当前位置: 首页 > news >正文

linux下系统问题排查基本套路

文章目录

  • 总结常用命令
  • 原文
  • GC相关
  • 网络
  • TIME_WAIT
  • CLOSE_WAIT

总结常用命令

  1. top 查找cpu占用高的进程
  2. ps 找到对应进程的pid
  3. top -H -p pid 查找cpu利用率较高的线程
  4. printf ‘%x\n’ pid 将线程pid转换为16进制得到 nid
  5. jstack pid |grep ‘nid’ -C5 –color 在jstack中找到对应堆栈信息进行分析
  6. cat jstack.log | grep “java.lang.Thread.State” | sort -nr | uniq -c 对jstack有一个综合的把握,关注waiting、timed_waiting等线程状态
  7. jstat -gc pid 1000 观察 gc 分代变化,
  8. vmstat l 查看频繁上下文问题
  9. pidstat -w pid 监控特定 pid
  10. 磁盘
  11. df -hl 查看磁盘文件系统状态
  12. iostatiostat -d -k -x 分析磁盘读写速度,定位出问题的磁盘
  13. iotop 查看线程读写id,readlink -f /proc/*/task/tid/…/… 找到进程pid
  14. cat /proc/pid/io 查看进程具体读写情况
  15. lsof -p pid 确定具体的文件读写情况
  16. 内存
  17. free 检查内存情况
  18. jstack 、 jmap 检查没问题后
  19. jvm 设置 -Xss
  20. -Xms
  21. XX:MaxPermSize
  22. JMAPjmap -dump:format=b,file=filename pid 导出dump文件
  23. 在启动参数中指定-XX:+
    HeapDumpOnOutOfMemoryError 保存oom时的dump文件
  24. pstreee -p pid |wc -l 或者 ls -l /proc/pid/task | ws -l 查看总体线程数量
  25. pmap -x pid | sort -rn -k3 | head -30 查看对应进程倒数前30大的内存段
  26. strace -f -e “brk,mmap,munmap” -p pid 监控内存分配

原文

线上故障主要会包括cpu、磁盘、内存以及网络问题,而大多数故障可能会包含不止一个层面的问题,所以进行排查时候尽量四个方面依次排查一遍。

同时例如jstack、jmap等工具也是不囿于一个方面的问题的,基本上出问题就是df、free、top 三连,然后依次jstack、jmap伺候,具体问题具体分析即可。

一般来讲我们首先会排查cpu方面的问题。cpu异常往往还是比较好定位的。原因包括业务逻辑问题(死循环)、频繁gc以及上下文切换过多。而最常见的往往是业务逻辑(或者框架逻辑)导致的,可以使用jstack来分析对应的堆栈情况。

我们先用ps命令找到对应进程的pid(如果你有好几个目标进程,可以先用top看一下哪个占用比较高)。

接着用top -H -p pid来找到cpu使用率比较高的一些线程

然后将占用最高的pid转换为16进制printf '%x\n' pid得到nid

接着直接在jstack中找到相应的堆栈信息jstack pid |grep 'nid' -C5 –color

可以看到我们已经找到了nid为0x42的堆栈信息,接着只要仔细分析一番即可。

当然更常见的是我们对整个jstack文件进行分析,通常我们会比较关注WAITING和TIMED_WAITING的部分,BLOCKED就不用说了。我们可以使用命令cat jstack.log | grep "java.lang.Thread.State" | sort -nr | uniq -c来对jstack的状态有一个整体的把握,如果WAITING之类的特别多,那么多半是有问题啦。

当然我们还是会使用jstack来分析问题,但有时候我们可以先确定下gc是不是太频繁,使用jstat -gc pid 1000命令来对gc分代变化情况进行观察,1000表示采样间隔(ms),S0C/S1C、S0U/S1U、EC/EU、OC/OU、MC/MU分别代表两个Survivor区、Eden区、老年代、元数据区的容量和使用量。YGC/YGT、FGC/FGCT、GCT则代表YoungGc、FullGc的耗时和次数以及总耗时。如果看到gc比较频繁,再针对gc方面做进一步分析。

针对频繁上下文问题,我们可以使用vmstat命令来进行查看

cs(context switch)一列则代表了上下文切换的次数。

如果我们希望对特定的pid进行监控那么可以使用 pidstat -w pid命令,cswch和nvcswch表示自愿及非自愿切换。

磁盘问题和cpu一样是属于比较基础的。首先是磁盘空间方面,我们直接使用df -hl来查看文件系统状态

更多时候,磁盘问题还是性能上的问题。我们可以通过iostatiostat -d -k -x来进行分析

最后一列%util可以看到每块磁盘写入的程度,而rrqpm/s以及wrqm/s分别表示读写速度,一般就能帮助定位到具体哪块磁盘出现问题了。

另外我们还需要知道是哪个进程在进行读写,一般来说开发自己心里有数,或者用iotop命令来进行定位文件读写的来源。

不过这边拿到的是tid,我们要转换成pid,可以通过readlink来找到pidreadlink -f /proc/*/task/tid/../..。

找到pid之后就可以看这个进程具体的读写情况cat /proc/pid/io

我们还可以通过lsof命令来确定具体的文件读写情况lsof -p pid

内存问题排查起来相对比CPU麻烦一些,场景也比较多。主要包括OOM、GC问题和堆外内存。一般来讲,我们会先用free命令先来检查一发内存的各种情况。

内存问题大多还都是堆内内存问题。表象上主要分为OOM和StackOverflow。

JMV中的内存不足,OOM大致可以分为以下几种:

