当前位置: 首页 > news >正文

卷积神经网络——上篇【深度学习】【PyTorch】【d2l】

文章目录

  • 5、卷积神经网络
    • 5.1、卷积
      • 5.1.1、理论部分
      • 5.1.2、代码实现
      • 5.1.3、边缘检测
    • 5.2、填充和步幅
      • 5.2.1、理论部分
      • 5.2.2、代码实现
    • 5.3、多输入多输出通道
      • 5.3.1、理论部分
      • 5.3.2、代码实现
    • 5.4、池化层 | 汇聚层
      • 5.4.1、理论部分
      • 5.4.2、代码实现

5、卷积神经网络

5.1、卷积

5.1.1、理论部分

全连接层后,卷积层出现的意义?

一个足够充分的照片数据集,输入,全连接层参数,GPU成本,训练时间是巨大的。

(convolutional neural networks,CNN)是机器学习利用自然图像中一些已知结构的创造性方法,需要更少的参数,在处理图像和其他类型的结构化数据上各类成本,效果,可行性普遍优于全连接层。

卷积层做了什么?

将输入和核矩阵进行互相关运算,加上偏移后得到输出。

图片中找模式的原则

  • 平移不变性
  • 局部性

对全连接层使用如上原则得到卷积层。

(详细待补充)

二维卷积层

在这里插入图片描述

Y = X ★ W + b Y = X ★ W + b Y=XW+b

  • 输入 X X X n h × n w n_h × n_w nh×nw

    图中,h:高、w:宽、输入大小 n = 3。

  • W W W k h × k w k_h × k_w kh×kw

    图中,卷积核大小 k = 2,超参数

  • 偏差 b∈ R

  • 输出 Y Y Y ( n h − k h + 1 ) × ( n w − k w + 1 ) ( n_h - k_h + 1)×(n_w - k_w + 1) nhkh+1×nwkw+1

    图中 (3-2 +1)*(3-2 +1) = 4 ,计算的是 Y 的形状。

  • ★:二维交叉操作子 | 外积

  • W 和 b是可学习的参数

卷积效果举例

在这里插入图片描述

5.1.2、代码实现

(1)实现互相关运算


卷积运算 ≠ 互相关运算

卷积运算:在卷积运算中,核心(也称为滤波器)在进行滑动时,会被翻转(180度旋转)后与输入数据进行逐元素相乘,并将乘积求和作为输出。这意味着核心的权重是翻转的。在卷积运算中,处理核心的边界像素会被覆盖,所以输出的大小通常会小于输入的大小。

互相关运算:在互相关运算中,核心与输入数据进行逐元素相乘,并将乘积求和作为输出,但核心不进行翻转。互相关运算不会覆盖核心的边界像素,所以输出的大小与输入的大小通常是一致的。

在深度学习中,人们通常使用卷积运算的术语来描述这种操作,尽管实际实现可能使用了互相关运算。卷积运算和互相关运算在数学上的操作相似,但在处理核心边界像素时存在微小的差异。在实际深度学习应用中,这两个术语通常可以互换使用。

import torch
from torch import nn
from d2l import torch as d2ldef corr2d(X, K):  #@save"""计算二维互相关运算"""h, w = K.shapeY = torch.zeros((X.shape[0] - h + 1, X.shape[1] - w + 1))for i in range(Y.shape[0]):for j in range(Y.shape[1]):#点积求和Y[i, j] = (X[i:i + h, j:j + w] * K).sum()return Y

验证运算结果

X = torch.tensor([[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]])
K = torch.tensor([[0.0, 1.0], [2.0, 3.0]])
corr2d(X, K)

result:

tensor([[19., 25.],[37., 43.]])

实现二维卷积层

class Conv2D(nn.Module):def __init__(self,kernel_size):super().__init__()self.weight =nn.Parameter(torch.rand(kernel_size))self.bias = nn.Parameter(torch.zeros(1))def forward(sekf, x):return 	corr2d(x,self.weight) + self.bias

(2)学习由X生成Y卷积核


#一个输入通道、一个输出通道,不使用偏置
conv2d = nn.Conv2d(1,1,kernel_size=(1,2),bias =False)X = X.reshape((1,1,6,8))
Y = Y.reshape((1,1,6,7))for i in range(10):Y_hat = conv2d(X)l = (Y_hat - Y) **2conv2d.zero_grad()l.sum().backward()conv2d.weight.data[:] -=3e-2 * conv2d.weight.gradif(i + 1)% 2 == 0:print(f'batch{i + 1}, loss {l.sum():.3f}')

所学卷积核权重

conv2d.weight.data.reshape((1,2))
tensor([[ 1.0084, -0.9816]])

5.1.3、边缘检测

利用卷积层检测 图像中的不同边缘

输入

X = torch.ones((6,8))
X[:, 2:6]  =0
X
tensor([[1., 1., 0., 0., 0., 0., 1., 1.],[1., 1., 0., 0., 0., 0., 1., 1.],[1., 1., 0., 0., 0., 0., 1., 1.],[1., 1., 0., 0., 0., 0., 1., 1.],[1., 1., 0., 0., 0., 0., 1., 1.],[1., 1., 0., 0., 0., 0., 1., 1.]])

