当前位置: 首页 > news >正文

模型微调(fine-tune)

一、关于模型微调的一些基础知识
1、模型微调(fine-tune)
微调(fine-tune)通过使用在大数据上得到的预训练好的模型来初始化自己的模型权重,从而提升精度。这就要求预训练模型质量要有保证。微调通常速度更快、精度更高。当然,自己训练好的模型也可以当做预训练模型,然后再在自己的数据集上进行训练,来使模型适用于自己的场景、自己的任务。

先引入迁移学习(Transfer Learning)的概念:

    当我们训练好了一个模型之后,如果想应用到其他任务中,可以在这个模型的基础上进行训练,来作微调网络。这也是迁移学习的概念,可以节省训练的资源以及训练的时间。迁移学习的一大应用场景就是模型微调,简单的来说就是把在别人训练好的基础上,换成自己的数据集继续训练,来调整参数。Pytorch中提供很多预训练模型,学习如何进行模型微调,可以大大提升自己任务的质量和速度。假设我们要识别的图片类别是椅子,尽管ImageNet数据集中的大多数图像与椅子无关,但在ImageNet数据集上训练的模型可能会提取更通用的图像特征,这有助于识别边缘、纹理、形状和对象组合。 这些类似的特征对于识别椅子也可能同样有效。

负迁移问题:
​​​​​​​负迁移(Negative Transfer)指的是,在源域上学习到的知识,对于目标域上的学习产生负面作用。

产生负迁移的原因主要有:
1、数据问题:源域和目标域压根不相似,谈何迁移?
2、方法问题:源域和目标域是相似的,但是,迁移学习方法不够好,没找到可迁移的成分。

负迁移给迁移学习的研究和应用带来了负面影响。在实际应用中,找到合理的相似性,并且选择或开发合理的迁移学习方法,能够避免负迁移现象。

2、为什么要微调
因为预训练模型用了大量数据做训练,已经具备了提取浅层基础特征和深层抽象特征的能力。

对于图片来说,我们CNN的前几层学习到的都是低级的特征,比如,点、线、面,这些低级的特征对于任何图片来说都是可以抽象出来的,所以我们将他作为通用数据,只微调这些低级特征组合起来的高级特征即可,例如,这些点、线、面,组成的是园还是椭圆,还是正方形,这些代表的含义是我们需要后面训练出来的。

    如果我们自己的数据不够多,泛化性不够强,那么可能存在模型不收敛,准确率低,模型泛化能力差,过拟合等问题,所以这时就需要使用预训练模型来做微调了。注意的是,进行微调时,应该使用较小的学习率。因为预训练模型的权重相对于随机初始化的权重来说已经很不错了,所以不希望使用太大的学习率来破坏原本的权重。通常用于微调的初始学习率会比从头开始训练的学习率小10倍。

了解学习率:在这里插入图片描述

总结:对于不同的层可以设置不同的学习率,一般情况下建议,对于使用的原始数据做初始化的层设置的学习率要小于(一般可设置小于10倍)初始化的学习率,这样保证对于已经初始化的数据不会扭曲的过快,而使用初始化学习率的新层可以快速的收敛。
train/loss:训练级loss
eval/loss:验证级loss,这两者一般以图表的形式表达
过拟合

在这里插入图片描述

3、需要微调的情况
其中微调的方法又要根据自身数据集和预训练模型数据集的相似程度,以及自己数据集的大小来抉择。
不同情况下的微调:

数据少,数据类似程度高:可以只修改最后几层或者最后一层进行微调。
数据少,数据类似程度低:冻结预训练模型的前几层,训练剩余的层。因为数据集之间的相似度较低,所以根据自身的数据集对较高层进行重新训练会比较有效。
数据多,数据类似程度高:这是最理想的情况。使用预训练的权重来初始化模型,然后重新训练整个模型。这也是最简单的微调方式,因为不涉及修改、冻结模型的层。
数据多,数据类似程度低:微调的效果估计不好,可以考虑直接重新训练整个模型。如果你用的预训练模型的数据集是ImageNet,而你要做的是文字识别,那么预训练模型自然不会起到太大作用,因为它们的场景特征相差太大了。
注意:

如果自己的模型中有fc层,则新数据集的大小一定要与原始数据集相同,比如CNN中输入的图片大小一定要相同,才不会报错。
如果包含fc层但是数据集大小不同的话,可以在最后的fc层之前添加卷积或者pool层,使得最后的输出与fc层一致,但这样会导致准确度大幅下降,所以不建议这样做

4、 模型微调的流程
微调的步骤有很多,看你自身数据和计算资源的情况而定。虽然各有不同,但是总体的流程大同小异。

步骤示例1:

