当前位置: 首页 > news >正文

如何使用数学将 NumPy 函数的性能提高 50%

一、说明

        2D 傅里叶变换是本世纪最重要的计算机科学算法之一。它已在我们的日常生活中得到应用,从Instagram过滤器到MP3文件的处理。

        普通用户最常用的实现,有时甚至是在不知不觉中,是 NumPy 的改编。然而,尽管它很受欢迎,但他们的算法并不是最有效的。通过一些简单的操作和 2015 年的一篇文章,我们在性能上击败了 NumPy 算法 30-60%。当前实现的核心问题是一个简单的事实,即它最初是从性能弱算法派生的。

二、NumPy实现的算法

        从本质上讲,NumPy实现的算法将常规的一维FFT依次应用于二维,这显然不能成为最优解。

        相反,在2015年,两位俄罗斯科学家提出了他们的算法版本,将一维蝶蝶变换的想法应用于二维信号。我们通过添加我们的想法有效地实现了他们的基本算法概念。

        在构建了本文中的朴素算法后,我们继续进行优化,如下所示:

void _fft2d( /* Square matrix of size N */ ) {// base case {if (N == 1) return;// } base case int n = N >> 1;/* pseudo code {...Creating 4 temprorary matrices here...// X(x, y, i, j)// x, y -- indexing over temporary submatricies// i, j -- indexing over rows, columns in each submatrix_fft2d(&X(0, 0), root * root, ...);_fft2d(&X(0, 1), root * root, ...);_fft2d(&X(1, 0), root * root, ...);_fft2d(&X(1, 1), root * root, ...);} pseudo code */for (int i = 0; i < n; i++) {for (int j = 0; j < n; j++) {auto x00 = X(0, 0, i, j);auto x10 = X(1, 0, i, j) * /* W[i] */;auto x01 = X(0, 1, i, j) * /* W[j] */;auto x11 = X(1, 1, i, j) * /* W[i] * W[j] */;X(0, 0, i, j) = x00 + x10 + x01 + x11;X(0, 1, i, j) = x00 + x10 - x01 - x11;X(1, 0, i, j) = x00 - x10 + x01 - x11;X(1, 1, i, j) = x00 - x10 - x01 + x11;}}
}

任何递归算法都可以通过增加基本情况的大小来增强。以下是我们的处理方式:

void _fft2d( /* Square matrix of size N */ ) {// base case {if (N == 1) return;if (N == 2) {
#define Y(y, x) (V[(y)*rowsize + (x)])auto x00 = Y(0, 0);auto x10 = Y(1, 0);auto x01 = Y(0, 1);auto x11 = Y(1, 1);Y(0, 0) = x00 + x10 + x01 + x11;Y(0, 1) = x00 + x10 - x01 - x11;Y(1, 0) = x00 - x10 + x01 - x11;Y(1, 1) = x00 - x10 - x01 + x11;return;}// } base case // ...
}

        进一步的逻辑步骤是消除在每个递归步骤中创建四个不必要的临时子矩阵,而支持单个子矩阵。为此,我们使用了 algorithmica 文章中的概念,并将其修改为二维矩阵。此功能还有助于我们减少不必要的分配并增加缓存命中次数。

// Computing values for rev_bits[n]
auto revbits = [](size_t *v, size_t n) {int lg_n = log2(n);forn(i, n) {int revi = 0;forn(l, lg_n) revi |= ((i >> l) & 1) << (lg_n - l - 1);v[i] = revi;}
};size_t *rev_n = new size_t[N], *rev_m = new size_t[M];
revbits(rev_n, N), revbits(rev_m, M);  // Transforming matrix
forn(i, N) {int rev_i = rev_n[i];forn(j, M) {if ((i < rev_i) || ((i == rev_i) && (j < rev_m[j])))std::swap(V[i * M + j], V[rev_i * M + rev_m[j]]);}
}