核矩阵

K = torch.tensor([[1,-1]])

输出

Y  = corr2d(X,K)
Y
tensor([[ 0.,  1.,  0.,  0.,  0., -1.,  0.],[ 0.,  1.,  0.,  0.,  0., -1.,  0.],[ 0.,  1.,  0.,  0.,  0., -1.,  0.],[ 0.,  1.,  0.,  0.,  0., -1.,  0.],[ 0.,  1.,  0.,  0.,  0., -1.,  0.],[ 0.,  1.,  0.,  0.,  0., -1.,  0.]])

只能检测垂直边缘

Y  = corr2d(X.t(),K)
Y
tensor([[0., 0., 0., 0., 0.],[0., 0., 0., 0., 0.],[0., 0., 0., 0., 0.],[0., 0., 0., 0., 0.],[0., 0., 0., 0., 0.],[0., 0., 0., 0., 0.],[0., 0., 0., 0., 0.],[0., 0., 0., 0., 0.]])

将核矩阵一起转置

Y  = corr2d(X.t(),K.t())
Y

水平边缘检测可行。

tensor([[ 0.,  0.,  0.,  0.,  0.,  0.],[ 1.,  1.,  1.,  1.,  1.,  1.],[ 0.,  0.,  0.,  0.,  0.,  0.],[ 0.,  0.,  0.,  0.,  0.,  0.],[ 0.,  0.,  0.,  0.,  0.,  0.],[-1., -1., -1., -1., -1., -1.],[ 0.,  0.,  0.,  0.,  0.,  0.]])

5.2、填充和步幅

5.2.1、理论部分

填充操作

更大的卷积核可以更快地减小输出大小。

如果不想结果太小,也可以通过填充实现输出更大尺寸的X,实现控制输出形状的减少量。

在这里插入图片描述

填充 p h p_h ph p w p_w pw列,输出形状:

( n h − k h + p h + 1 ) × ( n w − k w + p w + 1 ) (n_h -k_h +p_h +1)×(n_w - k_w + p_w +1) nhkh+ph+1×nwkw+pw+1

通常取 p h = k h − 1 , p w = k w − 1 p_h = k_h -1, \ \ \ p_w =k_w -1 ph=kh1,   pw=kw1

  • k h k_h kh奇数:上下两侧填充 p h / 2 p_h/2 ph/2
  • k h k_h kh偶数:上侧填充 ⌈ p h / 2 ⌉ ⌈p_h/2⌉ ph/2下侧填充 ⌊ p h / 2 ⌋ ⌊p_h/2⌋ ph/2

步幅

步幅指行/列滑动步长。

设置步幅的效果?

成倍减少输出形状。

下图为高3宽2步幅示意图:

在这里插入图片描述

(图片来自 《DIVE INTO DEEP LEARNING》)

给定步幅,高度 s h s_h sh宽度 s w s_w sw,输出形状:

⌊ ( n h − k h + p h + s h ) / s h ⌋ × ⌊ ( n w − k w + p w + s w ) / s w ⌋ ⌊(n_h - k_h + p_h + s_h)/s_h⌋ ×⌊(n_w - k_w + p_w + s_w)/s_w⌋ ⌊(nhkh+ph+sh)/sh×⌊(nwkw+pw+sw)/sw

如果输入高度宽度可被步幅整除,形状为:

( n h / s h ) × ( n w / s w ) (n_h / s_h)×(n_w / s_w) (nh/sh)×(nw/sw)

5.2.2、代码实现

填充、步幅是卷积层超参数。

所有侧边填充一个像素

import torch
from torch import nndef comp_conv2d(conv2d, X):X = X.reshape((1,1) + X.shape)Y =conv2d(X)return Y.reshape(Y.shape[2:])conv2d = nn.Conv2d(1,1,kernel_size=3,padding=1)
X= torch.rand(size=(8,8))
comp_conv2d(conv2d,X).shape

填充相同高度宽度

import torch
from torch import nndef comp_conv2d(conv2d, X):X = X.reshape((1,1) + X.shape)#执行一次卷积操作Y =conv2d(X)return Y.reshape(Y.shape[2:])
#padding=1 在输入数据的边界填充一行和一列的零值
conv2d = nn.Conv2d(1,1,kernel_size=3,padding=1)
X= torch.rand(size=(8,8))
comp_conv2d(conv2d,X).shape
torch.Size([8, 8])

