Unrecognized Hadoop major version number: 3.0.0-cdh6.3.2
一.环境描述
spark提交job到yarn报错,业务代码比较简单,通过接口调用获取数据,将数据通过sparksql将数据写入hive中,尝试各种替换hadoop版本,最后拿下
1.hadoop环境
2.项目 pom.xml
spark-submit \
--name GridCorrelationMain \
--master yarn \
--deploy-mode cluster \
--executor-cores 2 \
--executor-memory 4G \
--num-executors 5 \
--driver-memory 2G \
--class cn.zd.maincode.wangge.GridCorrelationMain \
/home/boeadm/zwj/iot/cp-etl-spark-data/target/cp_zhengda_spark_utils-1.0-SNAPSHOT.jareyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJleHAiOjE2OTI0MzU5NjgsImlhdCI6MTY5MjM0OTU2Mywic3ViIjo1MjB9.rCmnhF2EhdzH62T7lP3nmxQSxh17PotscxEcZkjL5hk<dependencies><dependency><groupId>org.apache.commons</groupId><artifactId>commons-configuration2</artifactId><version>2.9.0</version></dependency><dependency><groupId>org.apache.spark</groupId><artifactId>spark-core_2.11</artifactId><version>2.3.3</version><exclusions><exclusion><artifactId>hadoop-client</artifactId><groupId>org.apache.hadoop</groupId></exclusion><exclusion><artifactId>slf4j-log4j12</artifactId><groupId>org.slf4j</groupId></exclusion></exclusions></dependency><dependency><groupId>org.apache.spark</groupId><artifactId>spark-sql_2.11</artifactId><version>2.3.3</version><!--<scope>provided</scope>--><!-- <exclusions><exclusion><groupId>com.google.guava</groupId><artifactId>guava</artifactId></exclusion></exclusions>--></dependency><!--<dependency><groupId>com.google.guava</groupId><artifactId>guava</artifactId><version>15.0</version></dependency>
--><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-common</artifactId><version>${hadoop.version}</version><exclusions><exclusion><groupId>commons-codec</groupId><artifactId>commons-codec</artifactId></exclusion><exclusion><groupId>commons-httpclient</groupId><artifactId>commons-httpclient</artifactId></exclusion><!-- <exclusion><groupId>com.google.guava</groupId><artifactId>guava</artifactId></exclusion>--></exclusions><!--<scope>provided</scope>--></dependency><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-client</artifactId><version>${hadoop.version}</version><exclusions><exclusion><artifactId>hadoop-common</artifactId><groupId>org.apache.hadoop</groupId></exclusion></exclusions></dependency><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-hdfs</artifactId><version>${hadoop.version}</version></dependency><dependency><groupId>org.apache.spark</groupId><artifactId>spark-hive_2.11</artifactId><version>2.3.2</version><exclusions><exclusion><artifactId>hive-exec</artifactId><groupId>org.spark-project.hive</groupId></exclusion><exclusion><artifactId>hive-metastore</artifactId><groupId>org.spark-project.hive</groupId></exclusion></exclusions></dependency><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-mapreduce-client-core</artifactId><version>${hadoop.version}</version></dependency><dependency><groupId>org.apache.hive</groupId><artifactId>hive-jdbc</artifactId><exclusions><exclusion><groupId>org.eclipse.jetty.aggregate</groupId><artifactId>jetty-all</artifactId></exclusion><exclusion><groupId>org.apache.hive</groupId><artifactId>hive-shims</artifactId></exclusion><exclusion><artifactId>hbase-mapreduce</artifactId><groupId>org.apache.hbase</groupId></exclusion><exclusion><artifactId>hbase-server</artifactId><groupId>org.apache.hbase</groupId></exclusion><exclusion><artifactId>log4j-slf4j-impl</artifactId><groupId>org.apache.logging.log4j</groupId></exclusion><exclusion><artifactId>slf4j-log4j12</artifactId><groupId>org.slf4j</groupId></exclusion></exclusions><version>2.1.1</version></dependency><!