的列表方法,用于在一个列表的末尾一次性添加另一个可迭代对象中的所有元素到该列表中。ConvBNReLU(hidden_channel, hidden_channel, kernel_size=stride, groups=hidden_channel),#hxwx(tk)-->(h/s)x(w/s)x(tk)nn.Conv2d(hidden_channel, out_channel, kernel_size=1, bias=False),#(h/s)x(w/s)x(tk)-->(h/s)x(w/s)xk'nn.BatchNorm2d(out_channel)])self.conv = nn.Sequential(*layers)def forward(self, x):if self.use_shortcut:x = x + self.conv(x)return xelse:x = self.conv(x)return xif __name__ == '__main__':model=InvertedResidual(3,64,1,6)device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')model.to(device)input_tensor=torch.randn(1,3,224,224).to(device)input_tensor1 = (3, 224, 224)output_tensor=model(input_tensor)print(output_tensor.shape)print("InvertedResidual:")summary(model, input_tensor1)
以上代码详细展示了如何使用PyTorch构建一个倒残差结构的MobileNetV2模型。您可以根据实际需要进行调整和扩展。
相关文章:
倒残差结构
倒残差结构: 倒残差结构是MobileNetV2中引入的一种设计,用于增强网络的表达能力和特征提取能力,同时保持轻量级的特点。它的核心思想是在每个瓶颈块中,先使用一个扩张卷积(Dilated Convolution)&#x…...
Docker的基本使用
Docker 概念 Docker架构 docker分为客户端,Docker服务端,仓库 客户端 Docker 是一个客户端-服务器(C/S)架构程序。Docker 客户端只需要向 Docker 服务端发起请求,服务端将完成所有的工作并返回相应结果。 Docker …...
paddlenlp安装踩坑记录
错误1 ModuleNotFoundError: No module named paddle.metric我下载paddlepaddle-gpu2.5.0.post117解决了,最开始下载的2.5.1报错,post后面的117是我的cuda版本,不要写你对应的版本号 python3 -m pip install paddlepaddle-gpu2.5.0.post117…...
微服务流程引擎:简单又灵活,实现流程全生命周期管理!
伴随着日益激烈的市场竞争,传统的办公操作已经无法满足发展需要了。如果采用微服务流程引擎加油助力,就可以帮助企业更好地管理数据资源,高效做好各种表单制作,实现高效率办公。流辰信息以市场为导向,用心钻研低代码技…...
Qt表格数据处理
概述 在Qt表格数据处理中,涉及到如下几个具体的类: QAbstractItemModel:这是一个抽象基类,定义了模型(Model)的接口规范。所有的模型类都应该派生自QAbstractItemModel,并实现它的纯虚函数&…...
EasyPOI 实战总结
EasyPOI实战总结 简介 easypoi功能如同名字easy,主打的功能就是容易,让一个没见接触过poi的人员 就可以方便的写出Excel导出,Excel模板导出,Excel导入,Word模板导出,通过简单的注解和模板 语言(熟悉的表达式语法),完成以前复杂的写法 使用EasyPOI 环境搭建 # 1.引入相关依…...
【LeetCode-困难题】42. 接雨水
题目 题解一:暴力双重for循环(以行计算水量) 1.先找出最高的柱子有多高(max 3) 2.然后第一个for为行数(1,2,3) 3.第二个for计算每一行的雨水量(关键在于去除…...
npm install 安装依赖,报错 Host key verification failed
设置 git 的身份和邮箱 git config --global user.name "你的名字" > 用户名 git config --global user.email “你的邮箱" > 邮箱进入 > 用户 > [你的用户名] > .ssh文件夹下,删除 known_hosts 文件即可 进入之后有可能会看到 known_hosts…...
SOLIDWORKS焊件是什么?
SOLIDWORKS是一款广泛应用于机械设计领域的三维计算机辅助设计软件。SOLIDWORKS提供了强大的焊件功能,可以帮助工程师们以更高的效率设计焊接件。本文将介绍SOLIDWORKS焊件的概念、特点以及使用方法,以期帮助读者更好地理解和应用这一关键技术。 SOLIDWO…...
2023国赛数学建模D题思路模型代码 高教社杯
本次比赛我们将会全程更新思路模型及代码,大家查看文末名片获取 之前国赛相关的资料和助攻可以查看 2022数学建模国赛C题思路分析_2022国赛c题matlab_UST数模社_的博客-CSDN博客 2022国赛数学建模A题B题C题D题资料思路汇总 高教社杯_2022国赛c题matlab_UST数模社…...
git协议实现管理(三个步骤)
GitHub官网访问: https://github.com/dashboard 初次使用git的用户要使用git协议大概需要三个步骤: 一、生成密钥对 二、设置远程仓库(本文以github为例)上的公钥 三、把git的remote url远程仓库URL可访问路径修改为git协议(以上两个步骤初次设置过以后,…...
“深入理解JVM:探索Java虚拟机的内部机制“
标题:深入理解JVM:探索Java虚拟机的内部机制 摘要: Java虚拟机(Java Virtual Machine,JVM)是Java语言的核心,负责将Java源代码编译成可执行的字节码并运行。本篇博客将深入探索JVM的内部机制&a…...
