Python实现SSA智能麻雀搜索算法优化随机森林分类模型(RandomForestClassifier算法)项目实战
说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。


1.项目背景
麻雀搜索算法(Sparrow Search Algorithm, SSA)是一种新型的群智能优化算法,在2020年提出,主要是受麻雀的觅食行为和反捕食行为的启发。
在麻雀觅食的过程中,分为发现者(探索者)和加入者(追随者),发现者在种群中负责寻找食物并为整个麻雀种群提供觅食区域和方向,而加入者则是利用发现者来获取食物。为了获得食物,麻雀通常可以采用发现者和加入者这两种行为策略进行觅食。种群中的个体会监视群体中其它个体的行为,并且该种群中的攻击者会与高摄取量的同伴争夺食物资源,以提高自己的捕食率。此外,当麻雀种群意识到危险时会做出反捕食行为。
本项目通过SSA智能麻雀搜索算法优化随机森林分类模型。
2.数据获取
本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:

数据详情如下(部分展示):

3.数据预处理
3.1 用Pandas工具查看数据
使用Pandas工具的head()方法查看前五行数据:

关键代码:

3.2 数据缺失查看
使用Pandas工具的info()方法查看数据信息:

从上图可以看到,总共有11个变量,数据中无缺失值,共1000条数据。
关键代码:

3.3 数据描述性统计
通过Pandas工具的describe()方法来查看数据的平均值、标准差、最小值、分位数、最大值。

关键代码如下:

4.探索性数据分析
4.1 y变量柱状图
用Matplotlib工具的plot()方法绘制柱状图:

4.2 y=1样本x1变量分布直方图
用Matplotlib工具的hist()方法绘制直方图:

4.3 相关性分析

从上图中可以看到,数值越大相关性越强,正值是正相关、负值是负相关。
5.特征工程
5.1 建立特征数据和标签数据
关键代码如下:

5.2 数据集拆分
通过train_test_split()方法按照80%训练集、20%测试集进行划分,关键代码如下:

6.构建SSA智能麻雀搜索算法优化随机森林分类模型
主要使用SSA智能麻雀搜索算法优化随机森林分类算法,用于目标分类。
6.1 SSA智能麻雀搜索算法寻找最优的参数值
最优参数:

6.2 最优参数值构建模型

7.模型评估
7.1 评估指标及结果
评估指标主要包括准确率、查准率、查全率、F1分值等等。

从上表可以看出,F1分值为0.9143,说明模型效果较好。
关键代码如下:

7.2 分类报告

从上图可以看出,分类为0的F1分值为0.93;分类为1的F1分值为0.91。
7.3 混淆矩阵

从上图可以看出,实际为0预测不为0的 有6个样本;实际为1预测不为1的 有9个样本,整体预测准确率良好。
8.结论与展望
综上所述,本文采用了SSA智能麻雀搜索算法寻找随机森林算法的最优参数值来构建分类模型,最终证明了我们提出的模型效果良好。此模型可用于日常产品的预测。
# 定义边界函数
def Bounds(s, Lb, Ub):temp = sfor i in range(len(s)):if temp[i] < Lb[0, i]: # 小于最小值temp[i] = Lb[0, i] # 取最小值elif temp[i] > Ub[0, i]: # 大于最大值temp[i] = Ub[0, i] # 取最大值# ******************************************************************************# 本次机器学习项目实战所需的资料,项目资源如下:# 项目说明:# 链接:https://pan.baidu.com/s/1c6mQ_1YaDINFEttQymp2UQ# 提取码:thgk# ******************************************************************************# y变量柱状图
plt.rcParams['font.sans-serif'] = ['SimHei'] # 指定默认字体
plt.rcParams['axes.unicode_minus'] = False # 解决保存图像是负号'-'显示为方块的问题
# kind='bar' 绘制柱状图
data['y'].value_counts().plot(kind='bar')
更多项目实战,详见机器学习项目实战合集列表:
机器学习项目实战合集列表_机器学习实战项目_胖哥真不错的博客-CSDN博客
项目代码咨询、获取,请见下方公众号。
相关文章:
Python实现SSA智能麻雀搜索算法优化随机森林分类模型(RandomForestClassifier算法)项目实战
说明:这是一个机器学习实战项目(附带数据代码文档视频讲解),如需数据代码文档视频讲解可以直接到文章最后获取。 1.项目背景 麻雀搜索算法(Sparrow Search Algorithm, SSA)是一种新型的群智能优化算法,在2020年提出&a…...
web JS高德地图标点、点聚合、自定义图标、自定义窗体信息、换肤等功能实现和高复用性组件封装教程
文章目录 前言一、点聚合是什么?二、开发前准备三、API示例1.引入高德地图2.创建地图实例3.添加标点4.删除标点5.删除所有标点(覆盖物)6.聚合点7.自定义聚合点样式8.清除聚合9.打开窗体信息 四、实战开发需求要求效果图如下:封装思…...
AlpacaFarm: A Simulation Framework for Methods that Learn from Human Feedback
本文是LLM系列文章,针对《》的翻译。 AlpacaFarm:从人类反馈中学习方法的模拟框架 摘要1 引言2 背景与问题描述3 构造AlpacaFarm4 验证AlpacaFarm模拟器5 AlpacaFarm的基准参考方法6 相关工作7 不足和未来方向 摘要 像ChatGPT这样的大型语言模型由于能够很好地遵循…...
【Linux】Linux工具篇(yum、vim、gcc/g++、gdb、Makefile、git)
🚀 作者简介:一名在后端领域学习,并渴望能够学有所成的追梦人。 🚁 个人主页:不 良 🔥 系列专栏:🛹Linux 🛸C 📕 学习格言:博观而约取ÿ…...
自己实现 SpringMVC 底层机制 系列之-实现任务阶段 5- 完成 Spring 容器对象的自动装配 -@Autowried
😀前言 自己实现 SpringMVC 底层机制 系列之-实现任务阶段 5- 完成 Spring 容器对象的自动装配 -Autowried 🏠个人主页:尘觉主页 🧑个人简介:大家好,我是尘觉,希望我的文章可以帮助到大家&…...
linux的http服务
Web通信基本概念 基于B/S(Browser/Server)架构的网页服务 服务端提供网页 浏览器下载并显示网页 Hyper Text Markup Lanuage,超文本标记语言 Hyper Text Transfer Protocol,超文本传输协议 虚拟机A:构建基本的Web服务 [root…...
Restful架构简单了解
Restful Rest全称representational status transfer 表述性状态转移。 原则 资源与URI URI既可以看成是资源的地址,也可以看成是资源的名称。如果某些信息没有使用URI来表示,那它就不能算是一个资源, 只能算是资源的一些信息而已。URI的设计…...
conda常用命令
使用conda可以在电脑上创建很多套相互隔离的Python环境,命令如下: 创建环境 创建一个名为deeplearning的环境,python版本为3.7 conda create --name deeplearning python3.7查看版本 conda --version切换环境 切换到deeplearning环境 c…...
Linux:shell脚本:基础使用(6)《正则表达式-awk工具》
简介 awk是行处理器: 相比较屏幕处理的优点,在处理庞大文件时不会出现内存溢出或是处理缓慢的问题,通常用来格式化文本信息 awk处理过程: 依次对每一行进行处理,然后输出 1)awk命令会逐行读取文件的内容进行处理 2)a…...
国际阿里云腾讯云:阿里云服务器怎么打包
近年来,跟着云计算的发展,越来越多的人开始运用云服务器来保管自己的运用和网站。其间,阿里云服务器是国内最大的云计算服务供给商之一,能够供给高效安稳的服务器服务。可是,阿里云服务器的打包办法相较于其他云服务器…...
FPGA中锁存器(latch)、触发器(flip-flop)以及寄存器(register)详解
文章目录 1 定义1.1 锁存器(latch)1.2 触发器(flip-flop)1.3 寄存器(register) 2 比较2.1 锁存器(Latch)危害即产生原因2.2 寄存器和锁存器的区别2.3 锁存器和触发器的区别 3 结构3.…...
【正点原子STM32连载】第十八章 通用定时器PWM输出实验 摘自【正点原子】APM32F407最小系统板使用指南
1)实验平台:正点原子stm32f103战舰开发板V4 2)平台购买地址:https://detail.tmall.com/item.htm?id609294757420 3)全套实验源码手册视频下载地址: http://www.openedv.com/thread-340252-1-1.html# 第十…...