1、在源数据集(如ImageNet数据集)上预训练一个神经网络模型,即源模型。

2、创建一个新的神经网络模型,即目标模型。它复制了源模型上除了输出层外的所有模型设计及其参数。

我们假设这些模型参数包含了源数据集上学习到的知识,且这些知识同样适用于目标数据集。
我们还假设源模型的输出层跟源数据集的标签紧密相关,因此在目标模型中不予采用。
3、为目标模型添加一个输出大小为目标数据集类别个数的输出层,并随机初始化该层的模型参数。

4、在目标数据集(如椅子数据集)上训练目标模型。可以从头训练输出层,而其余层的参数都是基于源模型的参数微调得到的。

步骤示例2:

在已经训练好的网络上进行修改;
冻结网络的原来那一部分;
训练新添加的部分;
解冻原来网络的部分层;
联合训练解冻的层和新添加的部分。
在这里插入图片描述
5、参数冻结—指定训练模型的部分层
我们所提到的冻结模型、冻结部分层,其实归根结底都是对参数进行冻结。冻结训练可以加快训练速度。在这里,有两种方式:全程冻结与非全程冻结。
非全程冻结比全程冻结多了一个步骤:解冻,因此这里就讲解非全程冻结。看完非全程冻结之后,就明白全程冻结是如何进行的了。
非全程冻结训练分为两个阶段,分别是冻结阶段和解冻阶段。当处于冻结阶段时,被冻结的参数就不会被更新,在这个阶段,可以看做是全程冻结;而处于解冻阶段时,就和普通的训练一样了,所有参数都会被更新。
当进行冻结训练时,占用的显存较小,因为仅对部分网络进行微调。如果计算资源不够,也可以通过冻结训练的方式来减少训练时资源的占用。

因为一般需要保留Features Extractor的结构和参数,提出了两种训练方法:

固定预训练的参数:requires_grad = False 或者 lr = 0,即不更新参数;
将Features Extractor部分设置很小的学习率,这里用到参数组(params_group)的概念,分组设置优化器的参数。

5.1、参数冻结的方式
我们经常提到的模型,就是一个可遍历的字典。既然是字典,又是可遍历的,那么就有两种方式进行索引:一是通过数字,二是通过名字。

其实使用冻结很简单,没有太高深的魔法,只用设置模型的参数requires_grad为False就可以了。
5.1.1、冻结方式1
在默认情况下,参数的属性​​.requires_grad = True​​​,如果我们从头开始训练或微调不需要注意这里。但如果我们正在提取特征并且只想为新初始化的层计算梯度,其他参数不进行改变。那我们就需要通过设置​​requires_grad = False​​来冻结部分层。在PyTorch官方中提供了这样一个例程。

def set_parameter_requires_grad(model, feature_extracting):if feature_extracting:for param in model.parameters():param.requires_grad = False

在下面我们使用​​resnet18​​为例的将1000类改为4类,但是仅改变最后一层的模型参数,不改变特征提取的模型参数;

注意我们先冻结模型参数的梯度;
再对模型输出部分的全连接层进行修改,这样修改后的全连接层的参数就是可计算梯度的。
在训练过程中,model仍会进行梯度回传,但是参数更新则只会发生在fc层。通过设定参数的​​requires_grad​​属性,我们完成了指定训练模型的特定层的目标,这对实现模型微调非常重要。

import torchvision.models as models
# 冻结参数的梯度
feature_extract = True
model = models.resnet18(pretrained=True)
set_parameter_requires_grad(model, feature_extract)
# 修改模型, 输出通道4, 此时,fc层就被随机初始化了,但是其他层依然保存着预训练得到的参数。
model.fc = nn.Linear(in_features=512, out_features=4, bias=True)

我们直接拿​​torchvision.models.resnet50 ​​模型微调,首先冻结预训练模型中的所有参数,然后替换掉最后两层的网络(替换2层池化层,还有fc层改为dropout,正则,线性,激活等部分),最后返回模型:

 8 更改池化层class AdaptiveConcatPool2d(nn.Module):def __init__(self, size=None):super().__init__()size = size or (1, 1) # 池化层的卷积核大小,默认值为(1,1)self.pool_one = nn.AdaptiveAvgPool2d(size) # 池化层1self.pool_two = nn.AdaptiveAvgPool2d(size) # 池化层2def forward(self, x):return torch.cat([self.pool_one(x), self.pool_two(x), 1]) # 连接两个池化层# 7 迁移学习:拿到一个成熟的模型,进行模型微调```javascript
def get_model():model_pre = models.resnet50(pretrained=True) # 获取预训练模型# 冻结预训练模型中所有的参数for param in model_pre.parameters():param.requires_grad = False# 微调模型:替换ResNet最后的两层网络,返回一个新的模型model_pre.avgpool = AdaptiveConcatPool2d() # 池化层替换model_pre.fc = nn.Sequential(nn.Flatten(), # 所有维度拉平nn.BatchNorm1d(4096), # 256 x 6 x 6   ——> 4096nn.Dropout(0.5),  # 丢掉一些神经元nn.Linear(4096, 512),  # 线性层的处理nn.ReLU(), # 激活层nn.BatchNorm1d(512), # 正则化处理nn.Linear(512,2),nn.LogSoftmax(dim=1), # 损失函数)return