Exception in thread "main" java.lang.OutOfMemoryError: unable to create new native thread

这个意思是没有足够的内存空间给线程分配java栈,基本上还是线程池代码写的有问题,比如说忘记shutdown,所以说应该首先从代码层面来寻找问题,使用jstack或者jmap。如果一切都正常,JVM方面可以通过指定Xss来减少单个thread stack的大小。

另外也可以在系统层面,可以通过修改

/etc/security/limits.confnofile和nproc来增大os对线程的限制

Exception in thread "main" java.lang.OutOfMemoryError: Java heap space

这个意思是堆的内存占用已经达到-Xmx设置的最大值,应该是最常见的OOM错误了。解决思路仍然是先应该在代码中找,怀疑存在内存泄漏,通过jstack和jmap去定位问题。如果说一切都正常,才需要通过调整Xmx的值来扩大内存。

Caused by: java.lang.OutOfMemoryError: Meta space

这个意思是元数据区的内存占用已经达到XX:MaxMetaspaceSize设置的最大值,排查思路和上面的一致,参数方面可以通过XX:MaxPermSize来进行调整(这里就不说1.8以前的永久代了)。

栈内存溢出,这个大家见到也比较多。

Exception in thread "main" java.lang.StackOverflowError

表示线程栈需要的内存大于Xss值,同样也是先进行排查,参数方面通过Xss来调整,但调整的太大可能又会引起OOM。

上述关于OOM和StackOverflow的代码排查方面,我们一般使用JMAPjmap -dump:format=b,file=filename pid来导出dump文件

通过mat(Eclipse Memory Analysis Tools)导入dump文件进行分析,内存泄漏问题一般我们直接选Leak Suspects即可,mat给出了内存泄漏的建议。另外也可以选择Top Consumers来查看最大对象报告。和线程相关的问题可以选择thread overview进行分析。除此之外就是选择Histogram类概览来自己慢慢分析,大家可以搜搜mat的相关教程。

日常开发中,代码产生内存泄漏是比较常见的事,并且比较隐蔽,需要开发者更加关注细节。比如说每次请求都new对象,导致大量重复创建对象;进行文件流操作但未正确关闭;手动不当触发gc;ByteBuffer缓存分配不合理等都会造成代码OOM。

另一方面,我们可以在启动参数中指定-XX:+

HeapDumpOnOutOfMemoryError来保存OOM时的dump文件。

gc问题除了影响cpu也会影响内存,排查思路也是一致的。一般先使用jstat来查看分代变化情况,比如youngGC或者fullGC次数是不是太多呀;EU、OU等指标增长是不是异常呀等。

线程的话太多而且不被及时gc也会引发oom,大部分就是之前说的unable to create new native thread。除了jstack细细分析dump文件外,我们一般先会看下总体线程,通过pstreee -p pid |wc -l。

或者直接通过查看/proc/pid/task的数量即为线程数量。

如果碰到堆外内存溢出,那可真是太不幸了。首先堆外内存溢出表现就是物理常驻内存增长快,报错的话视使用方式都不确定,如果由于使用Netty导致的,那错误日志里可能会出现OutOfDirectMemoryError错误,如果直接是DirectByteBuffer,那会报OutOfMemoryError: Direct buffer memory。

堆外内存溢出往往是和NIO的使用相关,一般我们先通过pmap来查看下进程占用的内存情况pmap -x pid | sort -rn -k3 | head -30,这段意思是查看对应pid倒序前30大的内存段。这边可以再一段时间后再跑一次命令看看内存增长情况,或者和正常机器比较可疑的内存段在哪里。

我们如果确定有可疑的内存端,需要通过gdb来分析gdb --batch --pid {pid} -ex "dump memory filename.dump {内存起始地址} {内存起始地址+内存块大小}"

获取dump文件后可用heaxdump进行查看hexdump -C filename | less,不过大多数看到的都是二进制乱码。

NMT是Java7U40引入的HotSpot新特性,配合jcmd命令我们就可以看到具体内存组成了。需要在启动参数中加入 -XX:NativeMemoryTracking=summary 或者 -XX:NativeMemoryTracking=detail,会有略微性能损耗。

一般对于堆外内存缓慢增长直到爆炸的情况来说,可以先设一个基线jcmd pid VM.native_memory baseline。

然后等放一段时间后再去看看内存增长的情况,通过jcmd pid VM.native_memory detail.diff(summary.diff)做一下summary或者detail级别的diff。

可以看到jcmd分析出来的内存十分详细,包括堆内、线程以及gc(所以上述其他内存异常其实都可以用nmt来分析),这边堆外内存我们重点关注Internal的内存增长,如果增长十分明显的话那就是有问题了。

detail级别的话还会有具体内存段的增长情况,如下图。

此外在系统层面,我们还可以使用strace命令来监控内存分配 strace -f -e "brk,mmap,munmap" -p pid

这边内存分配信息主要包括了pid和内存地址。

不过其实上面那些操作也很难定位到具体的问题点,关键还是要看错误日志栈,找到可疑的对象,搞清楚它的回收机制,然后去分析对应的对象。比如DirectByteBuffer分配内存的话,是需要full GC或者手动system.gc来进行回收的(所以最好不要使用-XX:+DisableExplicitGC)。

