自然语言处理从入门到应用——LangChain:链(Chains)-[通用功能:链的保存(序列化)与加载(反序列化)]
分类目录:《自然语言处理从入门到应用》总目录
本文介绍了如何将链保存(序列化)到磁盘和从磁盘加载(反序列化)。我们使用的序列化格式是json或yaml。目前,只有一些链支持这种类型的序列化。随着时间的推移,我们将增加支持的链条数量。
将链保存(序列化)到磁盘
首先,让我们可以使用.save方法将链保存到磁盘,并指定一个带有json或yaml扩展名的文件路径。
from langchain import PromptTemplate, OpenAI, LLMChain
template = """Question: {question}Answer: Let's think step by step."""
prompt = PromptTemplate(template=template, input_variables=["question"])
llm_chain = LLMChain(prompt=prompt, llm=OpenAI(temperature=0), verbose=True)llm_chain.save("llm_chain.json")
现在让我们来看看保存的文件中的内容:
!cat llm_chain.json
输出:
{"memory": null,"verbose": true,"prompt": {"input_variables": ["question"],"output_parser": null,"template": "Question: {question}\n\nAnswer: Let's think step by step.","template_format": "f-string"},"llm": {"model_name": "text-davinci-003","temperature": 0.0,"max_tokens": 256,"top_p": 1,"frequency_penalty": 0,"presence_penalty": 0,"n": 1,"best_of": 1,"request_timeout": null,"logit_bias": {},"_type": "openai"},"output_key": "text","_type": "llm_chain"
}
从磁盘加载(反序列化)链
我们可以使用load_chain方法从磁盘加载链:
from langchain.chains import load_chain
chain = load_chain("llm_chain.json")
chain.run("whats 2 + 2")
日志输出:
> Entering new LLMChain chain...
Prompt after formatting:
Question: whats 2 + 2Answer: Let's think step by step.> Finished chain.
输出:
' 2 + 2 = 4'
分别保存组件
在上面的例子中我们可以看到提示和LLM配置信息与整个链条保存在同一个json中,但我们也可以将它们分开保存。这通常有助于使保存的组件更加模块化。为了做到这一点,我们只需要指定llm_path而不是llm组件,并且指定prompt_path而不是prompt组件。
llm_chain.prompt.save("prompt.json")
输入:
!cat prompt.json
输出:
{"input_variables": ["question"],"output_parser": null,"template": "Question: {question}\n\nAnswer: Let's think step by step.","template_format": "f-string"
}
输入:
llm_chain.llm.save("llm.json")
输入:
!cat llm.json
输出:
{"model_name": "text-davinci-003","temperature": 0.0,"max_tokens": 256,"top_p": 1,"frequency_penalty": 0,"presence_penalty": 0,"n": 1,"best_of": 1,"request_timeout": null,"logit_bias": {},"_type": "openai"
}
输入:
config = {"memory": None,"verbose": True,"prompt_path": "prompt.json","llm_path": "llm.json","output_key": "text","_type": "llm_chain"
}import jsonwith open("llm_chain_separate.json", "w") as f:json.dump(config, f, indent=2)
输入:
!cat llm_chain_separate.json
输出:
{"memory": null,"verbose": true,"prompt_path": "prompt.json","llm_path": "llm.json","output_key": "text","_type": "llm_chain"
}
我们可以以相同的方式加载它:
chain = load_chain("llm_chain_separate.json")
chain.run("whats 2 + 2")
日志输出:
> Entering new LLMChain chain...
Prompt after formatting:
Question: whats 2 + 2Answer: Let's think step by step.> Finished chain.
输出:
' 2 + 2 = 4'
从LangChainHub加载
本节介绍如何从LangChainHub加载链。
from langchain.chains import load_chainchain = load_chain("lc://chains/llm-math/chain.json")
chain.run("whats 2 raised to .12")
日志输出:
> Entering new LLMMathChain chain...
whats 2 raised to .12
Answer: 1.0791812460476249
> Finished chain.