--服务验证相关依赖--><dependency><groupId>org.apache.httpcomponents</groupId><artifactId>httpclient</artifactId><version>4.5.13</version><exclusions><exclusion><groupId>commons-codec</groupId><artifactId>commons-codec</artifactId></exclusion></exclusions><!--<scope>provided</scope>--></dependency><!--本地跑的话 需要这个jar--><dependency><groupId>commons-codec</groupId><artifactId>commons-codec</artifactId><version>1.15</version><!--<scope>provided</scope>--></dependency><dependency><groupId>com.typesafe</groupId><artifactId>config</artifactId><version>1.3.1</version></dependency><!-- https://mvnrepository.com/artifact/com.alibaba/fastjson --><dependency><groupId>com.alibaba</groupId><artifactId>fastjson</artifactId><version>1.2.62</version></dependency><dependency><groupId>com.alibaba</groupId><artifactId>fastjson</artifactId><version>${fastjson.version}</version></dependency><!-- https://mvnrepository.com/artifact/org.json/json --><dependency><groupId>org.json</groupId><artifactId>json</artifactId><version>20160810</version></dependency><dependency><groupId>com.github.qlone</groupId><artifactId>retrofit-crawler</artifactId><version>1.0.0</version></dependency><dependency><groupId>com.oracle.database.jdbc</groupId><artifactId>ojdbc8</artifactId><version>12.2.0.1</version></dependency><!--mysql连接--><dependency><groupId>mysql</groupId><artifactId>mysql-connector-java</artifactId><version>5.1.40</version></dependency><dependency><groupId>javax.mail</groupId><artifactId>javax.mail-api</artifactId><version>1.5.6</version></dependency><dependency><groupId>org.apache.commons</groupId><artifactId>commons-email</artifactId><version>1.4</version></dependency></dependencies>
3.项目集群提交报错
at org.apache.spark.sql.catalyst.catalog.SessionCatalog.lookupRelation(SessionCatalog.scala:696)
at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$.org$apache$spark$sql$catalyst$analysis$Analyzer$ResolveRelations$$lookupTableFromCatalog(Analyzer.scala:730)
at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$.resolveRelation(Analyzer.scala:685)
at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$$anonfun$apply$8.applyOrElse(Analyzer.scala:715)
at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$$anonfun$apply$8.applyOrElse(Analyzer.scala:708)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$$anonfun$resolveOperatorsUp$1$$anonfun$apply$1.apply(AnalysisHelper.scala:90)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$$anonfun$resolveOperatorsUp$1$$anonfun$apply$1.apply(AnalysisHelper.scala:90)
at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:70)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$$anonfun$resolveOperatorsUp$1.apply(AnalysisHelper.scala:89)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$$anonfun$resolveOperatorsUp$1.apply(AnalysisHelper.scala:86)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$.allowInvokingTransformsInAnalyzer(AnalysisHelper.scala:194)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$class.resolveOperatorsUp(AnalysisHelper.scala:86)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.resolveOperatorsUp(LogicalPlan.scala:29)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$$anonfun$resolveOperatorsUp$1$$anonfun$1.apply(AnalysisHelper.scala:87)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$$anonfun$resolveOperatorsUp$1$$anonfun$1.apply(AnalysisHelper.scala:87)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:326)