        我们的下一个挑战是预先计算团结的根源:

int mxdim = std::max(N, M);
const int lg_dim = log2(mxdim);
auto W = new fft_type[mxdim];
auto rooti = std::polar(1., (inverse ? 2 : -2) * fft::pi / mxdim);// Computing look-up matrix for roots
auto cur_root = rooti;
W[0] = 1;
forn (i, mxdim - 1) W[i + 1] = W[i] * cur_root;

        我们怎么能用这样的数组过关?让我们注意到,在朴素实现中,在初始递归步骤中,我们经过一个根的数组。我们还传递到下一个递归级别,即此根的平方(W[2])。在下一个递归级别,我们传递相同的幂数组,但以 2 为增量。从这个观察中,我们可以推导出,在第 i 个递归级别上,我们将通过数组 W 的步骤是 2ⁱ。

        在此阶段,我们收到以下代码:

void _fft2d(fft_type *__restrict__ V,size_t N,size_t rowsize,fft_type *__restrict__ W,int step) {// base case {if (N == 1) return;if (N == 2) {
#define Y(y, x) (V[(y)*rowsize + (x)])auto x00 = Y(0, 0);auto x10 = Y(1, 0);auto x01 = Y(0, 1);auto x11 = Y(1, 1);Y(0, 0) = x00 + x10 + x01 + x11;Y(0, 1) = x00 + x10 - x01 - x11;Y(1, 0) = x00 - x10 + x01 - x11;Y(1, 1) = x00 - x10 - x01 + x11;return;}// } base case int n = N >> 1;#define X(y, x, i, j) (V[((y)*n + (i)) * rowsize + ((x)*n) + j])
#define params n, rowsize, W, (step << 1)_fft2d(&X(0, 0, 0, 0), params);_fft2d(&X(0, 1, 0, 0), params);_fft2d(&X(1, 0, 0, 0), params);_fft2d(&X(1, 1, 0, 0), params);for (int i = 0; i < n; i++) {for (int j = 0; j < n; j++) {auto x00 = X(0, 0, i, j);auto x10 = X(1, 0, i, j) * W[step * i];auto x01 = X(0, 1, i, j) * W[step * j];auto x11 = X(1, 1, i, j) * W[step * (i + j)];X(0, 0, i, j) = x00 + x10 + x01 + x11;X(0, 1, i, j) = x00 + x10 - x01 - x11;X(1, 0, i, j) = x00 - x10 + x01 - x11;X(1, 1, i, j) = x00 - x10 - x01 + x11;}}
}

        原始算法还有另一个明显的缺点——它只处理维度等于 2 次方的平方矩阵。使用一些简单的修改,我们可以将其扩展到矩形矩阵。

void _plan(fft_type *__restrict__ V,size_t N,size_t M,size_t rowsize,fft_type *__restrict__ W,int step_i,int step_j) {// Computing square matrixif (N == M) _fft2d(V, N, rowsize, W, step_i);// Performing vertical splitelse if (N > M) {int n = N >> 1;
#define Y(y, i, j) (V[((y)*n + (i)) * rowsize + j])
#define params n, M, rowsize, W, (step_i << 1), step_j_plan(&Y(0, 0, 0), params);_plan(&Y(1, 0, 0), params);forn (i, n) {forn (j, M) {auto y00 = Y(0, i, j);auto y10 = Y(1, i, j) * W[i * step_i];Y(0, i, j) = y00 + y10;Y(1, i, j) = y00 - y10;}}// Performing horizontal split} else { /* ...Analogical approach... */ }
}

        值得一提的是,NumPy在其算法中在FFT下进行了额外的分配,将其中的类型带到了np.complex128;如果我们避免这一步,我们可以获得大约 10% 的优势。我们最终也实现了多线程。

        作为可视化表示,我们可以提供带有运行时的表格,还可以提供显示我们关于 NumPy 的工作效率的图表:

