当前位置: 首页 > news >正文

494. 目标和

494. 目标和

  • 原题链接:
  • 完成情况:
  • 解题思路:
    • 数组回溯法
    • 动态规划
  • 参考代码:
    • 数组回溯法
    • __494目标和__动态规划
  • 经验吸取

原题链接:

494. 目标和

https://leetcode.cn/problems/target-sum/description/

完成情况:

在这里插入图片描述

解题思路:

数组回溯法

backTrack(nums, target, index+1, curSum+nums[index]);
backTrack(nums, target, index+1, curSum-nums[index]);

动态规划

	 假设P是正子集,N是负子集 例如: 假设nums = [1, 2, 3, 4, 5],target = 3,一个可能的解决方案是+1-2+3-4+5 = 3 这里正子集P = [1, 3, 5]和负子集N = [2, 4]sum(P) - sum(N) = targetsum(P) + sum(N) + sum(P) - sum(N) = target + sum(P) + sum(N)2 * sum(P) = target + sum(nums)因此,原来的问题已转化为一个求子集的和问题: 找到nums的一个子集 P,使得sum(P) = (target + sum(nums)) / 2,该式已经证明了target + sum(nums)必须是偶数,否则无解求子集的问题可以转化为01背包问题定义二维数组dp,其中dp[i][j]表示在数组下标为0...i的元素中任选元素,使得这些元素之和等于j的方案数

在这里插入图片描述

在这里插入图片描述

参考代码:

数组回溯法

package 西湖算法题解___中等题;public class __494目标和__数组回溯法 {int res = 0;public int findTargetSumWays(int[] nums, int target) {backTrack(nums,target,0,0);return res;}/**** @param nums      数组* @param target    目标值* @param index     索引位置* @param curSum    当前累计和*/private void backTrack(int[] nums, int target, int index, int curSum) {//1 <= nums.length <= 20//这种方法,属于递归,完全是因为数量级太小了//不然肯定算不出来的。if (index == nums.length){      //所有元素已经遍历完了if (curSum == target){res++;}}else{backTrack(nums, target, index+1, curSum+nums[index]);backTrack(nums, target, index+1, curSum-nums[index]);}}}

__494目标和__动态规划

package 西湖算法题解___中等题;public class __494目标和__评论区大佬 {/**题目介绍:就是说有一个数组,然后要在数组任意两两元素间插入一个【+】或者【-】最终要构成target这个值,问你有多少种拼接情况。*/public int findTargetSumWays(int[] nums, int target) {//很明显的一道dp题目,最终结果取决于过程叠加。/**假设P是正子集,N是负子集 例如: 假设nums = [1, 2, 3, 4, 5],target = 3,一个可能的解决方案是+1-2+3-4+5 = 3 这里正子集P = [1, 3, 5]和负子集N = [2, 4]sum(P) - sum(N) = targetsum(P) + sum(N) + sum(P) - sum(N) = target + sum(P) + sum(N)2 * sum(P) = target + sum(nums)因此,原来的问题已转化为一个求子集的和问题: 找到nums的一个子集 P,使得sum(P) = (target + sum(nums)) / 2,该式已经证明了target + sum(nums)必须是偶数,否则无解求子集的问题可以转化为01背包问题定义二维数组dp,其中dp[i][j]表示在数组下标为0...i的元素中任选元素,使得这些元素之和等于j的方案数*/int nLength = nums.length;//先去掉点特殊情况int sum = 0;for (int num:nums){sum += num;}// target + sum(nums)必须是偶数,否则无解     //要使target = nums[]的加减操作合,则它们必须同奇或者同偶// Math.abs(target) <= sum才有解       //目标值不能比绝对值求和还大//偶数判断还可以用   (lambda & 1) == 1   去判断if (((sum + target) & 1) == 1 || Math.abs(target) > sum){return 0;}int size = (sum + target) / 2;// 定义二维数组dp,其中dp[i][j]表示在数组下标为0...i的元素中任选元素,使得这些元素之和等于j的方案数int dp_findTargetSumWays [][] = new int[nLength][size+1];// 对dp[0][j]的初始化:除dp[0][0]和dp[0][nums[0]]外全部初始化为0// dp[0][0] = 1:nums[0]不为0时,此时dp[0][0]和dp[0][nums[0]]不重合,只有不选nums[0],其总和为0// dp[0][0] = 2:nums[0]为0时,此时dp[0][0]和dp[0][nums[0]]重合,选或者不选nums[0],其总和都为0if (nums[0] <= size){dp_findTargetSumWays[0][nums[0]] = 1;}if (nums[0] == 0){dp_findTargetSumWays[0][0] = 2;}else {dp_findTargetSumWays[0][0] = 1;}// 对dp[i][0]的初始化,可以放在下面整个dp的递推代码中for (int i = 1;i<nLength;i++){if (nums[i] == 0){//当nums[1]为0时,选择或者不选择nums[1]都可以使总和为0,//即dp[i][0] = dp[i - 1][0] + dp[i - 1][0 - nums[i]] = 2 * dp[i -1][0]dp_findTargetSumWays[i][0] = 2*dp_findTargetSumWays[i-1][0];}else{// 当nums[i]不为0时,只有不选nums[i]才可以使总和为0dp_findTargetSumWays[i][0] = dp_findTargetSumWays[i-1][0];}}// dp[i][j]递推:由于初始化时都将i = 0和j = 0的情况已经赋值,所以直接从i = 1和j = 1开始// 完全可以将上面对dp[i][0]的初始化放在此处,只需要将j从0开始for (int i=1;i<nLength;i++){for (int j=1;j<=size;j++){if (j>=nums[i]){dp_findTargetSumWays[i][j] = dp_findTargetSumWays[i-1][j] + dp_findTargetSumWays[i-1][j-nums[i]];}else{dp_findTargetSumWays[i][j] = dp_findTargetSumWays[i-1][j];}}}return dp_findTargetSumWays[nLength-1][size];}
}