5.1.2、冻结方式2
因为ImageNet有1000个类别,所以提供的ImageNet预训练模型也是1000分类。如果我需要训练一个10分类模型,理论上来说只需要修改最后一层的全连接层即可。

如果前面的参数不冻结就表示所有特征提取的层会使用预训练模型的参数来进行参数初始化,而最后一层的参数还是保持某种初始化的方式来进行初始化。

在模型中,每一层的参数前面都有前缀,比如conv1、conv2、fc3、backbone等等,我们可以通过这个前缀来进行判断,也就是通过名字来判断,如:if “backbone” in param.name,最终选择需要冻结与不需要冻结的层。最后需要将训练的参数传入优化器进行配置。

if freeze_layers:for name, param in model.named_parameters():# 除最后的全连接层外,其他权重全部冻结if "fc" not in name:param.requires_grad_(False)pg = [p for p in model.parameters() if p.requires_grad]
optimizer = optim.SGD(pg, lr=0.01, momentum=0.9, weight_decay=4E-5)

或者判断该参数位于模型的哪些模块层中,如param in model.backbone.parameters(),然后对于该模块层的全部参数进行批量设置,将requires_grad置为False。

if Freeze_Train:for param in model.backbone.parameters():param.requires_grad = False

5.1.3、冻结方式3
通过数字来遍历模型中的层的参数,冻结所指定的若干个参数, 这种方式用的少

count = 0
for layer in model.children():count = count + 1if count < 10:for param in layer.parameters():param.requires_grad = False# 然后将需要训练的参数传入优化器,也就是过滤掉被冻结的参数。
optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=LR)

5.2、修改模型参数
前面说道,冻结模型就是冻结参数,那么这里的修改模型参数更多的是修改模型参数的名称。

值得一提的是,由于训练方式(单卡、多卡训练)、模型定义的方式不同,参数的名称也会有所区别,但是此时模型的结构是一样的,依旧可以加载预训练模型。不过却无法直接载入预训练模型的参数,因为名称不同,会出现KeyError的错误,所以载入前可能需要修改参数的名称。

比如说,使用多卡训练时,保存的时候每个参数前面多会多出’module.'这几个字符,那么当使用单卡载入时,可能就会报错了。
在这里插入图片描述通过以下方式,就可以使用’conv1’来替代’module.conv1’这个key的方式来将更新后的key和原来的value相匹配,再载入自己定义的模型中。

model_dict = pretrained_model.state_dict()
pretrained_dict={k: v for k, v in pretrained_dict.items() if k[7:] in model_dict}
model_dict.update(pretrained_dict)

5.3、修改模型结构

import torch.nn as nn
import torchclass AlexNet(nn.Module):def __init__(self):super(AlexNet, self).__init__()self.features=nn.Sequential(nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2),  # 使用卷积层,输入为3,输出为64,核大小为11,步长为4nn.ReLU(inplace=True),  # 使用激活函数nn.MaxPool2d(kernel_size=3, stride=2),  # 使用最大池化,这里的大小为3,步长为2nn.Conv2d(64, 192, kernel_size=5, padding=2), # 使用卷积层,输入为64,输出为192,核大小为5,步长为2nn.ReLU(inplace=True),# 使用激活函数nn.MaxPool2d(kernel_size=3, stride=2), # 使用最大池化,这里的大小为3,步长为2nn.Conv2d(192, 384, kernel_size=3, padding=1), # 使用卷积层,输入为192,输出为384,核大小为3,步长为1nn.ReLU(inplace=True),# 使用激活函数nn.Conv2d(384, 256, kernel_size=3, padding=1),# 使用卷积层,输入为384,输出为256,核大小为3,步长为1nn.ReLU(inplace=True),# 使用激活函数nn.Conv2d(256, 256, kernel_size=3, padding=1),# 使用卷积层,输入为256,输出为256,核大小为3,步长为1nn.ReLU(inplace=True),# 使用激活函数nn.MaxPool2d(kernel_size=3, stride=2),  # 使用最大池化,这里的大小为3,步长为2)self.avgpool=nn.AdaptiveAvgPool2d((6, 6))self.classifier=nn.Sequential(nn.Dropout(),# 使用Dropout来减缓过拟合nn.Linear(256 * 6 * 6, 4096),   # 全连接,输出为4096nn.ReLU(inplace=True),# 使用激活函数nn.Dropout(),# 使用Dropout来减缓过拟合nn.Linear(4096, 4096),  # 维度不变,因为后面引入了激活函数,从而引入非线性nn.ReLU(inplace=True),  # 使用激活函数nn.Linear(4096, 1000),   #ImageNet默认为1000个类别,所以这里进行1000个类别分类)def forward(self, x):x=self.features(x)x=self.avgpool(x)x=torch.flatten(x, 1)x=self.classifier(x)return xdef alexnet(num_classes, device, pretrained_weights=""):net=AlexNet()  # 定义AlexNetif pretrained_weights:  # 判断预训练模型路径是否为空,如果不为空则加载net.load_state_dict(torch.load(pretrained_weights,map_location=device))num_fc=net.classifier[6].in_features  # 获取输入到全连接层的输入维度信息net.classifier[6]=torch.nn.Linear(in_features=num_fc, out_features=num_classes) # 根据数据集的类别数来指定最后输出的out_features数目return net