输出:
'Answer: 1.0791812460476249'
有时候链会需要额外的参数,这些参数在链序列化时未包含在内。例如,一个用于对向量数据库进行问答的链条将需要一个向量数据库作为参数。
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import Chroma
from langchain.text_splitter import CharacterTextSplitter
from langchain import OpenAI, VectorDBQA
from langchain.document_loaders import TextLoader
loader = TextLoader('../../state_of_the_union.txt')
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
texts = text_splitter.split_documents(documents)embeddings = OpenAIEmbeddings()
vectorstore = Chroma.from_documents(texts, embeddings)
# Running Chroma using direct local API.
# Using DuckDB in-memory for database. Data will be transient.chain = load_chain("lc://chains/vector-db-qa/stuff/chain.json", vectorstore=vectorstore)
query = "What did the president say about Ketanji Brown Jackson"
chain.run(query)
输出:
" The president said that Ketanji Brown Jackson is a Circuit Court of Appeals Judge, one of the nation's top legal minds, a former top litigator in private practice, a former federal public defender, has received a broad range of support from the Fraternal Order of Police to former judges appointed by Democrats and Republicans, and will continue Justice Breyer's legacy of excellence."
参考文献:
[1] LangChain官方网站:https://www.langchain.com/
[2] LangChain 🦜️🔗 中文网,跟着LangChain一起学LLM/GPT开发:https://www.langchain.com.cn/
[3] LangChain中文网 - LangChain 是一个用于开发由语言模型驱动的应用程序的框架:http://www.cnlangchain.com/
相关文章:
自然语言处理从入门到应用——LangChain:链(Chains)-[通用功能:链的保存(序列化)与加载(反序列化)]
分类目录:《自然语言处理从入门到应用》总目录 本文介绍了如何将链保存(序列化)到磁盘和从磁盘加载(反序列化)。我们使用的序列化格式是json或yaml。目前,只有一些链支持这种类型的序列化。随着时间的推移&…...
机器学习:开启智能时代的重要引擎
引言 随着科技的飞速发展,人工智能已经渗透到我们生活的各个领域。而在人工智能的众多领域中,机器学习以其强大的数据处理能力和智能决策能力受到了广泛关注。本文将向您介绍机器学习的概念、工作原理、应用领域以及未来的发展前景。 一、什么是机器学…...
ES搭建集群
一、创建 elasticsearch-cluster 文件夹 创建 elasticsearch-7.8.0-cluster 文件夹,在内部复制三个 elasticsearch 服务。 然后每个文件目录中每个节点的 config/elasticsearch.yml 配置文件 node-1001 节点 #节点 1 的配置信息: #集群名称࿰…...
# Lua与C++交互(二)———— 交互
C 调用lua 基础调用 再来温习一下 myName “beauty girl” C想要获取myName的值,根据规则,它需要把myName压入栈中,这样lua就能看到;lua从堆栈中获取myName的值,此时栈顶为空;lua拿着myName去全局表中查…...
机器人焊接生产线参数监控系统理解需求
机器人焊接生产线参数监控系统是以参数来反映系统状态并以直观的方式表现 出来,及时了解被监视对象的状态和状态的变化情况。其主要目标是为了达到减少 生产线的处理时间,降低故障率,缩短故障排除时间,从而提高生产线的生产效率 …...
前端基础(ES6 模块化)
目录 前言 复习 ES6 模块化导出导入 解构赋值 导入js文件 export default 全局注册 局部注册 前言 前面学习了js,引入方式使用的是<script s"XXX.js">,今天来学习引入文件的其他方式,使用ES6 模块化编程,…...
第七章,文章界面
7.1添加个人专栏 <template><div class="blog-container"><div class="blog-pages"><!-- 用于渲染『文章列表』和『文章内容』 --><router-view/><div class="col-md-3 main-col pull-left"><div cla…...