经验吸取

  1. 首先,如果最终结果可以由其中的每一步过程,造成影响得来,那么就可以考虑用dp

  2. dp的难点就在于状态转移方程!!!如何将一个问题转化很重要!!!

  3. 转化形式应该为:
    在这里插入图片描述
    未知状态 = 已知确定目标值
    在这里插入图片描述

    dp数组过程推演情况。

相关文章:

494. 目标和

494. 目标和 原题链接&#xff1a;完成情况&#xff1a;解题思路&#xff1a;数组回溯法动态规划 参考代码&#xff1a;数组回溯法__494目标和__动态规划 经验吸取 原题链接&#xff1a; 494. 目标和 https://leetcode.cn/problems/target-sum/description/ 完成情况&#…...

C++学习笔记总结练习:C++编译过程详解

编译和链接的过程 0 概述 程序要运行起来&#xff0c;必须要经过四个步骤&#xff1a;预处理、编译、汇编和链接。接下来通过几个简单的例子来详细讲解一下这些过程。 [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-EFwSfKYp-1692237034055)(imag…...

嵌入式设备应用开发(qt界面开发)

【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing @163.com】 linux界面开发有很多的方案可以选。比如说lvgl、minigui、ftk之类的。但是,这么多年来,一直屹立不倒的还是qt。相比较其他几种方案,qt支持多个平台,这里面就包括了linux平台。此…...

pytest结合Excel实现接口自动化

前言 我们先来回顾下之前篇章“pytest通过parametrize方法实现数据驱动实战”&#xff0c;主要是通过yaml文件来读取测试用例。而我们用Excel文件存放测试用例又有什么区别呢&#xff1f; 毫无疑问&#xff0c;Pytest自动化测试框架也能读取Excel文件实现数据驱动。 还记得之…...

【LLM数据篇】预训练数据集+指令生成sft数据集

note 在《Aligning Large Language Models with Human: A Survey》综述中对LLM数据分类为典型的人工标注数据、self-instruct数据集等优秀的开源sft数据集&#xff1a;alpaca_data、belle、千言数据集、firefly、moss-003-sft-data多轮对话数据集等 文章目录 note构造指令实例…...

WebDAV之π-Disk派盘 + 一羽记帐

一羽记帐是一款真正让你体验3S极速记账的轻量级APP。针对个人记账,没有花哨冗余的功能。界面美丽、无广告、极速启动、功能全面。一羽记帐功能涵括广,基本可以满足90%人的记账需求。完全无侵入、百分百无广告,无需担心数据安全,所有的操作都不经过任何第三方。 π-Disk派盘…...

ChatGPT:记一次超复杂的KVM桌面系统连接问答记录

​ KVM切换器可以使多台电脑共用键盘&#xff0c;显示器&#xff0c;鼠标&#xff0c;当电脑很多&#xff0c;显示器也是分为主从&#xff0c;需要共用键盘鼠标和音响设备&#xff0c;而买KVM切换器只有2个通道4进2出不满足需求时&#xff0c;就要组合多个KVM使用&#xff0c;大…...

python-docx把dataframe表格添加到word文件中

python-docx把dataframe表格添加到word文件中思路较为简单&#xff1a; 先把dataframe格式转变为table新建一个段落&#xff1a;document.add_paragraph()把table添加到这个段落下方 效果图 示例代码 from docx import Document, oxml import pandas as pd import numpy as …...