在上述代码中,是先将权重载入全部网络结构中。此时,模型的最后一层大小并不是预想的,因此需要获取输入到最后一层全连接层之前的维度大小,然后根据数据集的类别数来指定最后输出的out_features数目,以此代替原来的全连接层。

也可以先定义好具有指定全连接大小的网络结构,然后除了最后一层全连接层之外,全部层都载入预训练模型;也可以先将权重载入全部网络结构中,然后删掉最后一层全连接层,最后再加入一层指定大小的全连接层。

详情参考:https://blog.csdn.net/ytusdc/article/details/128522887

大模型应用技术分类底座:
1,提示词工程
2,知识库
3,AI Agent
4,微调

二、模型微调的数据准备
1,模型准备
2,模型加载
from *** import ******
·冻结参数
·输出层调整(fp16/fp32精度),输出层一般需要更高的精度,原有的权重不需要改变,这样在计算loss的时候会使loss更加合理。
一些准备步骤在引入函数的时候可能就已经处理过了
eg:baichuan-7B
在这里插入图片描述模型定义变化:
在这里插入图片描述在这里插入图片描述
训练的时候模型会计算损失函数,一般采用CrossEntropyLoss
另外语言模型的loss是根据上一个输入去预测下一个输出,所以labels和input_ids会差一位,因此在Transformers中的forward中已经定义了,如下代码
在这里插入图片描述
另外一些参数的介绍,学习率,GPU实际使用的数量 * batch_size
显存较小可以调低对应的batch_size,调高累计梯度
在这里插入图片描述

三、模型微调的实际操作(训练)

相关文章:

模型微调(fine-tune)

一、关于模型微调的一些基础知识 1、模型微调&#xff08;fine-tune&#xff09; 微调(fine-tune)通过使用在大数据上得到的预训练好的模型来初始化自己的模型权重&#xff0c;从而提升精度。这就要求预训练模型质量要有保证。微调通常速度更快、精度更高。当然&#xff0c;自己…...

云农场种植:互联网+智慧牧场,为农业注入新的活力和创新

随着科技的不断发展&#xff0c;数字化农业正逐渐成为现代农业的趋势。传统农业面临着土地资源有限、劳动力不足等问题&#xff0c;而云农场种植模式通过数字化技术的运用&#xff0c;互联网养殖着重于“绿色、特色产品和智慧生态”&#xff0c;通过建立“线上养殖线下托养线上…...

Hadoop学习一(初识大数据)

目录 一 什么是大数据&#xff1f; 二 大数据特征 三 分布式计算 四 Hadoop是什么? 五 Hadoop发展及版本 六 为什么要使用Hadoop 七 Hadoop vs. RDBMS 八 Hadoop生态圈 九 Hadoop架构 一 什么是大数据&#xff1f; 大数据是指无法在一定时间内用常规软件工具对其内…...

linux定时备份MySQL数据库循环删除前30天的备份文件

linux定时备份MySQL数据库循环删除前30天的备份文件 一、 检查有没安装crond,如果没有&#xff0c;先安装 1、先检查一下有没有cron rpm -qa|grep cron如果输入上面命令有如下显示&#xff0c;则不需要安装 2、没有安装的话&#xff0c;就使用一下命令安装 yum -y install …...

不加电透明屏:在场景化应用中,有哪些特点和优点?