at org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:187)
at org.apache.spark.sql.catalyst.trees.TreeNode.mapChildren(TreeNode.scala:324)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$$anonfun$resolveOperatorsUp$1.apply(AnalysisHelper.scala:87)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$$anonfun$resolveOperatorsUp$1.apply(AnalysisHelper.scala:86)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$.allowInvokingTransformsInAnalyzer(AnalysisHelper.scala:194)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$class.resolveOperatorsUp(AnalysisHelper.scala:86)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.resolveOperatorsUp(LogicalPlan.scala:29)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$$anonfun$resolveOperatorsUp$1$$anonfun$1.apply(AnalysisHelper.scala:87)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$$anonfun$resolveOperatorsUp$1$$anonfun$1.apply(AnalysisHelper.scala:87)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:326)
at org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:187)
at org.apache.spark.sql.catalyst.trees.TreeNode.mapChildren(TreeNode.scala:324)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$$anonfun$resolveOperatorsUp$1.apply(AnalysisHelper.scala:87)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$$anonfun$resolveOperatorsUp$1.apply(AnalysisHelper.scala:86)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$.allowInvokingTransformsInAnalyzer(AnalysisHelper.scala:194)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$class.resolveOperatorsUp(AnalysisHelper.scala:86)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.resolveOperatorsUp(LogicalPlan.scala:29)
at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$.apply(Analyzer.scala:708)
at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$.apply(Analyzer.scala:654)
at org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1$$anonfun$apply$1.apply(RuleExecutor.scala:87)
at org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1$$anonfun$apply$1.apply(RuleExecutor.scala:84)
at scala.collection.LinearSeqOptimized$class.foldLeft(LinearSeqOptimized.scala:124)
at scala.collection.immutable.List.foldLeft(List.scala:84)
at org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1.apply(RuleExecutor.scala:84)
at org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1.apply(RuleExecutor.scala:76)
at scala.collection.immutable.List.foreach(List.scala:392)
at org.apache.spark.sql.catalyst.rules.RuleExecutor.execute(RuleExecutor.scala:76)
at org.apache.spark.sql.catalyst.analysis.Analyzer.org$apache$spark$sql$catalyst$analysis$Analyzer$$executeSameContext(Analyzer.scala:127)
at org.apache.spark.sql.catalyst.analysis.Analyzer.execute(Analyzer.scala:121)
at org.apache.spark.sql.catalyst.analysis.Analyzer$$anonfun$executeAndCheck$1.apply(Analyzer.scala:106)
at org.apache.spark.sql.catalyst.analysis.Analyzer$$anonfun$executeAndCheck$1.apply(Analyzer.scala:105)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$.markInAnalyzer(AnalysisHelper.scala:201)
at org.apache.spark.sql.catalyst.analysis.Analyzer.executeAndCheck(Analyzer.scala:105)
at org.apache.spark.sql.execution.QueryExecution.analyzed$lzycompute(QueryExecution.scala:57)
at org.apache.spark.sql.execution.QueryExecution.analyzed(QueryExecution.scala:55)
at org.apache.spark.sql.execution.QueryExecution.assertAnalyzed(QueryExecution.scala:47)