不同高度宽度

conv2d = nn.Conv2d(1,1,kernel_size=(5,3),padding=(2,1))
comp_conv2d(conv2d,X).shape
torch.Size([8, 8])

增设步幅,其宽高为2

conv2d = nn.Conv2d(1,1,kernel_size=3,padding=1,stride =2)
comp_conv2d(conv2d,X).shape
torch.Size([4, 4])

成倍缩小。

5.3、多输入多输出通道

5.3.1、理论部分

彩色RGB图片,是三通道输入数据。

每个通道都有一个卷积核,结果为各通道卷积的和。

在这里插入图片描述

1×1卷积层

不识别空间,用途是融合通道。

二维卷积层(多通道)

Y = X ★ W + B Y = X ★ W + B Y=XW+B

  • 输入 X X X c i × n h × n w c_i × n_h × n_w ci×nh×nw

    c i c_i ci输入通道数、h高、w宽、输入大小 n。

  • W W W c o × c i × k h × k w c_o × c_i × k_h × k_w co×ci×kh×kw

    c o c_o co输出通道数、卷积核大小 k。其中, c o c_o co是卷积层的超参数。

  • 偏差 B B B c o × c i c_o × c_i co×ci

    一共有 c o × c i c_o × c_i co×ci个卷积核 每个卷积核都有一个偏差

  • 输出 Y Y Y c o × m h × m w c_o × m_h × m_w co×mh×mw

    m h m w m_h \ m_w mh mw大小与 填充p、核大小k有关。

  • ★:二维交叉操作子 | 外积

怎么理解每个输出通道有独立的三维卷积核?

具有三个维度:高度、宽度和通道数。

5.3.2、代码实现

(1)实现多通道互相关运算


定义多通道输入

import torch
from d2l import torch as d2l
#先遍历“X”和“K”的第0个维度(通道维度),再把它们加在一起
def corr2d_multi_in(X,K):return sum(d2l.corr2d(x,k) for x,k in zip(X,K))

多通道第零维度的几何意义?

在这里插入图片描述

图中X第零维度有两组,几何上就是通道数。

X :

(tensor([[[0., 1., 2.],[3., 4., 5.],[6., 7., 8.]],[[1., 2., 3.],[4., 5., 6.],[7., 8., 9.]]]),

定义X,K

# X 2*3*3
X = torch.tensor([[[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]],[[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]]])
#K 2*2*2
K = torch.tensor([[[0.0, 1.0], [2.0, 3.0]], [[1.0, 2.0], [3.0, 4.0]]])X,K,corr2d_multi_in(X, K)
(tensor([[[0., 1., 2.],[3., 4., 5.],[6., 7., 8.]],[[1., 2., 3.],[4., 5., 6.],[7., 8., 9.]]]),
tensor([[[0., 1.],[2., 3.]],[[1., 2.],[3., 4.]]]),
tensor([[ 56.,  72.],[104., 120.]]))

定义多通道输出

def corr2d_multi_in_out(X,K):# 使用 PyTorch 的 torch.stack 函数,它将一组张量沿着指定的维度(这里是维度0)进行堆叠,生成一个新的张量。return torch.stack([corr2d_multi_in(X,k) for k in K],0)
# K+1 K的每个值加一,K规模扩成了原来3倍。
K = torch.stack((K,K+1,K+2),0)
K,K.shape
(tensor([[[[0., 1.],[2., 3.]],[[1., 2.],[3., 4.]]],[[[1., 2.],[3., 4.]],[[2., 3.],[4., 5.]]],[[[2., 3.],[4., 5.]],[[3., 4.],[5., 6.]]]]),
torch.Size([3, 2, 2, 2]))

返回值那一行为什么用小k对应X,多通道输入那里不是用的大K对应X,然后第零维度展开,抽出x,k对应计算吗?

K扩了三倍,所以用小k规模和原来的K相当,因此X 对应扩充前的K,扩充后的小k。

corr2d_multi_in_out(X,K)
tensor([[[ 56.,  72.],[104., 120.]],[[ 76., 100.],[148., 172.]],[[ 96., 128.],[192., 224.]]])