不加电透明屏是一种新型的显示技术&#xff0c;它可以在不需要电源的情况下显示图像和文字。 这种屏幕的原理是利用光的折射和反射来实现显示效果&#xff0c;而不需要通过电流来激发像素点。 不加电透明屏的最大优点是节能环保。传统的显示屏需要消耗大量的电能来显示图像&a…...

全球公链进展| Shibarium已上线;opBNB测试网PreContract硬分叉;Sui 主网 V1.7.1 版本

01 ETH 以太坊最新一次核心开发者执行会议&#xff1a;讨论 Devnet 8 更新、ElP-4788、Holesky 测试网等 以太坊核心开发者 Tim Beiko 总结最新一次以太坊核心开发者执行会议&#xff08;ACDE&#xff09;&#xff0c;讨论内容包括 Devnet 8 更新、ElP-4788、Holesky 测试网、…...

CSS中的display属性有哪些值?它们的作用?

聚沙成塔每天进步一点点 ⭐ 专栏简介⭐ CSS display 属性的不同取值和作用1. block2. inline3. inline-block4. none5. flex6. grid7. table、table-row、table-cell8. list-item9. inline-table、table-caption、table-column 等 ⭐ 写在最后 ⭐ 专栏简介 前端入门之旅&#x…...

ELKstack-日志收集案例

由于实验环境限制&#xff0c;将 filebeat 和 logstash 部署在 tomcat-server-nodeX&#xff0c;将 redis 和 写 ES 集群的 logstash 部署在 redis-server&#xff0c;将 HAproxy 和 Keepalived 部署在 tomcat-server-nodeX。将 Kibana 部署在 ES 集群主机。 环境&#xff1a;…...

基于GPT-4和LangChain构建云端定制化PDF知识库AI聊天机器人

参考&#xff1a; GitHub - mayooear/gpt4-pdf-chatbot-langchain: GPT4 & LangChain Chatbot for large PDF docs 1.摘要&#xff1a; 使用新的GPT-4 api为多个大型PDF文件构建chatGPT聊天机器人。 使用的技术栈包括LangChain, Pinecone, Typescript, Openai和Next.js…...

Python可视化工具分享

今天和大家分享几个实用的纯python构建可视化界面服务&#xff0c;比如日常写了脚本但是不希望给别人代码&#xff0c;可以利用这些包快速构建好看的界面作为服务提供他人使用。有关于库的最新更新时间和当前star数量。 streamlit (23.3k Updated 2 hours ago) Streamlit 可让…...

ethers.js:构建ERC-20代币交易的不同方法

在这篇文章中,我们将探讨如何使用ethers.js将ERC-20令牌从一个地址转移到另一个地址 Ethers是一个非常酷的JavaScript库,它能够发送EIP-1559事务,而无需手动指定气体属性。它将确定gasLimit,并默认使用1.5 Gwei的maxPriorityFeePerGas,从v5.6.0开始。 此外,如果您使用签名…...

[实践篇]13.23 QNX环境变量profile

一,profile简介 /etc/profile或/system/etc/profile是qnx侧的设置环境变量的文件,该文件适用于所有用户,它可以用作以下情形: 设置HOMENAME和SYSNAME环境变量设置PATH环境变量设置TMPDIR环境变量(/tmp)设置PCI以及IFS_BASE等环境变量等文件内容示例如下: /etc/profile…...

HDLBits-Verilog学习记录 | Getting Started

Getting Started problem: Build a circuit with no inputs and one output. That output should always drive 1 (or logic high). 答案不唯一&#xff0c;仅共参考&#xff1a; module top_module( output one );// Insert your code hereassign one 1;endmodule相关解释…...

flask模型部署教程

搭建python flask服务的步骤 1、安装相关的包 具体参考https://blog.csdn.net/weixin_42126327/article/details/127642279 1、安装conda环境和相关包 # 一、安装conda # 1、首先&#xff0c;前往Anaconda官网&#xff08;https://www.anaconda.com/products/individual&am…...

一文详解4种聚类算法及可视化(Python)

在这篇文章中&#xff0c;基于20家公司的股票价格时间序列数据。根据股票价格之间的相关性&#xff0c;看一下对这些公司进行聚类的四种不同方式。 苹果&#xff08;AAPL&#xff09;&#xff0c;亚马逊&#xff08;AMZN&#xff09;&#xff0c;Facebook&#xff08;META&…...

SpringBoot---内置Tomcat 配置和切换

&#x1f600;前言 本篇博文是关于内置Tomcat 配置和切换&#xff0c;希望你能够喜欢 &#x1f3e0;个人主页&#xff1a;晨犀主页 &#x1f9d1;个人简介&#xff1a;大家好&#xff0c;我是晨犀&#xff0c;希望我的文章可以帮助到大家&#xff0c;您的满意是我的动力&#x…...