分类预测 | MATLAB实现BWO-TCN-Attention数据分类预测
分类预测 | MATLAB实现BWO-TCN-Attention数据分类预测 目录 分类预测 | MATLAB实现BWO-TCN-Attention数据分类预测分类效果基本描述程序设计参考资料 分类效果 基本描述 1.BWO-TCN-Attention数据分类预测程序; 2.无Attention适用于MATLAB 2022b版及以上版本…...
6.链路追踪-Zipkin
链路追踪(Distributed Tracing)是一种用于监视分布式应用程序的技术,通过收集和展示分布式系统中不同组件之间的调用和交互情况,帮助开发人员和运维团队理解系统中的请求流程、性能瓶颈和异常情况。 1.Zipkin Zipkin 是一个开源的…...
基于ACF,AMDF算法的语音编码matlab仿真
目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版本 matlab2022a 3.部分核心程序 .......................................................................... plotFlag …...
python 基础篇 day 1 初识变量和数据类型
文章目录 变量变量作用——用于存储和表示数据。变量命名规则命名法大驼峰小驼峰下划体n j i a x 通常作为临时变量使用 建议 变量种类全局变量(Global Variables)局部变量(Local Variables)静态变量(Static Variables…...
Window下部署使用Stable Diffusion AI开源项目绘图
Window下部署使用Stable Diffusion AI开源项目绘图 前言前提条件相关介绍Stable Diffusion AI绘图下载项目环境要求环境下载运行项目打开网址,即可体验文字生成图像(txt2img)庐山瀑布 参考 本文里面的风景图,均由Stable Diffusion…...
【MySQL】好好学习一下InnoDB中的页
文章目录 一. 前言二. 从宏观层面看页三. 页的基本内容3.1 页的数据结构3.2 用户空间内的数据行结构3.3 页目录 四. 问题集4.1 索引 和 数据页 有什么区别4.2 页的大小是什么决定的4.3 页的大小对哪些情况有影响4.4 一般情况下说的链表有哪几个4.5 如果页的空间满了怎么办4.6 如…...
git开发常用命令
版本回退 soft:git reset --soft HEAD^ 将版本库回退一个版本,且这次提交的所有文件都移动到暂存区 mixed(默认):git reset HEAD^ 将版本库回退一个版本,且这次提交的所有文件都移动到工作区,会…...
WEB APIs day5
一、window对象 BOM属于window对象 1.BOM(浏览器对象模型) bom里面包含着dom,只不过bom我们平时用得比较少,我们经常使用的是dom操作,因为我们页面中的这些标签都是在dom中取的,所以我们操作dom多一点。 window对象…...
《Qt C++ 与 OpenCV:解锁视频播放程序设计的奥秘》
引言:探索视频播放程序设计之旅 在当今数字化时代,多媒体应用已渗透到我们生活的方方面面,从日常的视频娱乐到专业的视频监控、视频会议系统,视频播放程序作为多媒体应用的核心组成部分,扮演着至关重要的角色。无论是在个人电脑、移动设备还是智能电视等平台上,用户都期望…...
MySQL 隔离级别:脏读、幻读及不可重复读的原理与示例
一、MySQL 隔离级别 MySQL 提供了四种隔离级别,用于控制事务之间的并发访问以及数据的可见性,不同隔离级别对脏读、幻读、不可重复读这几种并发数据问题有着不同的处理方式,具体如下: 隔离级别脏读不可重复读幻读性能特点及锁机制读未提交(READ UNCOMMITTED)允许出现允许…...
大型活动交通拥堵治理的视觉算法应用
大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动(如演唱会、马拉松赛事、高考中考等)期间,城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例,暖城商圈曾因观众集中离场导致周边…...
循环冗余码校验CRC码 算法步骤+详细实例计算
通信过程:(白话解释) 我们将原始待发送的消息称为 M M M,依据发送接收消息双方约定的生成多项式 G ( x ) G(x) G(x)(意思就是 G ( x ) G(x) G(x) 是已知的)࿰…...
Java如何权衡是使用无序的数组还是有序的数组
在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...
UDP(Echoserver)
网络命令 Ping 命令 检测网络是否连通 使用方法: ping -c 次数 网址ping -c 3 www.baidu.comnetstat 命令 netstat 是一个用来查看网络状态的重要工具. 语法:netstat [选项] 功能:查看网络状态 常用选项: n 拒绝显示别名&#…...
Python如何给视频添加音频和字幕
在Python中,给视频添加音频和字幕可以使用电影文件处理库MoviePy和字幕处理库Subtitles。下面将详细介绍如何使用这些库来实现视频的音频和字幕添加,包括必要的代码示例和详细解释。 环境准备 在开始之前,需要安装以下Python库:…...
有限自动机到正规文法转换器v1.0
1 项目简介 这是一个功能强大的有限自动机(Finite Automaton, FA)到正规文法(Regular Grammar)转换器,它配备了一个直观且完整的图形用户界面,使用户能够轻松地进行操作和观察。该程序基于编译原理中的经典…...
七、数据库的完整性
七、数据库的完整性 主要内容 7.1 数据库的完整性概述 7.2 实体完整性 7.3 参照完整性 7.4 用户定义的完整性 7.5 触发器 7.6 SQL Server中数据库完整性的实现 7.7 小结 7.1 数据库的完整性概述 数据库完整性的含义 正确性 指数据的合法性 有效性 指数据是否属于所定…...
Go 并发编程基础:通道(Channel)的使用
在 Go 中,Channel 是 Goroutine 之间通信的核心机制。它提供了一个线程安全的通信方式,用于在多个 Goroutine 之间传递数据,从而实现高效的并发编程。 本章将介绍 Channel 的基本概念、用法、缓冲、关闭机制以及 select 的使用。 一、Channel…...