那么其实我们可以跟踪一下DirectByteBuffer对象的内存情况,通过jmap -histo:live pid手动触发fullGC来看看堆外内存有没有被回收。如果被回收了,那么大概率是堆外内存本身分配的太小了,通过-XX:MaxDirectMemorySize进行调整。如果没有什么变化,那就要使用jmap去分析那些不能被gc的对象,以及和DirectByteBuffer之间的引用关系了。

GC相关

堆内内存泄漏总是和GC异常相伴。不过GC问题不只是和内存问题相关,还有可能引起CPU负载、网络问题等系列并发症,只是相对来说和内存联系紧密些,所以我们在此单独总结一下GC相关问题。

我们在cpu章介绍了使用jstat来获取当前GC分代变化信息。而更多时候,我们是通过GC日志来排查问题的,在启动参数中加上-verbose:gc -XX:+PrintGCDetails -XX:+PrintGCDateStamps -XX:+PrintGCTimeStamps来开启GC日志。

常见的Young GC、Full GC日志含义在此就不做赘述了。

针对gc日志,我们就能大致推断出youngGC与fullGC是否过于频繁或者耗时过长,从而对症下药。我们下面将对G1垃圾收集器来做分析,这边也建议大家使用G1-XX:+UseG1GC。

youngGC频繁一般是短周期小对象较多,先考虑是不是Eden区/新生代设置的太小了,看能否通过调整-Xmn、-XX:SurvivorRatio等参数设置来解决问题。如果参数正常,但是young gc频率还是太高,就需要使用Jmap和MAT对dump文件进行进一步排查了。

耗时过长问题就要看GC日志里耗时耗在哪一块了。以G1日志为例,可以关注Root Scanning、Object Copy、Ref Proc等阶段。Ref Proc耗时长,就要注意引用相关的对象。

Root Scanning耗时长,就要注意线程数、跨代引用。Object Copy则需要关注对象生存周期。而且耗时分析它需要横向比较,就是和其他项目或者正常时间段的耗时比较。比如说图中的Root Scanning和正常时间段比增长较多,那就是起的线程太多了。

G1中更多的还是mixedGC,但mixedGC可以和youngGC思路一样去排查。触发fullGC了一般都会有问题,G1会退化使用Serial收集器来完成垃圾的清理工作,暂停时长达到秒级别,可以说是半跪了。

fullGC的原因可能包括以下这些,以及参数调整方面的一些思路:

并发阶段失败:在并发标记阶段,MixGC之前老年代就被填满了,那么这时候G1就会放弃标记周期。这种情况,可能就需要增加堆大小,或者调整并发标记线程数-XX:ConcGCThreads。

晋升失败:在GC的时候没有足够的内存供存活/晋升对象使用,所以触发了Full GC。这时候可以通过-XX:G1ReservePercent来增加预留内存百分比,减少-XX:InitiatingHeapOccupancyPercent来提前启动标记,-XX:ConcGCThreads来增加标记线程数也是可以的。

大对象分配失败:大对象找不到合适的region空间进行分配,就会进行fullGC,这种情况下可以增大内存或者增大-XX:G1HeapRegionSize。

程序主动执行System.gc():不要随便写就对了。

另外,我们可以在启动参数中配置-XX:HeapDumpPath=/xxx/dump.hprof来dump fullGC相关的文件,并通过jinfo来进行gc前后的dump

  1. jinfo -flag +HeapDumpBeforeFullGC pid
  2. jinfo -flag +HeapDumpAfterFullGC pid

这样得到2份dump文件,对比后主要关注被gc掉的问题对象来定位问题。

网络

涉及到网络层面的问题一般都比较复杂,场景多,定位难,成为了大多数开发的噩梦,应该是最复杂的了。这里会举一些例子,并从tcp层、应用层以及工具的使用等方面进行阐述。

超时错误大部分处在应用层面,所以这块着重理解概念。超时大体可以分为连接超时和读写超时,某些使用连接池的客户端框架还会存在获取连接超时和空闲连接清理超时。

  • 读写超时

readTimeout/writeTimeout,有些框架叫做so_timeout或者socketTimeout,均指的是数据读写超时。注意这边的超时大部分是指逻辑上的超时。soa的超时指的也是读超时。读写超时一般都只针对客户端设置。

  • 连接超时

connectionTimeout,客户端通常指与服务端建立连接的最大时间。服务端这边connectionTimeout就有些五花八门了,jetty中表示空闲连接清理时间,tomcat则表示连接维持的最大时间。

  • 其他

包括连接获取超时connectionAcquireTimeout和空闲连接清理超时idleConnectionTimeout。多用于使用连接池或队列的客户端或服务端框架。