at org.apache.spark.sql.Dataset$.ofRows(Dataset.scala:78)
at org.apache.spark.sql.SparkSession.sql(SparkSession.scala:651)
at cn.zd.maincode.wangge.GridCorrelationMain$.createDataFrameAndTempView(GridCorrelationMain.scala:264)
at cn.zd.maincode.wangge.GridCorrelationMain$.horecaGridInfo(GridCorrelationMain.scala:148)
at cn.zd.maincode.wangge.GridCorrelationMain$.main(GridCorrelationMain.scala:110)
at cn.zd.maincode.wangge.GridCorrelationMain.main(GridCorrelationMain.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at org.apache.spark.deploy.yarn.ApplicationMaster$$anon$2.run(ApplicationMaster.scala:673)
Caused by: java.lang.ExceptionInInitializerError
at org.apache.hadoop.hive.conf.HiveConf.<clinit>(HiveConf.java:105)
at org.apache.spark.sql.hive.client.HiveClientImpl.newState(HiveClientImpl.scala:153)
at org.apache.spark.sql.hive.client.HiveClientImpl.<init>(HiveClientImpl.scala:118)
at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)
at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:62)
at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45)
at java.lang.reflect.Constructor.newInstance(Constructor.java:423)
at org.apache.spark.sql.hive.client.IsolatedClientLoader.createClient(IsolatedClientLoader.scala:292)
at org.apache.spark.sql.hive.HiveUtils$.newClientForMetadata(HiveUtils.scala:395)
at org.apache.spark.sql.hive.HiveUtils$.newClientForMetadata(HiveUtils.scala:284)
at org.apache.spark.sql.hive.HiveExternalCatalog.client$lzycompute(HiveExternalCatalog.scala:68)
at org.apache.spark.sql.hive.HiveExternalCatalog.client(HiveExternalCatalog.scala:67)
at org.apache.spark.sql.hive.HiveExternalCatalog$$anonfun$databaseExists$1.apply$mcZ$sp(HiveExternalCatalog.scala:217)
at org.apache.spark.sql.hive.HiveExternalCatalog$$anonfun$databaseExists$1.apply(HiveExternalCatalog.scala:217)
at org.apache.spark.sql.hive.HiveExternalCatalog$$anonfun$databaseExists$1.apply(HiveExternalCatalog.scala:217)
at org.apache.spark.sql.hive.HiveExternalCatalog.withClient(HiveExternalCatalog.scala:99)
... 72 more
Caused by: java.lang.IllegalArgumentException: Unrecognized Hadoop major version number: 3.0.0-cdh6.3.2
at org.apache.hadoop.hive.shims.ShimLoader.getMajorVersion(ShimLoader.java:169)
at org.apache.hadoop.hive.shims.ShimLoader.loadShims(ShimLoader.java:134)
at org.apache.hadoop.hive.shims.ShimLoader.getHadoopShims(ShimLoader.java:95)
at org.apache.hadoop.hive.conf.HiveConf$ConfVars.<clinit>(HiveConf.java:354)
... 88 moreEnd of LogType:stderr
4.最终解决方式
将相关依赖不打进包中
<dependency><groupId>org.apache.hive</groupId><artifactId>hive-jdbc</artifactId><exclusions><exclusion><groupId>org.eclipse.jetty.aggregate</groupId><artifactId>jetty-all</artifactId></exclusion><exclusion><groupId>org.apache.hive</groupId><artifactId>hive-shims</artifactId></exclusion><exclusion><artifactId>hbase-mapreduce</artifactId><groupId>org.apache.hbase</groupId></exclusion><exclusion><artifactId>hbase-server</artifactId><groupId>org.apache.hbase</groupId></exclusion><exclusion><artifactId>log4j-slf4j-impl</artifactId><groupId>org.apache.logging.log4j</groupId></exclusion><exclusion><artifactId>slf4j-log4j12</artifactId><groupId>org.slf4j</groupId></exclusion></exclusions><version>2.1.1</version></dependency><!--服务验证相关依赖--><dependency><groupId>org.apache.httpcomponents</groupId><artifactId>httpclient</artifactId><version>4.5.13</version><exclusions><exclusion><groupId>commons-codec</groupId><artifactId>commons-codec</artifactId></exclusion></exclusions><!