Unity——各种特效的基本使用方法
特效是游戏制作不可或缺的一环,作为游戏开发者最重要的工作就是将特效添加到游戏中,并在合适的时机、合适的位置将特效播放出来,同时还要注意特效的管理和销毁。 某些种类的特效,如动效、贴花,还要编写脚本代码以实现…...
smiley-http-proxy-servlet 实现springboot 反向代理,结合项目鉴权,安全的引入第三方项目服务
项目中反向代理 集成第三方的服务接口或web监控界面,并实现与自身项目相结合的鉴权方法 依赖 smiley-http-proxy-servlet GitHub链接 2.0 版开始,代理切换到jakarta servlet-api<!--HTTP 代理 Servlet--><dependency><groupId>org.mit…...
(vue)多级表头且转为百分比显示
(vue)多级表头且转为百分比显示 <el-table-column align"center" label"近三个月数据情况"><el-table-column align"center" prop"amount" :label"tableLast[0]"><template slot-scope"{ row }"&g…...
Linux下C++开发
Linux下C开发 Linux 系统介绍 简介 Linux属于多用户多任务操作系统,而Windows属于单用户多任务操作系统Linux一切皆文件目录结构 bin 存储二进制可执行文件dev 存放的是外接设备,例如磁盘,光盘等。在其中的外接设备是不能直接被使用的&…...
GPT-3.5——从 人工智障 到 大人工智障
有人说,GPT是从人工智障到人工智能的蜕变,但是。。。 我认为,GPT是从 人工智障 到 大人工智障 的退化。。。 从 人工智障 到 大人工智障 GPT-3.5学术介绍No.1---- 西红柿炒钢丝球基本信息详细制作方法材料步骤 幕后花絮 No.2---- 顶尖数学家…...
创建型(四) - 原型模式
一、概念 原型模式(Prototype Pattern):利用对已有对象(原型)进行复制(或者叫拷贝)的方式来创建新对象,以达到节省创建时间的目的。 使用场景:如果对象的创建成本比较大…...
ABAP 定义复杂的数据结构
最近有个需求是实现ABAP数据类型与JASON类型的转换。想要创建个ABAP的数据类型来接JASON类型是个挺麻烦的事。例如下面这个JASON数据,是个很简单的数据结构。但对ABAP来说有4层了,就有点复杂了。 不过ABAP的数据类型也是支持直接定义数据结构的嵌套的。如…...
HCIP第四节-----------------------------BGP
一、BGP基础 1、BGP得概述 (1)、AS OSPF、IS-IS等IGP路由协议在组织机构网络内部广泛应用,随着网络规模扩大,网络中路由数量不断增长,IGP已无法管理大规模网络,AS的概念由此诞生。 AS指的是在同一个组织…...
线程与协程
1. 线程与协程 1.1. “函数调用级别”的切换、上下文切换 1. 函数调用级别的切换 “函数调用级别的切换”是指:像函数调用/返回一样轻量地完成任务切换。 举例说明: 当你在程序中写一个函数调用: funcA() 然后 funcA 执行完后返回&…...
《通信之道——从微积分到 5G》读书总结
第1章 绪 论 1.1 这是一本什么样的书 通信技术,说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号(调制) 把信息从信号中抽取出来&am…...
c#开发AI模型对话
AI模型 前面已经介绍了一般AI模型本地部署,直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型,但是目前国内可能使用不多,至少实践例子很少看见。开发训练模型就不介绍了&am…...
C# 求圆面积的程序(Program to find area of a circle)
给定半径r,求圆的面积。圆的面积应精确到小数点后5位。 例子: 输入:r 5 输出:78.53982 解释:由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982,因为我们只保留小数点后 5 位数字。 输…...
排序算法总结(C++)
目录 一、稳定性二、排序算法选择、冒泡、插入排序归并排序随机快速排序堆排序基数排序计数排序 三、总结 一、稳定性 排序算法的稳定性是指:同样大小的样本 **(同样大小的数据)**在排序之后不会改变原始的相对次序。 稳定性对基础类型对象…...
免费PDF转图片工具
免费PDF转图片工具 一款简单易用的PDF转图片工具,可以将PDF文件快速转换为高质量PNG图片。无需安装复杂的软件,也不需要在线上传文件,保护您的隐私。 工具截图 主要特点 🚀 快速转换:本地转换,无需等待上…...
【 java 虚拟机知识 第一篇 】
目录 1.内存模型 1.1.JVM内存模型的介绍 1.2.堆和栈的区别 1.3.栈的存储细节 1.4.堆的部分 1.5.程序计数器的作用 1.6.方法区的内容 1.7.字符串池 1.8.引用类型 1.9.内存泄漏与内存溢出 1.10.会出现内存溢出的结构 1.内存模型 1.1.JVM内存模型的介绍 内存模型主要分…...
django blank 与 null的区别
1.blank blank控制表单验证时是否允许字段为空 2.null null控制数据库层面是否为空 但是,要注意以下几点: Django的表单验证与null无关:null参数控制的是数据库层面字段是否可以为NULL,而blank参数控制的是Django表单验证时字…...
Linux中《基础IO》详细介绍
目录 理解"文件"狭义理解广义理解文件操作的归类认知系统角度文件类别 回顾C文件接口打开文件写文件读文件稍作修改,实现简单cat命令 输出信息到显示器,你有哪些方法stdin & stdout & stderr打开文件的方式 系统⽂件I/O⼀种传递标志位…...
【Kafka】Kafka从入门到实战:构建高吞吐量分布式消息系统
Kafka从入门到实战:构建高吞吐量分布式消息系统 一、Kafka概述 Apache Kafka是一个分布式流处理平台,最初由LinkedIn开发,后成为Apache顶级项目。它被设计用于高吞吐量、低延迟的消息处理,能够处理来自多个生产者的海量数据,并将这些数据实时传递给消费者。 Kafka核心特…...