(2)实现1*1卷积核


def corr2d_multi_in_out_1x1(X, K):c_i, h, w = X.shapec_o = K.shape[0]X = X.reshape((c_i, h * w))K = K.reshape((c_o, c_i))# 全连接层中的矩阵乘法Y = torch.matmul(K, X)return Y.reshape((c_o, h, w))
X = torch.normal(0, 1, (3, 3, 3))
K = torch.normal(0, 1, (2, 3, 1, 1))Y1 = corr2d_multi_in_out_1x1(X, K)
Y2 = corr2d_multi_in_out(X, K)
# 进行断言,验证使用 1x1 卷积操作得到的输出 Y1 与多通道卷积操作得到的输出 Y2 是否非常接近,以确保两种方法的结果一致
assert float(torch.abs(Y1 - Y2).sum()) < 1e-6

5.4、池化层 | 汇聚层

5.4.1、理论部分

最大池化,每个窗口最强的模式信号,它针对卷积对空间位置敏感(边缘检测案例),允许输入有一定的偏移。

也有平均池化层。

特点

  • 具有填充,步幅;
  • 没有可学习的参数;
  • 输出通道 = 输入通道,一一对应。

5.4.2、代码实现

池化层向前传播

import torch
from torch import nn
from d2l import torch as d2ldef pool2d(X, pool_size, mode='max'):p_h, p_w = pool_sizeY = torch.zeros((X.shape[0] - p_h + 1, X.shape[1] - p_w + 1))for i in range(Y.shape[0]):for j in range(Y.shape[1]):if mode == 'max':Y[i, j] = X[i: i + p_h, j: j + p_w].max()elif mode == 'avg':Y[i, j] = X[i: i + p_h, j: j + p_w].mean()return Y

验证最大池化层

X = torch.tensor([[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]])
pool2d(X, (2, 2))
tensor([[4., 5.],[7., 8.]])

验证平均池化层

pool2d(X, (2,2), 'avg')
tensor([[2., 3.],[5., 6.]])

使用内置的最大池化层

X = torch.arange(16, dtype=torch.float32).reshape((1, 1, 4, 4))
X
tensor([[[[ 0.,  1.,  2.,  3.],[ 4.,  5.,  6.,  7.],[ 8.,  9., 10., 11.],[12., 13., 14., 15.]]]])
pool2d = nn.MaxPool2d(3, padding=1, stride=2)#等价于nn.MaxPool2d((3,3), padding=(1,1), stride=(2,2))
pool2d(X)
tensor([[[[ 5.,  7.],[13., 15.]]]])
pool2d = nn.MaxPool2d((2, 3), stride=(2, 3), padding=(0, 1))
pool2d(X)
tensor([[[[ 5.,  7.],[13., 15.]]]])

验证多通道

汇聚层在每个输入通道上单独运算,输出通道数与输入通道数相同。

拼接上 torch.cattorch.stack的区别

torch.cat 是在现有维度上进行拼接。

torch.stack 用于创建一个新的维度,并将多个张量沿该新维度进行堆叠。

# 将两个张量 X, X + 1 进行拼接
X = torch.cat((X, X + 1), 1)
X
tensor([[[[ 0.,  1.,  2.,  3.],[ 4.,  5.,  6.,  7.],[ 8.,  9., 10., 11.],[12., 13., 14., 15.]],[[ 1.,  2.,  3.,  4.],[ 5.,  6.,  7.,  8.],[ 9., 10., 11., 12.],[13., 14., 15., 16.]]]])
pool2d = nn.MaxPool2d(3, padding=1, stride=2)
pool2d(X)
tensor([[[[ 5.,  7.],[13., 15.]],[[ 6.,  8.],[14., 16.]]]])

相关文章:

卷积神经网络——上篇【深度学习】【PyTorch】【d2l】

文章目录 5、卷积神经网络5.1、卷积5.1.1、理论部分5.1.2、代码实现5.1.3、边缘检测 5.2、填充和步幅5.2.1、理论部分5.2.2、代码实现 5.3、多输入多输出通道5.3.1、理论部分5.3.2、代码实现 5.4、池化层 | 汇聚层5.4.1、理论部分5.4.2、代码实现 5、卷积神经网络 5.1、卷积 …...

【从零学习python 】54. 内存中写入数据

文章目录 内存中写入数据StringIOBytesIO进阶案例 内存中写入数据 除了将数据写入到一个文件以外&#xff0c;我们还可以使用代码&#xff0c;将数据暂时写入到内存里&#xff0c;可以理解为数据缓冲区。Python中提供了StringIO和BytesIO这两个类将字符串数据和二进制数据写入…...

速通蓝桥杯嵌入式省一教程:(九)AT24C02芯片(E2PROM存储器)读写操作与I2C协议

AT24C02芯片&#xff08;又叫E2PROM存储器、EEPROM存储器&#xff09;&#xff0c;是一种通过I2C(IIC)协议通信的掉电保存存储器芯片&#xff0c;其内部含有256个8位字节。在介绍这款芯片之前&#xff0c;我们先来粗略了解一下I2C协议。 I2C总线是一种双向二线制的同步串行总线…...