Qt 显示git版本信息

项目场景&#xff1a; 项目需要在APP中显示当前的版本号&#xff0c;考虑到git共同开发&#xff0c;显示git版本&#xff0c;查找bug或恢复设置更为便捷。 使用需求&#xff1a; 显示的内容包括哪个分支编译的&#xff0c;版本号多少&#xff0c;编译时间&#xff0c;以及是否…...

Mysql的视图和管理

MySQL 视图(view) 视图是一个虚拟表&#xff0c;其内容由查询定义&#xff0c;同真实的表一样&#xff0c;视图包含列&#xff0c;其数据来自对应的真实表(基表) create view 视图名 as select语句alter view 视图名 as select语句 --更新成新的视图SHOW CREATE VIEW 视图名d…...

uniapp 顶部头部样式

<u-navbartitle"商城":safeAreaInsetTop"true"><view slot"left"><image src"/static/logo.png" mode"" class"u-w-50 u-h-50"></image></view></u-navbar>...

最新ai系统ChatGPT程序源码+详细搭建教程+mj以图生图+Dall-E2绘画+支持GPT4+AI绘画+H5端+Prompt知识库

目录 一、前言 二、系统演示 三、功能模块 3.1 GPT模型提问 3.2 应用工作台 3.3 Midjourney专业绘画 3.4 mind思维导图 四、源码系统 4.1 前台演示站点 4.2 SparkAi源码下载 4.3 SparkAi系统文档 五、详细搭建教程 5.1 基础env环境配置 5.2 env.env文件配置 六、环境…...

FairyGUI-Unity 自定义UIShader

FairyGUI中给组件更换Shader&#xff0c;最简单的方式就是找到组件中的Shader字段进行赋值。需要注意的是&#xff0c;对于自定的shader效果需要将目标图片进行单独发布&#xff0c;也就是一个目标图片占用一张图集。&#xff08;应该会有更好的解决办法&#xff0c;但目前还是…...

Excel/PowerPoint柱状图条形图负值设置补色

原始数据&#xff1a; 列1系列 1类别 14.3类别 2-2.5类别 33.5类别 44.5 默认作图 解决方案 1、选中柱子&#xff0c;双击&#xff0c;按如下顺序操作 2、这时候颜色会由一个变成两个 3、对第二个颜色进行设置&#xff0c;即为负值的颜色 条形图的设置方法相同...

el-date-picker 时间区域选择,type=daterange,form表单校验+数据回显问题

情景问题&#xff1a;新增表单有时间区域选择&#xff0c;选择了时间&#xff0c;还是提示必填的校验提示语&#xff0c;且修改时&#xff0c;通过 号赋值法&#xff0c;重新选择此时间范围无效。 解决方法&#xff1a;&#xff08;重点&#xff09; widthHoldTime:[]&#xf…...

LeetCode 面试题 01.02. 判定是否互为字符重排

文章目录 一、题目二、C# 题解 ​ 一、题目 给定两个由小写字母组成的字符串 s1 和 s2&#xff0c;请编写一个程序&#xff0c;确定其中一个字符串的字符重新排列后&#xff0c;能否变成另一个字符串&#xff0c;点击此处跳转。 示例 1&#xff1a; 输入: s1 “abc”, s2 “…...

学习maven工具

文章目录 &#x1f412;个人主页&#x1f3c5;JavaEE系列专栏&#x1f4d6;前言&#xff1a;&#x1f3e8;maven工具产生的背景&#x1f993;maven简介&#x1fa80;pom.xml文件(project object Model 项目对象模型) &#x1fa82;maven工具安装步骤两个前提&#xff1a;下载 m…...

手机直播源码开发,协议讨论篇(三):RTMP实时消息传输协议

实时消息传输协议RTMP简介 RTMP又称实时消息传输协议&#xff0c;是一种实时通信协议。在当今数字化时代&#xff0c;手机直播源码平台为全球用户进行服务&#xff0c;如何才能增加用户&#xff0c;提升用户黏性&#xff1f;就需要让一对一直播平台能够为用户提供优质的体验。…...

【JavaEE基础学习打卡05】JDBC之基本入门就可以了

目录 前言一、JDBC学习前说明1.Java SE中JDBC2.JDBC版本 二、JDBC基本概念1.JDBC原理2.JDBC组件 三、JDBC基本编程步骤1.JDBC操作的数据库准备2.JDBC操作数据库表步骤 四、代码优化1.简单优化2.with-resources探讨 总结 前言 &#x1f4dc; 本系列教程适用于JavaWeb初学者、爱好…...