我们在设置各种超时时间中,需要确认的是尽量保持客户端的超时小于服务端的超时,以保证连接正常结束。

在实际开发中,我们关心最多的应该是接口的读写超时了。

如何设置合理的接口超时是一个问题。如果接口超时设置的过长,那么有可能会过多地占用服务端的tcp连接。而如果接口设置的过短,那么接口超时就会非常频繁。

服务端接口明明rt降低,但客户端仍然一直超时又是另一个问题。这个问题其实很简单,客户端到服务端的链路包括网络传输、排队以及服务处理等,每一个环节都可能是耗时的原因。

tcp队列溢出是个相对底层的错误,它可能会造成超时、rst等更表层的错误。因此错误也更隐蔽,所以我们单独说一说。

如上图所示,这里有两个队列:syns queue(半连接队列)、accept queue(全连接队列)。三次握手,在server收到client的syn后,把消息放到syns queue,回复syn+ack给client,server收到client的ack,如果这时accept queue没满,那就从syns queue拿出暂存的信息放入accept queue中,否则按tcp_abort_on_overflow指示的执行。

tcp_abort_on_overflow 0表示如果三次握手第三步的时候accept queue满了那么server扔掉client发过来的ack。tcp_abort_on_overflow 1则表示第三步的时候如果全连接队列满了,server发送一个rst包给client,表示废掉这个握手过程和这个连接,意味着日志里可能会有很多connection reset / connection reset by peer。

那么在实际开发中,我们怎么能快速定位到tcp队列溢出呢?

netstat命令,执行netstat -s | egrep "listen|LISTEN"

如上图所示,overflowed表示全连接队列溢出的次数,sockets dropped表示半连接队列溢出的次数。

上面看到Send-Q 表示第三列的listen端口上的全连接队列最大为5,第一列Recv-Q为全连接队列当前使用了多少。

接着我们看看怎么设置全连接、半连接队列大小吧:

全连接队列的大小取决于min(backlog, somaxconn)。backlog是在socket创建的时候传入的,somaxconn是一个os级别的系统参数。而半连接队列的大小取决于max(64,

/proc/sys/net/ipv4/tcp_max_syn_backlog)。

在日常开发中,我们往往使用servlet容器作为服务端,所以我们有时候也需要关注容器的连接队列大小。在tomcat中backlog叫做acceptCount,在jetty里面则是acceptQueueSize。

RST包表示连接重置,用于关闭一些无用的连接,通常表示异常关闭,区别于四次挥手。

在实际开发中,我们往往会看到connection reset / connection reset by peer错误,这种情况就是RST包导致的。

如果像不存在的端口发出建立连接SYN请求,那么服务端发现自己并没有这个端口则会直接返回一个RST报文,用于中断连接。

一般来说,正常的连接关闭都是需要通过FIN报文实现,然而我们也可以用RST报文来代替FIN,表示直接终止连接。实际开发中,可设置SO_LINGER数值来控制,这种往往是故意的,来跳过TIMED_WAIT,提供交互效率,不闲就慎用。

客户端或服务端有一边发生了异常,该方向对端发送RST以告知关闭连接

我们上面讲的tcp队列溢出发送RST包其实也是属于这一种。这种往往是由于某些原因,一方无法再能正常处理请求连接了(比如程序崩了,队列满了),从而告知另一方关闭连接。

接收到的TCP报文不在已知的TCP连接内

比如,一方机器由于网络实在太差TCP报文失踪了,另一方关闭了该连接,然后过了许久收到了之前失踪的TCP报文,但由于对应的TCP连接已不存在,那么会直接发一个RST包以便开启新的连接。

一方长期未收到另一方的确认报文,在一定时间或重传次数后发出RST报文

这种大多也和网络环境相关了,网络环境差可能会导致更多的RST报文。

之前说过RST报文多会导致程序报错,在一个已关闭的连接上读操作会报connection reset,而在一个已关闭的连接上写操作则会报connection reset by peer。通常我们可能还会看到broken pipe错误,这是管道层面的错误,表示对已关闭的管道进行读写,往往是在收到RST,报出connection reset错后继续读写数据报的错,这个在glibc源码注释中也有介绍。

我们在排查故障时候怎么确定有RST包的存在呢?当然是使用tcpdump命令进行抓包,并使用wireshark进行简单分析了。tcpdump -i en0 tcp -w xxx.cap,en0表示监听的网卡。

接下来我们通过wireshark打开抓到的包,可能就能看到如下图所示,红色的就表示RST包了。

TIME_WAIT和CLOSE_WAIT是啥意思相信大家都知道。

在线上时,我们可以直接用命令netstat -n | awk '/^tcp/ {++S[$NF]} END {for(a in S) print a, S[a]}'来查看time-wait和close_wait的数量

用ss命令会更快ss -ant | awk '{++S[$1]} END {for(a in S) print a, S[a]}'

TIME_WAIT

time_wait的存在一是为了丢失的数据包被后面连接复用,二是为了在2MSL的时间范围内正常关闭连接。它的存在其实会大大减少RST包的出现。

过多的time_wait在短连接频繁的场景比较容易出现。这种情况可以在服务端做一些内核参数调优:

#表示开启重用。允许将TIME-WAIT sockets重新用于新的TCP连接,默认为0,表示关闭net.ipv4.tcp_tw_reuse = 1#表示开启TCP连接中TIME-WAIT sockets的快速回收,默认为0,表示关闭net.ipv4.tcp_tw_recycle = 1

当然我们不要忘记在NAT环境下因为时间戳错乱导致数据包被拒绝的坑了,另外的办法就是改小tcp_max_tw_buckets,超过这个数的time_wait都会被干掉,不过这也会导致报time wait bucket table overflow的错。