负载均衡:优化性能与可靠性的关键

在现代互联网时代&#xff0c;数以万计的用户访问着各种在线服务&#xff0c;从即时通讯、社交媒体到电子商务和媒体流媒体&#xff0c;无不需要应对海量的请求和数据传输。在这个高并发的环境下&#xff0c;负载均衡成为了关键的技术&#xff0c;它旨在分散工作负载&#xff0…...

T113-S3-TCA6424-gpio扩展芯片调试

目录 前言 一、TCA6424介绍 二、原理图连接 三、设备树配置 四、内核配置 五、gpio操作 总结 前言 TCA6424是一款常用的GPIO&#xff08;通用输入输出&#xff09;扩展芯片&#xff0c;可以扩展微控制器的IO口数量。在T113-S3平台上&#xff0c;使用TCA6424作为GPIO扩展芯…...

奥威BI数据可视化工具:个性化定制,打造独特大屏

每个人都有自己独特的审美&#xff0c;因此即使是做可视化大屏&#xff0c;也有很多人希望做出不一样的报表&#xff0c;用以缓解审美疲劳的同时提高报表浏览效率。因此这也催生出了数据可视化工具的个性化可视化大屏制作需求。 奥威BI数据可视化工具&#xff1a;个性化定制&a…...

13 秒插入 30 万条数据,批量插入!

数据库表 CREATE TABLE t_user (id int(11) NOT NULL AUTO_INCREMENT COMMENT 用户id,username varchar(64) DEFAULT NULL COMMENT 用户名称,age int(4) DEFAULT NULL COMMENT 年龄,PRIMARY KEY (id) ) ENGINEInnoDB DEFAULT CHARSETutf8 COMMENT用户信息表; User实体 /*** …...

Nginx代理转发地址不正确问题

使用ngix前缀去代理转发一个地址&#xff0c;貌似成功了&#xff0c;但是进不到正确的页面&#xff0c;能够访问&#xff0c;但是一直404远处出来nginx会自动拼接地址在后面 后面才知道要将这段代码加上去&#xff0c;去除前缀转发...

HyperMotion高度自动化云迁移至华为HCS8.1解决方案

项目背景 2020 年以来&#xff0c;金融证券已经成为信创落地最快的领域。2021 年证监会发布的《证券期货业科技发展十四五规划》中&#xff0c;将“加强信创规划与实施”作为证券行业重点建设任务之一。为了符合国家信创标准&#xff0c;某证券企业计划将网管系统、呼叫中心管…...

pbootcms系统安全防护设置大全

PbootCMS系统简介 PbootCMS是全新内核且永久开源免费的PHP企业网站开发建设管理系统&#xff0c;是一套高效、简洁、 强悍的可免费商用的PHP CMS源码&#xff0c;能够满足各类企业网站开发建设的需要。系统采用简单到想哭的模板标签&#xff0c;只要懂HTML就可快速开发企业网站…...

【环境】docker时间与宿主同步

1.容器创建后 docker cp /etc/localtime 容器名:/etc/2.容器创建时 加入 -v /ect/localtime/:/etc/localtime:ro参考链接...

亮点!视频云存储/安防监控视频智能分析平台睡岗离岗检测

在生产过程中&#xff0c;未经领导允许的擅自离岗、睡岗会带来很多的潜在危害。TSINGSEE青犀推出的视频云存储/安防监控视频智能分析平台得睡岗离岗检测根据AI视频分析技术建立人工智能算法&#xff0c;对视频画面展开分析与识别。自动识别出人员睡岗、离岗、玩手机与抽烟等动作…...

编程锦囊妙计——快速创建本地Mock服务

点击上方&#x1f446;蓝色“Agilean”&#xff0c;发现更多精彩。 前情提要 在本系列上一篇文章《全文干货&#xff1a;打破前后端数据传递鸿沟&#xff0c;高效联调秘笈》中我们分享了使用Zod这一运行时类型校验库来对后端服务响应结果进行验证达到增加项目质量的方式。 这次…...

简单认识镜像底层原理详解和基于Docker file创建镜像

文章目录 一、镜像底层原理1.联合文件系统(UnionFS)2.镜像加载原理3.为什么Docker里的centos的大小才200M? 二、Dockerfile1.简介2.Dockerfile操作常用命令 三、创建Docker镜像1.基于已有镜像创建2.基于本地模板创建3.基于Dockerfile创建4.Dockerfile多阶段构建镜像 一、镜像底…...