Web AP—BOM 浏览器对象模型

代码下载 BOM BOM&#xff08;Browser Object Model&#xff09;即浏览器对象模型&#xff0c;它提供了独立于内容而与浏览器窗口进行交互的对象&#xff0c;其核心对象是 window。 BOM 由一系列相关的对象构成&#xff0c;并且每个对象都提供了很多方法与属性。 BOM 缺乏标…...

Flink分流,合流,状态,checkpoint和精准一次笔记

第8章 分流 1.使用侧输出流 2.合流 2.1 union &#xff1a;使用 ProcessFunction 处理合流后的数据 2.2 Connect &#xff1a; 两条流的格式可以不一样&#xff0c; map操作使用CoMapFunction&#xff0c;process 传入&#xff1a;CoProcessFunction 2.2 BroadcastConnectedSt…...

c# 实现sql查询DataTable数据集 对接SqlSugar ORM

有时候对于已经查询到的数据集&#xff0c;想要进行二次筛选或者查询&#xff0c;还得再查一遍数据库 或者其他的一些逻辑处理不太方便&#xff0c;就想着为什么不能直接使用sql来查询DataTable呢&#xff1f; 搜索全网没找到可用方案&#xff0c;所以自己实现了一个。 主要…...

记一次布尔盲注漏洞的挖掘与分析

在上篇文章记一次由于整型参数错误导致的任意文件上传的漏洞成因的分析过程中&#xff0c;发现menu_id貌似是存在注入的。 public function upload() {$menu_id $this->post(menu_id);if ($id) {$where "id {$id}";if ($menu_id) {$where . " and menu_id…...

C++11 新特性 ---- noexcept

1. 异常 异常通常用于处理逻辑上可能发生的错误 在C98中&#xff0c;提供了一套完善的异常处理机制&#xff0c;直接在程序中将各种类型的异常抛出&#xff0c;从而强制终止程序的运行。 1.1 基本语法 当函数抛出异常时&#xff0c;程序会停止执行&#xff0c;并显示异常信息…...

《Linux运维总结:Centos7.6之OpenSSH7.4p1升级版本至9.4p1》

Centos通过yum升级OpenSSH 在官方支持更新的CentOS版本&#xff0c;如果出现漏洞&#xff0c;都会通过更新版本来修复漏洞。这时候直接使用yum update就可以升级版本。 yum -y update openssh 但是&#xff0c;CentOS更新需要有一段时间&#xff0c;不能在漏洞刚出来的时候就有…...

七夕节日表白:七大网页风格与其适用人群

&#x1f337;&#x1f341; 博主猫头虎 带您 Go to New World.✨&#x1f341; &#x1f984; 博客首页——猫头虎的博客&#x1f390; &#x1f433;《面试题大全专栏》 文章图文并茂&#x1f995;生动形象&#x1f996;简单易学&#xff01;欢迎大家来踩踩~&#x1f33a; &a…...

通达信指标公式16:使用BARSLAST函数写一个指标回测的思路

★★★★★博文原创不易&#xff0c;我的博文不需要打赏&#xff0c;也不需要知识付费&#xff0c;可以白嫖学习小技巧&#xff0c;喜欢的老铁可以多多帮忙点赞&#xff0c;小红牛在此表示感谢&#xff0c;就是对作者的最大支持。愿与诸君共勉&#xff0c;悟道于股市★★★★★…...

Jenkins自动化部署Vue项目

1、新建item&#xff0c;选择 Freestyle project 2、源码管理选择git&#xff0c;输入git仓库地址和授权账号&#xff0c;并指明要部署的分支 3、构建选择 Execute shell&#xff0c;输入vue项目打包命令 命令示例&#xff1a; source /etc/profile node -v npm config set re…...

Android JNI打印logcat日志

在 JNI 中打印日志可以使用 __android_log_print 函数来实现。该函数是 Android NDK 提供的一个用于在本地代码中输出日志消息到 logcat 的方法。 要在 JNI 中打印日志&#xff0c;请按照以下步骤进行操作&#xff1a; 在你的 JNI C/C 代码中包含 <android/log.h> 头文件…...