        结果表

表示图形

三、结论

        俄罗斯数学家修改后的算法在效率方面超过了NumPy引擎盖下的“行和列”。一些逻辑操作,例如基本大小写增加,显着提高了我们的优化。

        至关重要的是,我们在实现过程中执行的步骤也可以用于其他算法,这在未来可能对您有所帮助。同样值得注意的是,虽然我们已经做出了坚实的努力,但仍然可以通过添加不同大小的填充矩阵来加强实现。这篇文章旨在分享源代码,这可能有助于改进各种项目中转换的计算。

        存储库链接可以在下面找到,或者您也可以使用终端直接导入包:

pip3 install git+https://github.com/2D-FFT-Project/2d-fft

参考资源:

包含源代码的存储库

  • FFT, 算法
  • 二维快速傅里叶变换:Cooley-Tukey算法模拟中的蝴蝶,V. S. Tutatchikov为IEEE,2016年

亚历山大·莱文

相关文章:

如何使用数学将 NumPy 函数的性能提高 50%

一、说明 2D 傅里叶变换是本世纪最重要的计算机科学算法之一。它已在我们的日常生活中得到应用&#xff0c;从Instagram过滤器到MP3文件的处理。 普通用户最常用的实现&#xff0c;有时甚至是在不知不觉中&#xff0c;是 NumPy 的改编。然而&#xff0c;尽管它很受欢迎&#xf…...

群狼调研(长沙政策第三方评估)| 社情民意调查的内容

本文由群狼调研(长沙社会舆情调查)出品&#xff0c;欢迎转载&#xff0c;请注明出处。社情民意调查旨在捕捉公众对各种社会问题的态度、意见和看法&#xff0c;社情民意调查的内容通常包括以下几个方面&#xff1a; 1. 社会热点问题&#xff1a;针对当前社会热点问题进行调查&…...

【三维重建】【深度学习】NeuS代码Pytorch实现--测试阶段代码解析(上)

【三维重建】【深度学习】NeuS代码Pytorch实现–测试阶段代码解析(上) 论文提出了一种新颖的神经表面重建方法&#xff0c;称为NeuS&#xff0c;用于从2D图像输入以高保真度重建对象和场景。在NeuS中建议将曲面表示为有符号距离函数(SDF)的零级集&#xff0c;并开发一种新的体绘…...

day-24 代码随想录算法训练营(19)回溯part01

77.组合 思路一&#xff1a;回溯相当于枚举&#xff0c;所以我们遍历1-n的每一个数字&#xff0c;然后在遍历第i位的同时递归出第i1~n位的组合结果&#xff0c;跟树的形式相似。 如上图所示&#xff0c;当长度为k时&#xff0c;即退出递归可对遍历到第i位以及剩下位数与k进行比…...

Redis之SYNC与PSYNC命令

一、复制SYNC与PSYNC 在Redis主从架构中&#xff0c;主要有以下两种情形需要进行数据同步 &#xff08;1&#xff09;当新的服务器执行slave of 命令&#xff0c;成为主服务器的从服务器。这时候从服务器会向主服务器发送SYNC命令&#xff0c;请求全量同步数据&#xff0c;主服…...

共创无线物联网数字化新模式|协创数据×企企通采购与供应链管理平台项目成功上线

近日&#xff0c;全球无线物联网领先者『协创数据技术股份有限公司』&#xff08;以下简称“协创数据”&#xff09;SRM采购与供应链项目全面上线&#xff0c;并于近日与企企通召开成功召开项目上线总结会。 基于双方资源和优势&#xff0c;共同打造了物联网特色的数字化采购供…...

【深入理解jvm读书笔记】jvm如何进行内存分配

jvm如何进行内存分配 内存分配方式内存分配方式的选择并发场景下的内存分配内存空间的初始化构造函数 内存分配方式 指针碰撞空闲列表 指针碰撞法&#xff1a; 假设Java堆中内存是绝对规整的&#xff0c;所有被使用过的内存都被放在一边&#xff0c;空闲的内存被放在另一边&a…...