加速乐(__jsl_clearance_s)动态cookie生成分析实战

文章目录 一、写在前面二、抓包分析三、逆向分析 一、写在前面 加速乐&#xff08;JSL&#xff09;是阿里推出的一项反爬虫服务&#xff0c;其生成cookie的原理基于浏览器的行为特征 我们知道普通网站生成cookie是在请求时生成&#xff0c;而它先生成cookie&#xff0c;然后向服…...

启动Vue项目踩坑记录

前言 在启动自己的Vue项目时&#xff0c;遇到一些报错&#xff0c;当时很懵&#xff0c;解决了以后豁然开朗&#xff0c;特写此博客记录一下。 一、<template>里多加了个div标签 [vite] Internal server error: At least one <template> or <script> is req…...

vue-pc上传优化-uni-app上传优化

vue-pc上传优化 当我们使用自己搭建的文档服务器上传图片时候&#xff0c;在本地没问题&#xff0c;上线上传会比较慢 这时候我们最简单的方法就是写一个加载组件&#xff0c;上传之前打开组件&#xff0c;掉完接口关闭组件 或者不想写直接使用element的loading写一个遮罩层加…...

【计算机视觉|生成对抗】StackGAN:使用堆叠生成对抗网络进行文本到照片逼真图像合成

本系列博文为深度学习/计算机视觉论文笔记&#xff0c;转载请注明出处 标题&#xff1a;StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks 链接&#xff1a;[1612.03242] StackGAN: Text to Photo-realistic Image Synthesis…...

跟随角色镜头时,解决地图黑线/白线缝隙的三种方案

下面一共三个解决方案&#xff0c;这里我推荐第二个方案解决&#xff0c;因为够快速和简单。 现象&#xff1a; 解决方案一&#xff1a; 参考【Unity2D】去除地图中的黑线_unity选中后有线_香菇CST的博客-CSDN博客&#xff0c;博主解释是因为抗锯齿采样导致的问题。 具体到这…...

redis7高级篇2 redis的BigKey的处理

一 Bigkey的处理 1.1 模拟造数 1.截图 2.代码 &#xff1a;使用pipe 批量插入10w的数据量 cat /root/export/monidata.txt | redis-cli -h 127.0.0.1 -a 123456 -p 6379 --pipe [rootlocalhost export]# for((i1;i<10*10;i)); do echo "set k$i v$i" >>…...

启英泰伦通话降噪方案,采用深度学习降噪算法,让通话更清晰

生活中的通话应用场景无处不在&#xff0c;如电话、对讲机、远程会议、在线教育等。普遍存在的问题是环境噪音、干扰声导致通话声音不清晰&#xff0c;语音失真等。 为了解决这一问题&#xff0c;启英泰伦基于自适应线性滤波联合非线性滤波的回声消除方案和基于深度学习的降噪…...

将SonarLint集成到Git

1、搭建SonarQube服务器 下载SonarQube安装包 访问SonarQube官网&#xff08;https://www.sonarqube.org/downloads/&#xff09;下载最新版本的SonarQube Community Edition。解压安装包 将下载的压缩包解压到一个目录&#xff0c;例如&#xff1a;D:\sonarqube-community-7.…...

【Jenkins】rpm方式安装Jenkins(2.401,jdk版本17)

目录 【Jenkins】rpm方式安装Jenkins 1、主机初始化 2、软件要求 RPM包安装的内容 配置文件说明 3、web操作 【Jenkins】rpm方式安装Jenkins 1、主机初始化 [rootlocalhost ~]# hostname jenkins[rootlocalhost ~]# bash[rootjenkins ~]# systemctl stop firewalld[roo…...

vue3跳转统一页面,path一样,传递的参数不一样时页面不刷新

vue3中当路由一样&#xff0c;参数quary不一样的跳转不刷新 当路由的path都是一样的&#xff0c;quary不一样&#xff0c;在跳转的时候&#xff0c;不会执行onMounted等方法&#xff0c;页面也就不会刷新。 方法&#xff1a; 修改router-view&#xff0c;在app.vue页面给标签…...

升级还是不升级?iPhone 15和iPhone 14 Plus性能比较

预览iPhone 15 Pro Max与三星Galaxy S23 Ultra之战是有正当理由的。显然,三星的旗舰智能手机为2023年的所有其他旗舰产品定下了基调——由于其超长的电池寿命和一流的摄像头,证明了它是最受欢迎的产品。 毫不奇怪,Galaxy S23 Ultra不仅是最好的照相手机之一,也是花钱能买到…...

关于LED电子显示屏幕的显示功能

因为LED显示屏的发光颜色和发光效率与制作LED的材料和工艺相关&#xff0c;目前广泛采用的有红、绿、蓝三种颜色的LED。这些LED的独特之处在于它们工作时需要的电压极低&#xff08;仅1.5-3V&#xff09;&#xff0c;能够主动发光&#xff0c;并且具有一定的亮度。这亮度可以通…...