CLOSE_WAIT

close_wait往往都是因为应用程序写的有问题,没有在ACK后再次发起FIN报文。close_wait出现的概率甚至比time_wait要更高,后果也更严重。往往是由于某个地方阻塞住了,没有正常关闭连接,从而渐渐地消耗完所有的线程。

想要定位这类问题,最好是通过jstack来分析线程堆栈来排查问题,具体可参考上述章节。这里仅举一个例子。

开发同学说应用上线后CLOSE_WAIT就一直增多,直到挂掉为止,jstack后找到比较可疑的堆栈是大部分线程都卡在了countdownlatch.await方法,找开发同学了解后得知使用了多线程但是确没有catch异常,修改后发现异常仅仅是最简单的升级sdk后常出现的class not found。

原文链接:

https://www.toutiao.com/article/6868136002486010371/?channel=&source=search_tab

相关文章:

linux下系统问题排查基本套路

文章目录 总结常用命令原文GC相关网络TIME_WAITCLOSE_WAIT 总结常用命令 top 查找cpu占用高的进程ps 找到对应进程的pidtop -H -p pid 查找cpu利用率较高的线程printf ‘%x\n’ pid 将线程pid转换为16进制得到 nidjstack pid |grep ‘nid’ -C5 –color 在jstack中找到对应堆栈…...

想解锁禁用的iPhone?除了可以使用电脑之外,这里还有不需要电脑的方法!

多次输入错误的密码后,iPhone将显示“iPhone已禁用”。这种情况看起来很棘手,因为你现在不能用iPhone做任何事情。对于这种情况,我们提供了几种有效的方法来帮助你在最棘手的问题中解锁禁用的iPhone。你可以选择使用或不使用电脑来解锁禁用的iPhone。 一、为什么你的iPhone…...

基于Springboot+Thymeleaf学生在线考试管理系统——LW模板

摘 要 随着当前大数据时代的飞速发展,信息技术以及数据科学不断的普及,教育界也随之更新换代。无粉尘黑板以及电子化考试都已经是在各种学校中普及使用,而且因为操作简单以及对环境没有任何影响,这也将是未来发展的重大趋势。而由…...

STM32f103c6t6/STM32f103c8t6寄存器开发

目录 资料 寻址区 2区 TIMx RTC WWDG IWDG SPI I2S USART I2C USB全速设备寄存器 bxCAN BKP PWR DAC ADC ​编辑 EXTI ​编辑 GPIO AFIO SDIO DMA CRC RCC FSMC USB_OTG ETH(以太网) 7区 配置流程 外部中断 硬件中断 例子 点灯 …...

MySQL Connection not available.

Mysql 报错 最近部署在服务器上的mysql总是报这种错。 但是在服务器上,使用命令行是可以登录进mysq的。 cursor db.cursor() File “/home/ubuntu/miniconda3/envs/chatbot_env/lib/python3.9/site-packages/mysql/connector/connection_cext.py”, line 700, in …...

PHP反序列化 字符串逃逸

前言 最近在打西电的新生赛&#xff0c;有道反序列化的题卡了很久&#xff0c;今天在NSS上刷题的时候突然想到做法&#xff0c;就是利用字符串逃逸去改变题目锁死的值&#xff0c;从而实现绕过 为了研究反序列化的字符串逃逸 我们先简单的测试下 原理 <?php class escape…...

DockerFile解析

1. 是什么 Dockerfile是田来构建Docker镜像的文本文件&#xff0c;是由一条条构建镜像所需的指令和参数构成的脚本 1.1 概述 1.2 官网 Dockerfile reference | Docker Documentation 1.3 构建三步骤 1. 编写dockerfile文件 2. docker build命令构建镜像 3. docker run依镜像运…...

斯坦福大学医学院教授:几年内ChatGPT之类的AI将纳入日常医学实践

注意&#xff1a;本信息仅供参考&#xff0c;分享此内容旨在传递更多信息之目的&#xff0c;并不意味着赞同其观点或证实其说法。 在一项新研究中&#xff0c;斯坦福大学研究人员发现&#xff0c;ChatGPT在复杂临床护理考试题中可以胜过一、二年级的医学生。此项研究显示&#…...

golang 命令行 command line (flag,os,arg,args)

目录 1. golang 命令行 command line1.1. Introduction1.2. Parsing Arguments from the command line (os package)1.2.1. Get the number of args1.2.2. Iterate over all arguments 1.3. Using flags package1.3.1. Parse Typed Flags1.3.2. Set flags from the script1.3.3…...

Shell语法揭秘:深入探讨常见Linux Shell之间的语法转换

深入探讨常见Linux Shell之间的语法转换 一、引言二、Linux常用Shell&#xff1a;Bash、Zsh、Ksh、Csh、Tcsh和Fish的简介2.1、Bash、Zsh、Ksh、Csh、Tcsh和Fish的特点和用途2.2、语法差异是常见Shell之间的主要区别 三、变量和环境设置的语法差异3.1、变量定义和使用的不同语法…...