2023/8/16 华为云OCR识别驾驶证、行驶证

目录 一、 注册华为云账号开通识别驾驶证、行驶证服务 二、编写配置文件 2.1、配置秘钥 2.2、 编写配置工具类 三、接口测试 3.1、测试接口 3.2、结果 四、实际工作中遇到的问题 4.1、前端传值问题 4.2、后端获取数据问题 4.3、使用openfeign调用接口报错 4.3、前端显示问题…...

【Java开发】 Mybatis-Plus 07:创建时间、更新时间自动添加

Mybatis-Plus 可以通过配置实体类的注解来自动添加创建时间和更新时间&#xff0c;这可以减轻一定的开发量。 1 在实体类中添加注解 public class User {TableId(type IdType.AUTO)private Long id;private String username;private String password;TableField(fill FieldF…...

解决vue2项目在IE11浏览器中无画面的兼容问题

解决vue2项目在IE11浏览器中无画面的兼容问题 背景介绍当前网上能找打的教程 背景介绍 当前项目面临其他浏览器都可以运行&#xff0c;但是在IE11浏览器中出现白屏的现象&#xff0c;F12后台也没有报错&#xff0c;项目月底也要交付了。当前项目的vue版本为2.6.11&#xff0c;…...

信号

信号也是IPC中的一种&#xff0c;是和管道&#xff0c;消息队列&#xff0c;共享内存并列的概念。 本文参考&#xff1a; Linux中的信号_linux中信号_wolf鬼刀的博客-CSDN博客 Linux系统编程&#xff08;信号处理 sigacation函数和sigqueue函数 )_花落已飘的博客-CSDN博客 Linu…...

产品经理的真实薪资有多少?今天带你看看

作为产品经理&#xff0c;除了需要拥有扎实的技术背景和出色的产品设计能力&#xff0c;还需具备出色的领导力和商业敏感度。因此&#xff0c;产品经理的薪资也越来越成为人们关注的话题。那么&#xff0c;一般来说&#xff0c;产品经理的薪资水平如何呢&#xff1f; 薪资多少…...

《一个操作系统的实现》windows用vm安装CentOS——从bochs环境搭建到第一个demo跑通

vm安装CentOS虚拟机带有桌面的版本。su输入密码123456。更新yum -y update 。一般已经安装好后面这2个工具&#xff1a;yum install -y net-tools wget。看下ip地址ifconfig&#xff0c;然后本地终端连接ssh root192.168.249.132输入密码即可&#xff0c;主要是为了复制网址方便…...

线程Thread

文章目录 一、概念1、进程2、线程3、CPU与线程的关系4、并行、并发5、线程的生命周期 二、创建1、继承Thread2、实现Runnable接口3、实现Callable接口 三、API1、获取运行使用的线程2、唯一标识3、线程名4、优先级5、是否处于活动状态6、守护线程7、join1、API2、有无join对比 …...

如何使用CSS实现一个渐变背景效果?

聚沙成塔每天进步一点点 ⭐ 专栏简介⭐ 使用CSS实现渐变背景效果⭐ 线性渐变&#xff08;Linear Gradient&#xff09;⭐ 径向渐变&#xff08;Radial Gradient&#xff09;⭐ 写在最后 ⭐ 专栏简介 前端入门之旅&#xff1a;探索Web开发的奇妙世界 记得点击上方或者右侧链接订…...

初始C语言(7)——详细讲解有关初阶指针的内容

系列文章目录 第一章 “C“浒传——初识C语言&#xff08;1&#xff09;&#xff08;更适合初学者体质哦&#xff01;&#xff09; 第二章 初始C语言&#xff08;2&#xff09;——详细认识分支语句和循环语句以及他们的易错点 第三章 初阶C语言&#xff08;3&#xff09;——…...

ArcGIS Pro技术应用(暨基础入门、制图、空间分析、影像分析、三维建模、空间统计分析与建模、python融合、案例应用)

GIS是利用电子计算机及其外部设备&#xff0c;采集、存储、分析和描述整个或部分地球表面与空间信息系统。简单地讲&#xff0c;它是在一定的地域内&#xff0c;将地理空间信息和 一些与该地域地理信息相关的属性信息结合起来&#xff0c;达到对地理和属性信息的综合管理。GIS的…...

RISC-V公测平台发布 · 数据库在RISC-V服务器上的适配评估

前言 上一期讲到YCSB在RISC-V服务器上对MySQL进行性能测试&#xff08;RISC-V公测平台发布 使用YCSB测试SG2042上的MySQL性能&#xff09;&#xff0c;在这一期文章中&#xff0c;我们继续深入讨论RISC-V数据库的应用。本期就继续利用HS-2平台来测试数据库软件在RISC-V服务器…...