OpenCV使用CMake和MinGW-w64的编译安装

OpenCV使用CMake和MinGW-w64的编译安装中的问题 问题&#xff1a;gcc: error: long: No such file or directory** C:\PROGRA~2\Dev-Cpp\MinGW64\bin\windres.exe: preprocessing failed. modules\core\CMakeFiles\opencv_core.dir\build.make:1420: recipe for target ‘modul…...

亚马逊买家怎么留评

亚马逊买家可以按照以下步骤在购买后留下产品评价&#xff1a; 1、登录亚马逊账户&#xff1a;首先&#xff0c;在网页浏览器中打开亚马逊网站&#xff0c;登录你的亚马逊账户。 2、找到订单&#xff1a;在页面上找到并点击你购买过的商品的"我的订单"或"订单…...

并查集 size 的优化(并查集 size 的优化)

目录 并查集 size 的优化 Java 实例代码 UnionFind3.java 文件代码&#xff1a; 并查集 size 的优化 按照上一小节的思路&#xff0c;我们把如下图所示的并查集&#xff0c;进行 union(4,9) 操作。 合并操作后的结构为&#xff1a; 可以发现&#xff0c;这个结构的树的层相对…...

Qt关于hex转double,或者QByteArray转double

正常的00 ae 02 33这种类型的hex数据类型可以直接通过以下代码进行转换 double QDataConversion::hexToDouble(QByteArray p_buf) {double retValue 0;if(p_buf.size()>4){QString str1 byteArrayToHexStr(p_buf.mid(0,1));QString str2 byteArrayToHexStr(p_buf.mid(1,…...

Java“牵手”根据关键词搜索(分类搜索)拼多多商品列表页面数据获取方法,拼多多API实现批量商品数据抓取示例

拼多多商城是一个网上购物平台&#xff0c;售卖各类商品&#xff0c;包括服装、鞋类、家居用品、美妆产品、电子产品等。要获取拼多多商品列表和商品详情页面数据&#xff0c;您可以通过开放平台的接口或者直接访问拼多多商城的网页来获取商品列表和详情信息。以下是两种常用方…...

Linux相关知识点

Linux是什么&#xff1f; Linux是一套免费使用和自由传播的类Unix操作系统&#xff0c;是一个基于POSIX和UNIX的多用户、多任务、支持多线程和多CPU的操作系统。它能运行主要的UNIX工具软件、应用程序和网络协议。它支持32位和64位硬件。 Linux内核 是一个Linux系统的内核&…...

常见的的数据结构

数组&#xff08;Array&#xff09;&#xff1a;一组按顺序排列的元素的集合&#xff0c;可以通过索引访问和修改元素。 链表&#xff08;Linked List&#xff09;&#xff1a;由一系列节点组成的数据结构&#xff0c;每个节点包含数据和指向下一个节点的指针。 栈&#xff0…...

专业心理咨询师助你轻装上阵,向内耗说不!

引言 身为技术人&#xff0c;你是否经常感觉自己被掏空了精力&#xff0c;行动力不佳&#xff1f;又或者觉得自己的工作没有成就和意义&#xff0c;工作状态持续不佳&#xff1f;你是否总有一种无法消除的疲惫&#xff1f;即使没有学习、工作&#xff0c;而是选择看剧、刷短视频…...

Ubuntu安装mysql5.7

目录 1. 更新系统软件包2. 安装MySQL 5.73. 启动MySQL 服务4. 设置MySQL root 密码5. 验证MySQL 安装6. 启用远程访问7. 创建新用户8. 为新用户授予权限9. mysql命令 以Ubuntu 18.04系统为例&#xff0c;安装MySQL 5.7。操作步骤如下&#xff1a; 1. 更新系统软件包 sudo apt…...

vue2,使用element中的Upload 上传文件,自定义上传http-request上传,上传附件支持多选,多个文件只发送一次请求,代码里有注释

复制直接使用&#xff0c;组件根据multiple是否多选来返回附件内容&#xff0c;支持多选就返回数据附件&#xff0c;则返回一个附件对象。 //uploadFiles.vue<template><div><el-uploadclass"avatar-uploader"action"#":accept"accep…...