--<scope>provided</scope>--></dependency><!--本地跑的话 需要这个jar--><dependency><groupId>commons-codec</groupId><artifactId>commons-codec</artifactId><version>1.15</version><!--<scope>provided</scope>--></dependency><dependency><groupId>com.typesafe</groupId><artifactId>config</artifactId><version>1.3.1</version></dependency><!-- https://mvnrepository.com/artifact/com.alibaba/fastjson --><dependency><groupId>com.alibaba</groupId><artifactId>fastjson</artifactId><version>1.2.62</version></dependency><dependency><groupId>com.alibaba</groupId><artifactId>fastjson</artifactId><version>${fastjson.version}</version></dependency><!-- https://mvnrepository.com/artifact/org.json/json --><dependency><groupId>org.json</groupId><artifactId>json</artifactId><version>20160810</version></dependency><dependency><groupId>com.github.qlone</groupId><artifactId>retrofit-crawler</artifactId><version>1.0.0</version></dependency><dependency><groupId>com.oracle.database.jdbc</groupId><artifactId>ojdbc8</artifactId><version>12.2.0.1</version></dependency><!--mysql连接--><dependency><groupId>mysql</groupId><artifactId>mysql-connector-java</artifactId><version>5.1.40</version></dependency><!--10月31日 新取消-->
<!-- <dependency><groupId>com.google.guava</groupId><artifactId>guava</artifactId><version>28.0-jre</version></dependency>--><!-- https://mvnrepository.com/artifact/org.apache.directory.studio/org.apache.commons.codec --><!-- https://mvnrepository.com/artifact/org.apache.commons/org.apache.commons.codec --><!--邮件发送依赖--><dependency><groupId>javax.mail</groupId><artifactId>javax.mail-api</artifactId><version>1.5.6</version></dependency><dependency><groupId>org.apache.commons</groupId><artifactId>commons-email</artifactId><version>1.4</version></dependency><!--<dependency><groupId>org.scala-lang</groupId><artifactId>scala-library</artifactId><version>2.11.2</version></dependency><dependency><groupId>org.scala-lang</groupId><artifactId>scala-reflect</artifactId><version>2.11.2</version></dependency><dependency><groupId>org.scala-lang</groupId><artifactId>scala-compiler</artifactId><version>2.11.2</version></dependency>--><!-- <dependency>-->
<!-- <groupId>com.starrocks</groupId>-->
<!-- <artifactId>starrocks-spark2_2.11</artifactId>-->
<!-- <version>1.0.1</version>-->
<!-- </dependency>--></dependencies>
相关文章:
Unrecognized Hadoop major version number: 3.0.0-cdh6.3.2
一.环境描述 spark提交job到yarn报错,业务代码比较简单,通过接口调用获取数据,将数据通过sparksql将数据写入hive中,尝试各种替换hadoop版本,最后拿下 1.hadoop环境 2.项目 pom.xml spark-submit \ --name GridCorr…...
机器学习分类,损失函数中为什么要用Log,机器学习的应用
目录 损失函数中为什么要用Log 为什么对数可以将乘法转化为加法? 机器学习(Machine Learning) 机器学习的分类 监督学习 无监督学习 强化学习 机器学习的应用 应用举例:猫狗分类 1. 现实问题抽象为数学问题 2. 数据准备…...
PySpark安装及WordCount实现(基于Ubuntu)
先盘点一下要安装哪些东西: VMwareubuntu 14.04(64位)Java环境(JDK 1.8)Hadoop 2.7.1Spark 2.4.0(Local模式)Pycharm (一)Ubuntu VMware 和 ubuntu 14.04(…...
SpringBoot 模板模式实现优惠券逻辑
一、计算逻辑的类结构图 在这张图里,顶层接口 RuleTemplate 定义了 calculate 方法,抽象模板类 AbstractRuleTemplate 将通用的模板计算逻辑在 calculate 方法中实现,同时它还定义了一个抽象方法 calculateNewPrice 作为子类的扩展点。各个具…...
并查集 rank 的优化(Java 实例代码)
目录 并查集 rank 的优化 Java 实例代码 UnionFind3.java 文件代码: 并查集 rank 的优化 上一小节介绍了并查集基于 size 的优化,但是某些场景下,也会存在某些问题,如下图所示,操作 union(4,2)。 根据上一小节&…...
TDA4超级玩家浮出水面,行泊一体功能、成本刷到极致
2023年以来,智能驾驶市场进入L2普及、高阶ADAS功能(NOA)大规模量产的新周期,降本增效,打造极致性价比、提升用户体验等,成为了竞争的焦点。 其中,替换更具性价比的硬件平台、传感器复用、系统优…...
3分钟了解Android中稳定性测试
一、什么是Monkey Monkey在英文里的含义是猴子,在测试行业的学名叫“猴子测试”,指的是没有测试经验的人甚至是根本不懂计算机的人(就像一只猴子),不需要知道程序的任何用户交互方面的知识,给他一个程序&a…...