UE5.2 LyraDemo源码阅读笔记(五)输入系统

Lyra里使用了增强输入系统&#xff0c;首先知道增强输入系统里的三个类型配置。 一、Input Actions (IA)&#xff1a; 输入操作带来的变量&#xff0c;与玩家的输入组件绑定&#xff0c;回调里驱动玩家行为。 二、InputMappingContext&#xff08;IMC&#xff09;&#xff1a…...

线段树详解——影子宽度

OK&#xff0c;今天来讲一讲线段树~~ 线段树是什么线段树的实现线段树的时间复杂度线段树的应用线段树的节点结构其他操作和优化例题——影子宽度输入输出格式输入格式输出格式 输入输出样例输入样例输出样例 例题讲解 线段树是什么 线段树&#xff08; S e g m e n t Segmen…...

使用R语言绘制折线图

写在前面 昨天我们分享了使用Python绘制折线图的教程,跟着NC学作图 | 使用python绘制折线图,考虑到很多同学基本不使用Python绘图。那么,我们也使用R语言复现此图形。 此外,在前期的教程中,我们基本没有分享过折线图的教程。因此,我们在这里也制作一期关于折线图的教程。…...

无涯教程-Perl - wantarray函数

描述 如果当前正在执行的函数的context正在寻找列表值,则此函数返回true。在标量context中返回false。 语法 以下是此函数的简单语法- wantarray返回值 如果没有context,则此函数返回undef&#xff1b;如果lvalue需要标量,则该函数返回0。 例 以下是显示其基本用法的示例…...

【gitkraken】gitkraken自动更新问题

GitKraken 会自动升级&#xff01;一旦自动升级&#xff0c;你的 GitKraken 自然就不再是最后一个免费版 6.5.1 了。 在安装 GitKraken 之后&#xff0c;在你的安装目录&#xff08;C:\Users\<用户名>\AppData\Local\gitkraken&#xff09;下会有一个名为 Update.exe 的…...

《Java Web程序设计》试卷03

《Java Web程序设计》试卷03 课程编码&#xff1a; 301209 适用专业&#xff1a; 计算机应用(包括JAVA方向) 注 意 事 项 1、首先按要求在试卷标封处填写你所在的系&#xff08;部&#xff09;、专业、班级及学号和姓名&#xff1b; 2、仔细阅读各类题目的回答要求&#xff0c;…...

怎么查看小程序中的会员信息

商家通过查看会员信息&#xff0c;可以更好地了解用户&#xff0c;并为他们提供更个性化的服务和推荐。接下来&#xff0c;就将介绍如何查看会员信息。 商家在管理员后台->会员管理处&#xff0c;可以查看到会员列表。支持搜索会员的卡号、手机号和等级。还支持批量删除会员…...

网络安全—黑客—自学笔记

想自学网络安全&#xff08;黑客技术&#xff09;首先你得了解什么是网络安全&#xff01;什么是黑客&#xff01; 网络安全可以基于攻击和防御视角来分类&#xff0c;我们经常听到的 “红队”、“渗透测试” 等就是研究攻击技术&#xff0c;而“蓝队”、“安全运营”、“安全…...

深度解读波卡 2.0:多核、更有韧性、以应用为中心

本文基于 Polkadot 生态研究院整理&#xff0c;有所删节 随着波卡 1.0 的正式实现&#xff0c;波卡于 6 月 28 日至 29 日在哥本哈根举办了年度最重要的会议 Polkadot Decoded 2023&#xff0c;吸引了来自全球的行业专家、开发者和爱好者&#xff0c;共同探讨和分享波卡生态的…...

微服务中间件--Eureka注册中心

Eureka注册中心 a.eureka原理分析b.搭建eureka服务c.服务注册d.服务发现 a.eureka原理分析 1.每个服务启动时&#xff0c;将自动在eureka中注册服务信息 (每个服务每隔30秒发送一次的心跳续约&#xff0c;当某个服务没有发送时&#xff0c;eurekaServer将自动剔除该服务&#x…...

积跬步至千里 || 矩阵可视化

矩阵可视化 矩阵可以很方面地展示事物两两之间的关系&#xff0c;这种关系可以通过矩阵可视化的方式进行简单监控。 定义一个通用类 from matplotlib import pyplot as plt import seaborn as sns import numpy as np import pandas as pdclass matrix_monitor():def __init…...

zookeeper详细介绍

ZooKeeper是一个开源的分布式协调服务,具有以下一些关键特点: 数据模型 ZooKeeper的数据模型采用层次化的多叉树形结构,每个节点称为znode,类似于文件系统中的文件和目录。每个znode可以存储数据和控制信息。一致性保证 ZooKeeper通过ZAB协议,实现分布式环境下数据的强一致性,…...