Python3 基础语法

Python3 基础语法 编码 默认情况下&#xff0c;Python 3 源码文件以 UTF-8 编码&#xff0c;所有字符串都是 unicode 字符串。 当然你也可以为源码文件指定不同的编码&#xff1a; # -*- coding: cp-1252 -*- 上述定义允许在源文件中使用 Windows-1252 字符集中的字符编码&…...

spring boot分装通用的查询+分页接口

背景 在用spring bootmybatis plus实现增删改查的时候&#xff0c;总是免不了各种模糊查询和分页的查询。每个数据表设计一个模糊分页&#xff0c;这样代码就造成了冗余&#xff0c;且对自身的技能提升没有帮助。那么有没有办法实现一个通用的增删改查的方法呢&#xff1f;今天…...

【OpenCV】OpenCV环境搭建,Mac系统,C++开发环境

OpenCV环境搭建&#xff0c;Mac系统&#xff0c;C开发环境 一、步骤VSCode C环境安装运行CMake安装运行OpenCV 安装CMakeList 一、步骤 VSCode C环境安装CMake 安装OpenCV 安装CmakeList.txt VSCode C环境安装运行 访问官网 CMake安装运行 CMake官网 参考文档 OpenCV 安…...

node安装node-sass依赖失败(版本不一致)

1.官网对应node版本 https://www.npmjs.com/package/node-sass2.node-sass版本对应表...

联想小新Pro 16笔记本键盘失灵处理方法

问题描述&#xff1a; 联想小新Pro 16新笔记本开机准备激活&#xff0c;到连接网络的时候就开始触控板、键盘失灵&#xff0c;但是有意思的是键盘的背光灯是可以调节关闭的&#xff1b;外接鼠标是正常可以移动的&#xff0c;但是只要拔掉外接鼠标再插回去的时候就不能用了&…...

python 连接Redis 数据库

pip install redis python代码 import redis# 连接数据库 r redis.Redis(host192.168.56.15, port6379, db0)# 存储数据 #r.set(key, value) r.set(name, zaraNet)# 获取数据 value r.get(name) print(value)# 关闭连接&#xff08;可选&#xff09; r.close()...

使用 wxPython 和 pymupdf进行 PDF 加密

PDF 文件是一种常见的文档格式&#xff0c;但有时候我们希望对敏感信息进行保护&#xff0c;以防止未经授权的访问。在本文中&#xff0c;我们将使用 Python 和 wxPython 库创建一个简单的图形用户界面&#xff08;GUI&#xff09;应用程序&#xff0c;用于对 PDF 文件进行加密…...

Mysql性能优化:什么是索引下推?

导读 索引下推&#xff08;index condition pushdown &#xff09;简称ICP&#xff0c;在Mysql5.6的版本上推出&#xff0c;用于优化查询。 在不使用ICP的情况下&#xff0c;在使用非主键索引&#xff08;又叫普通索引或者二级索引&#xff09;进行查询时&#xff0c;存储引擎…...

Pytorch建立MyDataLoader过程详解

简介 torch.utils.data.DataLoader(dataset, batch_size1, shuffleNone, samplerNone, batch_samplerNone, num_workers0, collate_fnNone, pin_memoryFalse, drop_lastFalse, timeout0, worker_init_fnNone, multiprocessing_contextNone, generatorNone, *, prefetch_factorN…...

十问华为云 Toolkit:开发插件如何提升云上开发效能

众所周知&#xff0c;桌面集成开发环境&#xff08;IDE&#xff09;已经融入到开发的各个环节&#xff0c;对开发者的重要性和广泛度是不言而喻的&#xff0c;而开发插件更是建立在IDE基础上的功能Buff。 Huawei Cloud ToolKit作为华为云围绕其产品能力向开发者桌面上的延伸&a…...

NO.06 自定义映射resultMap

1、前言 在之前的博客中&#xff0c;实体类的属性名和数据库表的字段名是一致的&#xff0c;因此能正确地查询出所需要的数据。当实体类的属性名与数据库表的字段名不一致时&#xff0c;会导致查询出来的数据为空指针。要解决这个问题就需要使用resultMap自定义映射。 使用的…...

国产精品:讯飞星火最新大模型V2.0

大家好&#xff0c;我是爱编程的喵喵。双985硕士毕业&#xff0c;现担任全栈工程师一职&#xff0c;热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。…...

网络综合布线实训室方案(2023版)

综合布线实训室概述 随着智慧城市的蓬勃发展,人工智能、物联网、云计算、大数据等新兴行业也随之崛起,网络布线系统作为现代智慧城市、智慧社区、智能建筑、智能家居、智能工厂和现代服务业的基础设施和神经网络,发挥着重要作用。实践表明,网络系统故障的70%发生在布线系统,直接…...

Qt应用开发(基础篇)——文本编辑窗口 QTextEdit

一、前言 QTextEdit类继承于QAbstractScrollArea&#xff0c;QAbstractScrollArea继承于QFrame&#xff0c;用来显示富文本和纯文本的窗口部件。 框架类 QFramehttps://blog.csdn.net/u014491932/article/details/132188655滚屏区域基类 QAbstractScrollAreahttps://blog.csdn…...

NineData中标移动云数据库传输项目(2023)

近日&#xff0c;玖章算术NineData智能数据管理平台成功中标《2023年移动云数据库传输服务软件项目》&#xff0c;中标金额为406万。这标志着玖章算术NineData平台已成功落地顶级运营商行业&#xff0c;并在数据管理方面实现了大规模应用实践。 NineData中标2023移动云数据库传…...