计算机视觉--利用HSV和YIQ颜色空间处理图像噪声

前言&#xff1a; Hello大家好&#xff0c;我是Dream。 今天我们将利用HSV和YIQ颜色空间处理图像噪声。在本次实验中&#xff0c;我们使用任意一张图片&#xff0c;通过RGB转HSV和YIQ的操作&#xff0c;加入了椒盐噪声并将其转换回RGB格式&#xff0c;最终实现对图像的噪声处理…...

Android Studio中引入MagicIndicator

1.github中下载文件 GitHub - hackware1993/MagicIndicator: A powerful, customizable and extensible ViewPager indicator framework. As the best alternative of ViewPagerIndicator, TabLayout and PagerSlidingTabStrip —— 强大、可定制、易扩展的 ViewPager 指示器框…...

webrtc学习(六)重要信令级时序图

一.四个重要信令 1.用户登录信令 SignIn 2..用户登出信令 SignOut 3..用户等待信令 wait信令是指从服务器的消息队列中获取暂存的中转消息&#xff0c;比如说sdp消息&#xff0c;对于信令服务器来说&#xff0c;他没有办法给用户推送消息&#xff0c;只能是用户推送消息给…...

Leetcode刷题笔记--Hot21-30

1--全排列&#xff08;46&#xff09; 主要思路1&#xff1a; 经典全排列&#xff0c;每次枚举每一位时&#xff0c;重头开始枚举&#xff0c;用一个访问数组记录当前已经被访问过的数字&#xff1b; 这道题不包含重复数字&#xff0c;所以不需要进行树层上的剪枝&#xff1b; …...

【MyBatis八股】MyBatis面试题

目录 MyBatis是什么&#xff1f;Mybaits的优缺点&#xff1f;为什么说Mybatis是半自动ORM映射工具&#xff1f;它与全自动的区别在哪里&#xff1f;Hibernate 和 MyBatis 的区别&#xff1f;JDBC编程有哪些不足之处&#xff0c;MyBatis是如何解决这些问题的&#xff1f;MyBatis…...

Apache Hudi初探(二)(与flink的结合)--flink写hudi的操作(JobManager端的提交操作)

背景 在Apache Hudi初探(一)(与flink的结合)中&#xff0c;我们提到了Pipelines.hoodieStreamWrite 写hudi文件,这个操作真正写hudi是在Pipelines.hoodieStreamWrite方法下的transform(opName("stream_write", conf), TypeInformation.of(Object.class), operatorFa…...

Office ---- excel ---- 怎么批量设置行高

解决方法&#xff1a; 调整行高即可...

Wlan——STA上线流程与802.11MAC帧讲解

目录 802.11MAC帧基本概念 802.11帧结构 802.11MAC帧的分类 管理帧 控制帧 数据帧 STA接入无线网络流程 信号扫描—管理帧 链路认证—管理帧 用户关联—管理帧 用户上线 802.11MAC帧基本概念 802.11协议在802家族中的角色位置 其中802.3标准属于以太网的一种帧格式…...

HTTP的并发连接限制和连接线程池

为什么有并发连接限制和连接线程池 大量的客户端连接到服务器&#xff0c;会导致服务器端需要大量的维护连接资源&#xff0c;同时需要处理客户端的请求&#xff0c;这是如何高效的执行任务成了一个关键的问题&#xff0c;所以&#xff0c;并发连接限制和连接线程池的出现就是…...

【从零学习python 】45.Python中的类方法和静态方法

文章目录 类方法、静态方法类方法静态方法使用场景 进阶案例 类方法、静态方法 类方法 类方法是以类对象作为第一个参数的方法。需要使用装饰器classmethod来标识其为类方法。对于类方法&#xff0c;第一个参数必须是类对象&#xff0c;一般以cls作为第一个参数。 class Dog…...

基于 VisualFoxPro 环境开发应用程序的过程

应用程序开发前开发者要与用户之间广泛沟通&#xff0c;作大量的调查研究和分析工 作&#xff0c;从而明确用户的要求、程序应具备的功能及可以完成的任务。为此要进行两方 面的分析&#xff0c;数据分析和功能分析。数据分析的目的是收集系统应包含的数据、数据 的真实性、…...

SpringBoot整合Quartz,实现数据库方式执行定时任务

springboot整合quartz&#xff0c;实现数据库方式执行定时任务。把定时任务信息存进数据库&#xff0c;项目启动后自动执行定时任务。 1.引入依赖包&#xff1a; <dependency> <groupId>org.springframework.boot</groupId> <ar…...

java中多个list怎么用List表示?