LVS-DR+keepalived实现高可用负载群集
VRRP 通信原理: VRRP就是虚拟路由冗余协议,它的出现就是为了解决静态路由的单点故障。 VRRP是通过一种竞选的一种协议机制,来将路由交给某台VRRP路由。 VRRP用IP多播的方式(多播地址224.0.0.18)来实现高可用的通信&…...
阿里云国际版注册教程
什么是阿里云国际版? 阿里云国际版是阿里云专为海外客户供给的服务器及核算资源,涵盖了云主机、弹性裸金属服务器、容器服务、数据库及安全和监控等一系列云核算解决方案。 与其他云核算服务供给商不同,阿里云国际版在安全性、稳定性、性能方…...
基于百度文心大模型创作的实践与谈论
文心概念 百度文心大模型源于产业、服务于产业,是产业级知识增强大模型。百度通过大模型与国产深度学习框架融合发展,打造了自主创新的AI底座,大幅降低了AI开发和应用的门槛,满足真实场景中的应用需求,真正发挥大模型…...
Java基础知识题(五)
系列文章目录 Java基础知识题(一) Java基础知识题(二) Java基础知识题(三) Java基础知识题(四) Java基础知识题(五) 文章目录 系列文章目录 前言 一 Java的数据连接——JDBC 1. 简述什么是JDBC?重点 2. JDBC PreparedStatement比Statement有什么优势&…...
攻防世界-fileinclude
原题 解题思路 题目已经告诉了,flag在flag.php中,先查看网页源代码(快捷键CTRLU)。 通过抓包修改,可以把lan变量赋值flag。在cookie处修改。新打开的网页没有cookie,直接添加“Cookie: languagephp://filte…...
流媒体服务器SRS的搭建及QT下RTMP推流客户端的编写
一、前言 目前市面上有很多开源的流媒体服务器解决方案,常见的有SRS、EasyDarwin、ZLMediaKit和Monibuca。这几种的对比如下: (本图来源:https://www.ngui.cc/zz/1781086.html?actiononClick) 二、SRS的介绍 SRS&am…...
Effective C++条款11——在operator=中处理“自我赋值”(构造/析构/赋值运算)
“自我赋值”发生在对象被赋值给自己时: class Widget {}; Widget w; // ... w w; // 赋值给自己 这看起来有点愚蠢,但它合法,所以不要认定客户绝不会那么做。此外赋值动作并不总是那么可被一眼辨识出来,例如: a[i] a[j]; …...
可视化绘图技巧100篇基础篇(八)-气泡图(一)
目录 前言 适用场景 图例 绘图工具及代码实现 EXCEL 1、单轴气泡图...
Elasticsearch查询之Disjunction Max Query
前言 Disjunction Max Query 又称最佳 best_fields 匹配策略,用来优化当查询关键词出现在多个字段中,以单个字段的最大评分作为文档的最终评分,从而使得匹配结果更加合理 写入数据 如下的两条例子数据: docId: 1 title: java …...
Lock wait timeout exceeded; try restarting transaction的错误
文章目录 一、异常发现二、异常定位1、锁表语句确认2、实际场景排查三、解决思路1、本次解决方式2、其他场景解决思路扩展1、【治标方法】innodb_lock_wait_timeout 锁定等待时间改大2、【治标方法】事务信息查询3、【治标方法】如果杀掉线程依然不能解决,可以查找执行线程耗时…...
ShardingSphere01-docker环境安装
使用docker安装数据库是一个非常好的选择,后续的读写分离、数据分片等功能的数据库都是由docker创建。 一、安装准备 1、前提条件 Docker可以运行在Windows、Mac、CentOS、Ubuntu等操作系统上 Docker支持以下的CentOS版本: CentOS 7 (64-bit)CentOS …...
Java代码审计13之URLDNS链
文章目录 1、简介urldns链2、hashmap与url类的分析2.1、Hashmap类readObject方法的跟进2.2、URL类hashcode方法的跟进2.3、InetAddress类的getByName方法 3、整个链路的分析3.1、整理上述的思路3.2、一些疑问的测试3.3、hashmap的put方法分析3.4、反射3.5、整个代码 4、补充说明…...