Java面向对象三大特性之多态及综合练习

1.1 多态的形式 多态是继封装、继承之后&#xff0c;面向对象的第三大特性。 多态是出现在继承或者实现关系中的。 多态体现的格式&#xff1a; 父类类型 变量名 new 子类/实现类构造器; 变量名.方法名(); 多态的前提&#xff1a;有继承关系&#xff0c;子类对象是可以赋…...

HTTPS 握手过程

HTTPS 握手过程 HTTP 通信的缺点 通信使用明文&#xff0c;内容可能被窃听(重要密码泄露)不验证通信方身份&#xff0c;有可能遭遇伪装(跨站点请求伪造)无法证明报文的完整性&#xff0c;有可能已遭篡改(运营商劫持) HTTPS 握手过程 客户端发起 HTTPS 请求 用户在浏览器里…...

docker之Consul环境的部署

目录 一.Docker consul的介绍 1.1template模板(更新) 1.2registrator&#xff08;自动发现&#xff09; 1.3agent(代理) 二.consul的工作原理 三.Consul的特性 四.Consul的使用场景 五.搭建Consul的集群 5.1需求 5.2部署consul 5.3主服务器[192.168.40.20] 5.4client部署&…...

服务机器人,正走向星辰大海

大数据产业创新服务媒体 ——聚焦数据 改变商业 国内机器人联盟&#xff08;IFR&#xff09;将机器人划分为工作机器人、服务机器人、特种机器人三类。服务机器人广泛应用于餐饮场景、酒店场景&#xff0c;早已构成一道靓丽的风景。行业数据显示&#xff0c; 作为服务机器人发…...

SciencePub学术 | 计算机及交叉类重点SCIE征稿中

SciencePub学术 刊源推荐: 计算机及交叉类重点SCIE征稿中&#xff01;信息如下&#xff0c;录满为止&#xff1a; 一、期刊概况&#xff1a; 计算机土地类重点SCIE 【期刊简介】IF&#xff1a;1.0-1.5&#xff0c;JCR4区&#xff0c;中科院4区&#xff1b; 【版面类型】正刊…...

Java面试题--SpringCloud篇

一、Spring Cloud 1. 什么是微服务架构&#xff1f; 微服务架构就是将单体的应用程序分成多 个应用程序&#xff0c;这多个应用程序就成为微服 务&#xff0c;每个微服务运行在自己的进程中&#xff0c;并 使用轻量级的机制通信 这些服务围绕业务能力来分&#xff0c;并通过自…...

【linux】常用的互斥手段及实例简述

文章目录 10. 原子变量(atomic_t)20. 自旋锁(spinlock_t)21. 读写锁(rwlock_t)22. 顺序锁(seqlock_t) 10. 原子变量(atomic_t) 头文件 #include <linux/types.h> // -> <linuc/atomic.h> // -> <asm-generic/atomic64.h>结构体 /* 32bit */ typedef …...

STM32 F103C8T6学习笔记12:红外遥控—红外解码-位带操作

今日学习一下红外遥控的解码使用&#xff0c;红外遥控在日常生活必不可少&#xff0c;它的解码与使用也是学习单片机的一个小过程&#xff0c;我们将通过实践来实现它。 文章提供源码、测试工程下载、测试效果图。 目录 红外遥控原理&#xff1a; 红外遥控特点&#xff1a; …...

linux 环境收集core文件步骤

Linux环境下进程发生异常而挂掉&#xff0c;通常很难查找原因&#xff0c;但是一般Linux内核给我们提供的核心文件&#xff0c;记录了进程在崩溃时候的信息&#xff0c;在C语言类的大型项目中&#xff0c;有助于深入定位。其配置流程如下&#xff1a; 1 查看生成core文件开关是…...

Git企业开发控制理论和实操-从入门到深入(一)|为什么需要Git|Git的安装

前言 那么这里博主先安利一些干货满满的专栏了&#xff01; 首先是博主的高质量博客的汇总&#xff0c;这个专栏里面的博客&#xff0c;都是博主最最用心写的一部分&#xff0c;干货满满&#xff0c;希望对大家有帮助。 高质量博客汇总https://blog.csdn.net/yu_cblog/cate…...

上篇——税收大数据应用研究

财税是国家治理的基础和重要支柱&#xff0c;税收是国家治理体系的重要组成部分。我们如何利用税收数据深入挖掘包含的数据价值&#xff0c;在进行数据分析&#xff0c;提升税收治理效能&#xff0c;推进税收现代化。 1. 定义与特点 对于“大数据”&#xff08;Big data&#…...

疲劳驾驶检测和识别4:C++实现疲劳驾驶检测和识别(含源码,可实时检测)

疲劳驾驶检测和识别4&#xff1a;C实现疲劳驾驶检测和识别(含源码&#xff0c;可实时检测) 目录 疲劳驾驶检测和识别4&#xff1a;C实现疲劳驾驶检测和识别(含源码&#xff0c;可实时检测) 1.疲劳驾驶检测和识别方法 2.人脸检测方法 3.疲劳驾驶识别模型(Python) &#xf…...