flutter定位简单工具类

import package:permission_handler/permission_handler.dart;class PermissionUtil {/// 获取用户定位权限static Future<bool> getLocationStatus() async {Map<Permission, PermissionStatus> statuses await [Permission.location,].request();return statuse…...

java请求SAP系统,发起soap的xml报文,实体类转换,idea自动生成教程

1、将接口的网页地址&#xff0c;右键保存&#xff0c;然后修改文件后缀为wsdl文件 2、idea全局搜索 wsdl&#xff0c;找到自动转换javabean插件&#xff1a; 3、点击后&#xff0c;选择下载改完后缀的文件(选择)&#xff1a; 4、将无用的class文件删除掉 5、请求sap的地址为…...

不同屏幕的触控技术

不同显示屏的触控技术原理有所不同。触摸屏的基本原理是&#xff0c;用手指或其他物体触摸安装在显示器前端的触摸屏时&#xff0c;所触摸的位置(以坐标形式)由触摸屏控制器检测&#xff0c;并通过接口(如RS-232串行口)送到CPU&#xff0c;从而确定输入的信息。 目前市场上常…...

深度解读thenable

在学习promise时&#xff0c;我们经常会遇到thenable一词。关于thenable&#xff0c;目前的资料解读不够通俗易懂&#xff0c;又或者脉络不够清晰&#xff0c;本文主要对thenable进行详细剖析&#xff0c;以便各位参考。笔者希望你能够仅凭这一篇文章&#xff0c;便能深度掌握该…...

原生无限极目录树详细讲解

原生无限级目录树 当涉及到原生的无限级目录树&#xff0c;我们可以使用递归算法来实现。以下是一个使用 JavaScript 实现原生无限级目录树的示例 介绍 原生无限级目录树是一种常见的数据结构&#xff0c;用于组织多层级的目录或分类数据。通过递归算法&#xff0c;我们可以…...

剑指offer(C++)-JZ64:求1+2+3+...+n(算法-位运算)

作者&#xff1a;翟天保Steven 版权声明&#xff1a;著作权归作者所有&#xff0c;商业转载请联系作者获得授权&#xff0c;非商业转载请注明出处 题目描述&#xff1a; 求123...n&#xff0c;要求不能使用乘除法、for、while、if、else、switch、case等关键字及条件判断语句&…...

“深入探究JVM内部机制:如何实现Java程序的运行环境?“

标题&#xff1a;深入探究JVM内部机制&#xff1a;如何实现Java程序的运行环境&#xff1f; 摘要&#xff1a;本文将深入探究Java虚拟机&#xff08;JVM&#xff09;的内部机制&#xff0c;重点讨论JVM如何实现Java程序的运行环境。我们将从JVM的结构、类加载、内存管理、垃圾…...

Mac更新homebrew时卡住的解决办法

Mac更新homebrew时卡住的解决办法 引起问题的原因brew命令安装软件跟这3个仓库地址有关1、brew2、homebrew-core3、homebrew-bottles4、若/bin/zsh&#xff0c;则输入5、若/bin/bash&#xff0c;则输入6、更新brew 引起问题的原因 知其然&#xff0c;还要知其所以然。brew的更…...

带你了解—在外远程群晖NAS-群晖Drive挂载电脑磁盘同步备份【无需公网IP】

文章目录 前言1.群晖Synology Drive套件的安装1.1 安装Synology Drive套件1.2 设置Synology Drive套件1.3 局域网内电脑测试和使用 2.使用cpolar远程访问内网Synology Drive2.1 Cpolar云端设置2.2 Cpolar本地设置2.3 测试和使用 3. 结语 前言 群晖作为专业的数据存储中心&…...