HJ102 字符统计
描述 输入一个只包含小写英文字母和数字的字符串,按照不同字符统计个数由多到少输出统计结果,如果统计的个数相同,则按照ASCII码由小到大排序输出。 数据范围:字符串长度满足 1≤len(str)≤1000 1≤len(str)≤1000 输入描述&a…...
Maven聚合项目(微服务项目)创建流程,以及pom详解
1、首先创建springboot项目作为父项目 只留下pom.xml 文件,删除src目录及其他无用文件 2、创建子项目 子项目可以是maven项目,也可以是springboot项目 3、父子项目关联 4、父项目中依赖管理 <?xml version"1.0" encoding"UTF-8&qu…...
Android OkHttp 源码浅析一
演进之路:原生Android框架不好用 ---- HttpUrlConnect 和 Apache HTTPClient 第一版 底层使用HTTPURLConnect 第二版 Square构建 从Android4.4开始 基本使用: val okhttp OkHttpClient()val request Request.Builder().url("http://www.baidu.com").buil…...
【Redis】——Redis基础的数据结构以及应用场景
什么是redis数据库 Redis 是一种基于内存的数据库,对数据的读写操作都是在内存中完成,因此读写速度非常快,常用于缓存,消息队列、分布式锁等场景。,Redis 还支持 事务 、持久化、Lua 脚本、多种集群方案(主…...
SpringBoot+WebSocket搭建多人在线聊天环境
一、WebSocket是什么? WebSocket是在单个TCP连接上进行全双工通信的协议,可以在服务器和客户端之间建立双向通信通道。 WebSocket 首先与服务器建立常规 HTTP 连接,然后通过发送Upgrade标头将其升级为双向 WebSocket 连接。 WebSocket使得…...
推荐适用于不同规模企业的会计软件:选择最适合您企业的解决方案
高效的会计软件不仅可以协助企业进行财务管理,做出科学的财务决策,还可以对企业数字化转型提供助力。不同规模的企业需要根据其特定需求选择适合的会计软件。那么有什么适合不同规模企业的会计软件推荐吗? 小型企业的选择 对于小型企业而言&…...
Apache Zookeeper架构和选举机制
ZooKeeper是一个开源的分布式协调服务,旨在解决分布式系统中的一致性、配置管理、领导者选举等问题。它由Apache软件基金会维护,是Hadoop生态系统的一部分,被广泛用于构建高可用、可靠和具有一致性的分布式应用程序和服务。 ZooKeeper提供了一个层次化的命名空间,类似于文…...
车联网TCU USB的配置和使用
1 usb_composition命令 # cat /sbin/usb/target # cd /sys/class/android_usb/android0 # cat functions console shows that QCOM’s default configuration Usage: usb_composition [Pid] [HSIC] [PERSISTENT] [IMMEDIATE] [FROM_ADBD] usb_composition 9025 n y y Then this…...
Linux系统USB摄像头测试程序(三)_视频预览
这是在linux上usb摄像头视频预览程序,此程序用到了ffmpeg、sdl2、gtk3组件,程序编译之前应先安装他们。 #include <sys/ioctl.h> #include <sys/stat.h> #include <sys/types.h> #include <fcntl.h> #include <zconf.h> …...
目标检测任务数据集的数据增强中,图像水平翻转和xml标注文件坐标调整
需求: 数据集的数据增强中,有时需要用到图像水平翻转的操作,图像水平翻转后,对应的xml标注文件也需要做坐标的调整。 解决方法: 使用pythonopencvimport xml.etree.ElementTree对图像水平翻转和xml标注…...
系统架构的演变
随着互联网的发展,网站应用的规模不断扩大,常规的应用架构已无法应对,分布式服务架构以及微服务架构势在必行,必需一个治理系统确保架构有条不紊的演进。 单体应用架构 Web应用程序发展的早期,大部分web工程(包含前端…...