Android WakefulBroadcastReceiver的使用

WakefulBroadcastReceiver 是一种特殊类型的广播接收器&#xff0c;为应用创建和管理 PARTIAL_WAKE_LOCK 。 简单来说&#xff0c; WakefulBroadcastReceiver 是持有系统唤醒锁的 BroadcastReceiver &#xff0c;用于执行需要保持CPU运转的场景。 注册 注册 Receiver &#…...

python知识:什么是字符编码?

前言 嗨喽&#xff0c;大家好呀~这里是爱看美女的茜茜呐 我们的MySQL使用latin1的默认字符集&#xff0c; 也就是说&#xff0c;对汉字字段直接使用GBK内码的编码进行存储&#xff0c; 当需要对一些有汉字的字段进行拼音排序时&#xff08;特别涉及到类似于名字这样的字段时…...

Vue2中使用Pinia

Vue2中使用Pinia 1.初始化配置 # main.jsimport Vue from vue import App from ./App.vue import pinia from ./stores/index import { PiniaVuePlugin } from piniaVue.use(PiniaVuePlugin)new Vue({render: h > h(App),pinia, }).$mount(#app)2.模块化开发 新建stores文…...

Docker关于下载,镜像配置,容器启动,停止,查看等基础操作

系列文章目录 文章目录 系列文章目录前言一、安装Docker并配置镜像加速器二、下载系统镜像&#xff08;Ubuntu、 centos&#xff09;三、基于下载的镜像创建两个容器 &#xff08;容器名一个为自己名字全拼&#xff0c;一个为首名字字母&#xff09;四、容器的启动、 停止及重启…...

穿越网络迷雾的神奇通道 - WebSocket详解

WebSocket&#xff0c;作为一项前端技术&#xff0c;已经成为现代Web应用不可或缺的一部分。本文将深入解析WebSocket&#xff0c;介绍其工作原理和用途&#xff0c;并通过简单的代码示例&#xff0c;让你对这个神奇的网络通信协议有更深入的了解。 WebSocket是什么&#xff1…...

无脑入门pytorch系列(五)—— nn.Dropout

本系列教程适用于没有任何pytorch的同学&#xff08;简单的python语法还是要的&#xff09;&#xff0c;从代码的表层出发挖掘代码的深层含义&#xff0c;理解具体的意思和内涵。pytorch的很多函数看着非常简单&#xff0c;但是其中包含了很多内容&#xff0c;不了解其中的意思…...

Python土力学与基础工程计算.PDF-压水试验

Python 求解代码如下&#xff1a; 1. import math 2. 3. # 输入参数 4. L 2.0 # 试验段长度&#xff0c;m 5. Q 120.0 # 第三阶段计算流量&#xff0c;L/min 6. p 1.5 # 第三阶段试验段压力&#xff0c;MPa 7. r0 0.05 # 钻孔半径&#xff0c;m 8. 9. # 计算透…...

Linux入门

一、安装相关软件 1.下载vmware (很容易下载,搜一下官网 ) 在cmd敲入 ncpa.cpl &#xff0c;查看是否有vmware 2.下载centos 下面是镜像源网站&#xff0c;当然你可以选择其他的镜像源&#xff0c;像清华镜像源和阿里镜像源。 Index of /centos/7.9.2009/isos/x86_64/ | …...

适合国内用户的五款ChatGPT插件

众所周知使用ChatGPT3.5需要使用魔法且不稳定&#xff0c;订阅ChatGPT4.0每月需要支付20美元&#xff0c;并且使用次数有限制。对于那些不想每年花费240美元&#xff08;超过1500元人民币&#xff09;来使用GPT4.0的朋友们来说&#xff0c;还有别的办法吗&#xff1f; 答案是&…...

Dubbo Spring Boot Starter 开发微服务应用

环境要求 系统&#xff1a;Windows、Linux、MacOS JDK 8 及以上&#xff08;推荐使用 JDK17&#xff09; Git IntelliJ IDEA&#xff08;可选&#xff09; Docker &#xff08;可选&#xff09; 项目介绍 在本任务中&#xff0c;将分为 3 个子模块进行独立开发&#xff…...

linux中互斥锁,自旋锁,条件变量,信号量,与freeRTOS中的消息队列,信号量,互斥量,事件的区别

RTOS 对于目前主流的RTOS的任务&#xff0c;大部分都属于并发的线程。 因为MCU上的资源每个任务都是共享的&#xff0c;可以认为是单进程多线程模型。 【freertos】003-任务基础知识 在没有操作系统的时候两个应用程序进行消息传递一般使用全局变量的方式&#xff0c;但是如…...

安装docker服务,配置镜像加速器

文章目录 1.安装docker服务&#xff0c;配置镜像加速器2.下载系统镜像&#xff08;Ubuntu、 centos&#xff09;3.基于下载的镜像创建两个容器 &#xff08;容器名一个为自己名字全拼&#xff0c;一个为首名字字母&#xff09;4.容器的启动、 停止及重启操作5.怎么查看正在运行…...

CF 896 C Willem, Chtholly and Seniorious(珂朵莉树模板)

CF 896 C. Willem, Chtholly and Seniorious(珂朵莉树模板) Problem - C - Codeforces 大意&#xff1a;给出一个区间 &#xff0c; 要求进行四种操作 &#xff0c; 区间加 &#xff0c; 区间第k大 &#xff0c; 区间推平 &#xff0c; 区间求和。 珂朵莉树模板题 &#xff…...