第28次CCF计算机软件能力认证(测试)

测试300分要是考试的时候也能这么发挥就好 第一题&#xff1a;现值计算 解题思路&#xff1a;直接模拟 n , m input().split() n int(n);m float(m) l list(map(int , input().split())) res 0 for i in range(0 , n 1):res pow(1 m , -i) * l[i] print(res) 第二题…...

九耶丨阁瑞钛伦特-Java高频面试题-请谈谈 ReadWriteLock 和 StampedLock

ReadWriteLock包括两种子锁 &#xff08;1&#xff09;ReadWriteLock ReadWriteLock 可以实现多个读锁同时进行&#xff0c;但是读与写和写于写互斥&#xff0c;只能有一个写锁线程在进行。 &#xff08;2&#xff09;StampedLock StampedLock是Jdk在1.8提供的一种读写锁&a…...

【Oracle APEX开发小技巧12】

有如下需求&#xff1a; 有一个问题反馈页面&#xff0c;要实现在apex页面展示能直观看到反馈时间超过7天未处理的数据&#xff0c;方便管理员及时处理反馈。 我的方法&#xff1a;直接将逻辑写在SQL中&#xff0c;这样可以直接在页面展示 完整代码&#xff1a; SELECTSF.FE…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院挂号小程序

一、开发准备 ​​环境搭建​​&#xff1a; 安装DevEco Studio 3.0或更高版本配置HarmonyOS SDK申请开发者账号 ​​项目创建​​&#xff1a; File > New > Create Project > Application (选择"Empty Ability") 二、核心功能实现 1. 医院科室展示 /…...

376. Wiggle Subsequence

376. Wiggle Subsequence 代码 class Solution { public:int wiggleMaxLength(vector<int>& nums) {int n nums.size();int res 1;int prediff 0;int curdiff 0;for(int i 0;i < n-1;i){curdiff nums[i1] - nums[i];if( (prediff > 0 && curdif…...

苍穹外卖--缓存菜品

1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得&#xff0c;如果用户端访问量比较大&#xff0c;数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据&#xff0c;减少数据库查询操作。 缓存逻辑分析&#xff1a; ①每个分类下的菜品保持一份缓存数据…...

【C语言练习】080. 使用C语言实现简单的数据库操作

080. 使用C语言实现简单的数据库操作 080. 使用C语言实现简单的数据库操作使用原生APIODBC接口第三方库ORM框架文件模拟1. 安装SQLite2. 示例代码:使用SQLite创建数据库、表和插入数据3. 编译和运行4. 示例运行输出:5. 注意事项6. 总结080. 使用C语言实现简单的数据库操作 在…...

Device Mapper 机制

Device Mapper 机制详解 Device Mapper&#xff08;简称 DM&#xff09;是 Linux 内核中的一套通用块设备映射框架&#xff0c;为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程&#xff0c;并配以详细的…...

sipsak:SIP瑞士军刀!全参数详细教程!Kali Linux教程!

简介 sipsak 是一个面向会话初始协议 (SIP) 应用程序开发人员和管理员的小型命令行工具。它可以用于对 SIP 应用程序和设备进行一些简单的测试。 sipsak 是一款 SIP 压力和诊断实用程序。它通过 sip-uri 向服务器发送 SIP 请求&#xff0c;并检查收到的响应。它以以下模式之一…...

浪潮交换机配置track检测实现高速公路收费网络主备切换NQA

浪潮交换机track配置 项目背景高速网络拓扑网络情况分析通信线路收费网络路由 收费汇聚交换机相应配置收费汇聚track配置 项目背景 在实施省内一条高速公路时遇到的需求&#xff0c;本次涉及的主要是收费汇聚交换机的配置&#xff0c;浪潮网络设备在高速项目很少&#xff0c;通…...

基于Java+MySQL实现(GUI)客户管理系统

客户资料管理系统的设计与实现 第一章 需求分析 1.1 需求总体介绍 本项目为了方便维护客户信息为了方便维护客户信息&#xff0c;对客户进行统一管理&#xff0c;可以把所有客户信息录入系统&#xff0c;进行维护和统计功能。可通过文件的方式保存相关录入数据&#xff0c;对…...

【Go语言基础【12】】指针:声明、取地址、解引用

文章目录 零、概述&#xff1a;指针 vs. 引用&#xff08;类比其他语言&#xff09;一、指针基础概念二、指针声明与初始化三、指针操作符1. &&#xff1a;取地址&#xff08;拿到内存地址&#xff09;2. *&#xff1a;解引用&#xff08;拿到值&#xff09; 四、空指针&am…...