区间预测 | MATLAB实现QRBiGRU双向门控循环单元分位数回归时间序列区间预测
区间预测 | MATLAB实现QRBiGRU双向门控循环单元分位数回归时间序列区间预测 目录 区间预测 | MATLAB实现QRBiGRU双向门控循环单元分位数回归时间序列区间预测效果一览基本介绍模型描述程序设计参考资料 效果一览 基本介绍 MATLAB实现QRBiGRU双向门控循环单元分位数回归时间序列…...
LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器的上位机配置操作说明
LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器专为工业环境精心打造,完美适配AGV和无人叉车。同时,集成以太网与语音合成技术,为各类高级系统(如MES、调度系统、库位管理、立库等)提供高效便捷的语音交互体验。 L…...
苍穹外卖--缓存菜品
1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得,如果用户端访问量比较大,数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据,减少数据库查询操作。 缓存逻辑分析: ①每个分类下的菜品保持一份缓存数据…...
C++中string流知识详解和示例
一、概览与类体系 C 提供三种基于内存字符串的流,定义在 <sstream> 中: std::istringstream:输入流,从已有字符串中读取并解析。std::ostringstream:输出流,向内部缓冲区写入内容,最终取…...
MySQL账号权限管理指南:安全创建账户与精细授权技巧
在MySQL数据库管理中,合理创建用户账号并分配精确权限是保障数据安全的核心环节。直接使用root账号进行所有操作不仅危险且难以审计操作行为。今天我们来全面解析MySQL账号创建与权限分配的专业方法。 一、为何需要创建独立账号? 最小权限原则…...
使用LangGraph和LangSmith构建多智能体人工智能系统
现在,通过组合几个较小的子智能体来创建一个强大的人工智能智能体正成为一种趋势。但这也带来了一些挑战,比如减少幻觉、管理对话流程、在测试期间留意智能体的工作方式、允许人工介入以及评估其性能。你需要进行大量的反复试验。 在这篇博客〔原作者&a…...
MySQL 知识小结(一)
一、my.cnf配置详解 我们知道安装MySQL有两种方式来安装咱们的MySQL数据库,分别是二进制安装编译数据库或者使用三方yum来进行安装,第三方yum的安装相对于二进制压缩包的安装更快捷,但是文件存放起来数据比较冗余,用二进制能够更好管理咱们M…...
腾讯云V3签名
想要接入腾讯云的Api,必然先按其文档计算出所要求的签名。 之前也调用过腾讯云的接口,但总是卡在签名这一步,最后放弃选择SDK,这次终于自己代码实现。 可能腾讯云翻新了接口文档,现在阅读起来,清晰了很多&…...
解读《网络安全法》最新修订,把握网络安全新趋势
《网络安全法》自2017年施行以来,在维护网络空间安全方面发挥了重要作用。但随着网络环境的日益复杂,网络攻击、数据泄露等事件频发,现行法律已难以完全适应新的风险挑战。 2025年3月28日,国家网信办会同相关部门起草了《网络安全…...
tomcat指定使用的jdk版本
说明 有时候需要对tomcat配置指定的jdk版本号,此时,我们可以通过以下方式进行配置 设置方式 找到tomcat的bin目录中的setclasspath.bat。如果是linux系统则是setclasspath.sh set JAVA_HOMEC:\Program Files\Java\jdk8 set JRE_HOMEC:\Program Files…...
人工智能 - 在Dify、Coze、n8n、FastGPT和RAGFlow之间做出技术选型
在Dify、Coze、n8n、FastGPT和RAGFlow之间做出技术选型。这些平台各有侧重,适用场景差异显著。下面我将从核心功能定位、典型应用场景、真实体验痛点、选型决策关键点进行拆解,并提供具体场景下的推荐方案。 一、核心功能定位速览 平台核心定位技术栈亮…...