IDC发布《亚太决策支持型分析数据平台评估》报告,亚马逊云科技位列“领导者”类别
日前,领先的IT市场研究和咨询公司IDC发布《2023年亚太地区(不含日本)决策支持型分析数据平台供应商评估》1报告,亚马逊云科技位列“领导者”类别。IDC认为,亚马逊云科技在解决方案的协同性、敏捷性、完整性、及时性、经…...
C#之OpenFileDialog创建和管理文件选择对话框
OpenFileDialog 是用于图形用户界面(GUI)编程的一个类,它用于显示一个对话框,允许用户选择要打开的文件。在需要用户加载或打开文件的应用程序中(如文本编辑器、图像查看器或文档处理器),这是一…...
调用支付宝接口响应40004 SYSTEM_ERROR问题排查
在对接支付宝API的时候,遇到了一些问题,记录一下排查过程。 Body:{"datadigital_fincloud_generalsaas_face_certify_initialize_response":{"msg":"Business Failed","code":"40004","sub_msg…...
智慧医疗能源事业线深度画像分析(上)
引言 医疗行业作为现代社会的关键基础设施,其能源消耗与环境影响正日益受到关注。随着全球"双碳"目标的推进和可持续发展理念的深入,智慧医疗能源事业线应运而生,致力于通过创新技术与管理方案,重构医疗领域的能源使用模式。这一事业线融合了能源管理、可持续发…...
JVM垃圾回收机制全解析
Java虚拟机(JVM)中的垃圾收集器(Garbage Collector,简称GC)是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象,从而释放内存空间,避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...
Vite中定义@软链接
在webpack中可以直接通过符号表示src路径,但是vite中默认不可以。 如何实现: vite中提供了resolve.alias:通过别名在指向一个具体的路径 在vite.config.js中 import { join } from pathexport default defineConfig({plugins: [vue()],//…...
【p2p、分布式,区块链笔记 MESH】Bluetooth蓝牙通信 BLE Mesh协议的拓扑结构 定向转发机制
目录 节点的功能承载层(GATT/Adv)局限性: 拓扑关系定向转发机制定向转发意义 CG 节点的功能 节点的功能由节点支持的特性和功能决定。所有节点都能够发送和接收网格消息。节点还可以选择支持一个或多个附加功能,如 Configuration …...
nnUNet V2修改网络——暴力替换网络为UNet++
更换前,要用nnUNet V2跑通所用数据集,证明nnUNet V2、数据集、运行环境等没有问题 阅读nnU-Net V2 的 U-Net结构,初步了解要修改的网络,知己知彼,修改起来才能游刃有余。 U-Net存在两个局限,一是网络的最佳深度因应用场景而异,这取决于任务的难度和可用于训练的标注数…...
MySQL的pymysql操作
本章是MySQL的最后一章,MySQL到此完结,下一站Hadoop!!! 这章很简单,完整代码在最后,详细讲解之前python课程里面也有,感兴趣的可以往前找一下 一、查询操作 我们需要打开pycharm …...
rm视觉学习1-自瞄部分
首先先感谢中南大学的开源,提供了很全面的思路,减少了很多基础性的开发研究 我看的阅读的是中南大学FYT战队开源视觉代码 链接:https://github.com/CSU-FYT-Vision/FYT2024_vision.git 1.框架: 代码框架结构:readme有…...
命令行关闭Windows防火墙
命令行关闭Windows防火墙 引言一、防火墙:被低估的"智能安检员"二、优先尝试!90%问题无需关闭防火墙方案1:程序白名单(解决软件误拦截)方案2:开放特定端口(解决网游/开发端口不通)三、命令行极速关闭方案方法一:PowerShell(推荐Win10/11)方法二:CMD命令…...
从实验室到产业:IndexTTS 在六大核心场景的落地实践
一、内容创作:重构数字内容生产范式 在短视频创作领域,IndexTTS 的语音克隆技术彻底改变了配音流程。B 站 UP 主通过 5 秒参考音频即可克隆出郭老师音色,生成的 “各位吴彦祖们大家好” 语音相似度达 97%,单条视频播放量突破百万…...