计算机网络第2章(物理层)

计算机网络第2章&#xff08;物理层&#xff09; 2.1 物理层的基本概念2.2 物理层下面的传输媒体2.2.1 导引型传输媒体2.2.2 非导引型传输媒体 2.3 传输方式2.3.1 串行传输和并行传输2.3.2 同步传输和异步传输2.3.3 单向通信&#xff08;单工&#xff09;、双向交替通信&#x…...

windows钩子保护自身进程不被破坏

代码来自于《windows核心编程》作者&#xff1a; APIHOOK.h头文件&#xff1a; #pragma once #include <Windows.h> class CAPIHOOK { public: CAPIHOOK(LPTSTR lpszModName, LPSTR pszFuncName, PROC pfnHook, BOOL bExcludeAPIHookMod TRUE); ~CAPIHOOK(void); p…...

Linux系统查看文件系统类型C代码

系统&#xff1a;VM Ubuntu 实现Linux系统下通过输入指定路径查看文件系统类型,MSDOS_SUPER_MAGIC&#xff0c;NTFS_SUPER_MAGIC和EXT4_SUPER_MAGIC这些宏定义并不是在sys/mount.h中定义的&#xff0c;它们实际上是在linux/magic.h头文件中定义的。不同系统下宏定义可能不一样&…...

Python中的正则表达式

大家好&#xff0c;今天我们将通过详细的解释和代码示例&#xff0c;探讨如何在Python中使用正则表达式。 介绍 正则表达式&#xff08;regex&#xff09;是一种用于操作文本和数据的强大工具&#xff0c;它们提供了一种简洁灵活的方式来“匹配”&#xff08;指定和识别&…...

网站开发怎么赚钱/无锡seo公司

(文末有赠书福利)在数据挖掘项目中&#xff0c;经常会遇到的情况是有很多特征可以用&#xff0c;这是一件好事&#xff0c;但是有的时候数据中存在很多冗余情况&#xff0c;也就是说数据存在相关性或者共线性。在这种情况下对于分析带来了很多麻烦。不必要的特征太多会造成模型…...

磁盘阵列做网站/地推十大推广app平台

原创 张政俊 老叶茶馆来自专辑MySQL修行作者&#xff1a;张政俊就职于中欧基金&#xff0c;知数堂粉丝&#xff0c;数据库爱好者&#xff0c;熟悉RDBMS、nosql、new sql等各类数据库。啃完Oreilly的《高性能mysql》、姜老师的《MySQL技术内幕》&#xff0c;再加上个2,3年的实战…...

什么网站可以帮忙做任务赚钱/免费建站哪个比较好

模仿C&#xff03;的StringBuilder类&#xff0c;还有很多函数需要慢慢完善的以前写javascript的时候&#xff0c;有个js的Stringbuilder类&#xff0c;说是效率高&#xff0c;不知道在php下&#xff0c;这样处理字符串组合时不时也会效率高呢&#xff1f;请高手指点<?clas…...

网站建设方案概述/宠物美容师宠物美容培训学校

每天记录学习&#xff0c;每天会有好心情。*^_^*今天记录的项目是自习室管理系统&#xff0c;这个项目是这么回事&#xff1a;习室管理系统的设计、开发和测试工作&#xff0c;该系统基于B/S结构,利用现有校园一卡通系统,通过JAVA和mysql数据库等软件技术,实现自动分发座位、选…...

php动态网站开发视频教程/河南网站建设定制

先要做准备工作 先下载DS_Dictionary.h和Ds_Dictionary.cpp,不多说提供下载地址http://www.cocos2d-x.org/boards/6/topics/6125?r13203#message-13203文件基于pugixml下面是下载地址http://pugixml.org/下面提供test.plist作对照 <?xml version"1.0" encoding&…...

玻璃钢产品哪个网站做推广好/产品营销策略怎么写

1 案例1&#xff1a;配置并验证Split分离解析 1.1 问题 本例要求配置一台智能DNS服务器&#xff0c;针对同一个FQDN&#xff0c;当不同的客户机来查询时能够给出不 同的答案。需要完成下列任务&#xff1a; 从主机192.168.4.207查询时&#xff0c;结果为&#xff1a;www.tedu.…...