如果你有多个List对象&#xff0c;想要将它们合并成一个List对象&#xff0c;可以使用addAll()方法来实现。addAll()方法将会把一个List中的元素逐个添加到另一个List中。 以下是一个示例&#xff0c;展示了如何将多个List对象合并为一个List对象&#xff1a; import java.ut…...

postgresql 数据排序

postgresql 常见操作 排序总结 排序 -- 排序的时候null是最大的值(看一下) select employee_id,manager_id from employeesorder by manager_id desc;-- nulls first使null值排在第一位 select employee_id,manager_id from employeesorder by manager_id nulls first;-- null…...

虚拟机 net、桥接、主机三种网络模式寻根问底

虚拟机使用物理主机上的网络适配器直接连接到物理网络中。 这意味着虚拟机就像是通过网线直接连接到路由器一样,成为物理网络中的一个独立设备。 虚拟机可以获取一个永久的IP地址,通过DHCP或手动设置。 虚拟机和物理主机都可以访问对方以及公共网络中的其他设备,比如文件服务…...

python代码——批量将PPT转换成长图

语言&#xff1a;python 3 用法&#xff1a;点击运行后&#xff0c;弹出窗口&#xff0c;选择文件夹&#xff0c;程序运行会将文件夹内的所有PPT文件全部转换成PPT长图&#xff0c;图片名称与PPT文件名称相同&#xff0c;保存位置相同。 如运行中报错&#xff0c;需要自行根据…...

C++信息学奥赛2046:【例5.15】替换字母

这段代码的功能是对输入的字符串进行处理&#xff0c;将字符串中的字符 a 替换为字符 b 后输出结果。 #include<bits/stdc.h> using namespace std; int main() {string s; // 定义字符串变量s&#xff0c;用来存储输入的字符串char a, b; // 定义字符变量a和b&#xff…...

每天一道leetcode:1306. 跳跃游戏 III(图论中等广度优先遍历)

今日份题目&#xff1a; 这里有一个非负整数数组 arr&#xff0c;你最开始位于该数组的起始下标 start 处。当你位于下标 i 处时&#xff0c;你可以跳到 i arr[i] 或者 i - arr[i]。 请你判断自己是否能够跳到对应元素值为 0 的 **任一** 下标处。 注意&#xff0c;不管是什…...

76参考链接

参考链接 官方文件综合介绍[let 和 const](https://es6.ruanyifeng.com/#docs/reference#let 和 const)解构赋值字符串正则数值数组函数对象Symbol[Set 和 Map](https://es6.ruanyifeng.com/#docs/reference#Set 和 Map)[Proxy 和 Reflect](https://es6.ruanyifeng.com/#docs/…...

浅析Linux SCSI子系统:调试方法

文章目录 SCSI日志调试功能scsi_logging_level调整SCSI日志等级 SCSI trace events使能SCSI trace events方式一&#xff1a;通过set_event接口方式二&#xff1a;通过enable 跟踪trace信息 相关参考 SCSI日志调试功能 SCSI子系统支持内核选项CONFIG_SCSI_LOGGING配置日志调试…...

【Unity3D】水面特效

1 前言 水波特效 中通过屏幕后处理实现了环形水波效果&#xff0c;本文通过 Shader Graph 实现了模拟水面特效&#xff0c;包含以下特效细节。 深水区和浅水区颜色差异&#xff1b;水面有波纹&#xff0c;并且在移动&#xff1b;水面起伏波动&#xff1b;水面边缘有水泡&#…...

CSS中的flex布局详细讲解

Flex 布局 Flex 布局是一种现代的 CSS 布局模型&#xff0c;用于实现灵活的盒子布局。它提供了强大的布局能力&#xff0c;使得元素可以自动调整大小、对齐和分布&#xff0c;适用于构建响应式和可伸缩的布局。 Flex 布局使用 flex 容器和 flex 项目的概念。容器是一个父元素…...

Python功能制作之简单的音乐播放器

需要导入的库&#xff1a; pip install PyQt5 源码&#xff1a; import os from PyQt5.QtCore import Qt, QUrl from PyQt5.QtGui import QIcon, QPixmap from PyQt5.QtMultimedia import QMediaPlayer, QMediaContent from PyQt5.QtWidgets import QApplication, QMainWind…...

GAN生成对抗模型根据minist数据集生成手写数字图片

文章目录 1.项目介绍2相关网站3具体的代码及结果导入工具包设置超参数定义优化器&#xff0c;以及损失函数训练时的迭代过程训练结果的展示 1.项目介绍 通过用minist数据集进行训练&#xff0c;得到一个GAN模型&#xff0c;可以生成与minist数据集类似的图片。 GAN是一种生成模…...