opencv 进阶15-检测DoG特征并提取SIFT描述符cv2.SIFT_create()
前面我们已经了解了Harris函数来进行角点检测,因为角点的特性,这些角点在图像旋转的时候也可以被检测到。但是,如果我们放大或缩小图像时,就可能会丢失图像的某些部分,甚至有可能增加角点的质量。这种损失的现象需要一种与图像比例无关的角点检测方法来解决。
SIFT(Scale-Invariant Feature Transform)尺度不变特征变换可以解决这个问题。
注意: SIFT 并不检测关键点(关键点由Difference of Gaussians检测),SIFT会通过一个特征向量来描述关键点周围区域的情况。DoG操作的最终结果会得到感兴趣的区域(关键点),这将通过SIFT来进行说明。
函数说明:
sift =cv2.SIFT_create([, nfeatures[, nOctaveLayers[,
contrastThreshold[, edgeThreshold]]]])
参数:
-
nfeatures: 保留的最佳功能的数量。这些特征按其分数排名(在SIFT算法中作为局部对比度测量)。
-
nOctaveLayers:每个八度中的层数。3是D.Lowe(原作者)论文中使用的值。八度的数量是根据图像分辨率自动计算的。
-
contrastThreshold:用于过滤掉半均匀(低对比度)区域中的弱特征的对比度阈值。阈值越大,检测器产生的特征越少。应用过滤时,对比度阈值将被nOctaveLayers除。当nOctaveLayers设置为默认值并且如果要使用D.Lowe论文中使用的值0.03时,请将此参数设置为0.09。
-
edgeThreshold:用于过滤边缘特征的阈值。请注意,其含义与contrastThreshold不同,即edgeThreshold越大,滤除的特征越少(保留的特征越多)。
返回值:
- sift:实例化一个sift特征检测器。
示例:对图像检测DoG特征并提取SIFT描述符
实验原图:
import cv2
import numpy as npimg = cv2.imread('images\\sumian.png')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)sift = cv2.xfeatures2d.SIFT_create()
keypoints, descriptor = sift.detectAndCompute(gray, None)img = cv2.drawKeypoints(image= img, outImage= img, keypoints= keypoints, flags= cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS, color= (0, 0, 255))cv2.imshow('sift', img)
cv2.waitKey()
cv2.destroyAllWindows()
发现是,如果你沿用之前的代码即
descriptor = cv2.xfeatures2d.SIFT_create()
会出现一个warning,但不影响结果。
[ WARN:0@0.037] global shadow_sift.hpp:15 cv::xfeatures2d::SIFT_create DEPRECATED: cv.xfeatures2d.SIFT_create() is deprecated due SIFT tranfer to the main repository. https://github.com/opencv/opencv/issues/16736
这是因为新版本的SIFT可以直接引用,不再需要安装contrib包,即
descriptor = cv2.SIFT_create()
官方公告可参见 OpenCV Google Summer of Code 2020
新代码如下:
import cv2img = cv2.imread('images\\sumiao.png')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)#sift = cv2.xfeatures2d.SIFT_create()
sift = cv2.SIFT_create()
keypoints, descriptor = sift.detectAndCompute(gray, None)img = cv2.drawKeypoints(image= img, outImage= img, keypoints= keypoints, flags= cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS, color= (0, 0, 255))cv2.imshow('sift', img)
cv2.waitKey()
cv2.destroyAllWindows()
运行效果:
相关文章:
opencv 进阶15-检测DoG特征并提取SIFT描述符cv2.SIFT_create()
前面我们已经了解了Harris函数来进行角点检测,因为角点的特性,这些角点在图像旋转的时候也可以被检测到。但是,如果我们放大或缩小图像时,就可能会丢失图像的某些部分,甚至有可能增加角点的质量。这种损失的现象需要一…...
ES5 的构造函数和 ES6 的类有什么区别
文章目录 语法不同方法定义方式不同继承方式不同类内部的this指向不同静态成员定义方式不同访问器属性类的类型检查 在JavaScript中,类和构造函数都被用来创建对象,接下来会从以下几点说说两者的区别: 语法不同 构造函数使用函数来定义类使用…...
AUTOSAR配置与实践(配置篇) 如何条件控制PDU外发
AUTOSAR配置与实践(配置篇)如何条件控制PDU外发 一、需求1.1 需求简要分析1.2 需求进一步分析二、流程实现和具体配置一、需求 需要针对特定的PDU(外发)进行条件控制,这里要通过不同配置字进行PDU是否外发的控制 1.1 需求简要分析 正常PDU分组时分为两组,接收报文组和…...
2023年湖北中级工程师职称申报专业有哪些?甘建二告诉你
中级职称职称申报专业:环境工程、 土木建筑、土建结构、土建监理、土木工程、岩石工程、岩土、土岩方、风景园林、园艺、园林、园林建筑、园林工程、园林绿化、古建筑园林、工民建、工民建安装、建筑、建筑管理、建筑工程、建筑工程管理、建筑施工、建筑设计、建筑装…...
记录:ubuntu20.04+ORB_SLAM2_with_pointcloud_map+ROS noetic
由于相机实时在线运行需要ROS,但Ubuntu22.04只支持ROS2,于是重装Ubuntu20.04。上一篇文章跑通的是官方版本的ORB_SLAM2,不支持点云显示。高翔修改版本支持RGB-D相机的点云显示功能。 高翔修改版本ORB_SLAM2:https://github.com/ga…...
文心问数Sugar Bot :大模型+BI,多轮会话自动生成可视化图表与数据结论
Sugar BI 的文心问数功能是基于大语言模型实现的,支持您使用自然语言,通过多轮会话的方式,获取实时数据的图表展现,也可以自动为您总结与图表相关的业务结论。 文心问数功能邀测中,欢迎CSDN的用户前来报名:…...
21、WEB漏洞-文件上传之后端黑白名单绕过
目录 前言验证/绕过 前言 关于文件上传的漏洞,目前在网上的常见验证是验证三个方面: 后缀名,文件类型,文件头,其中这个文件头是属于文件内容的一个验证 后缀名:黑名单,白名单 文件类型…...
windows的django项目部署到linux的docker上
编辑dockerfile文件,可以自行寻找相关教程 创建镜像 docker bulid -t imagename:tag .查看镜像 docker images 如果想自己先试一下,那就需要运行容器 docker run -it -d -p 8000:8000 --name volume_name imagename:tag 查看容器 docker ps -a 进…...
【力扣】70. 爬楼梯 <动态规划>
【力扣】70. 爬楼梯 假设你正在爬楼梯。需要 n 阶你才能到达楼顶。每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢? 示例 1: 输入:n 2 输出:2 解释:有两种方法可以爬到楼顶。 1. 1 阶 1 阶 2. …...
数据结构(3)
线性表是多个具有相同特征的数据的有限序列。 前驱元素:A在B前面,称A为B的前驱元素。 后继元素:B在A后面,称B为A的后继元素。 线性表特征: 1.一个元素没有前驱元素,就是头结点; 2.最后一个…...
深入浅出Pytorch函数——torch.nn.init.xavier_uniform_
分类目录:《深入浅出Pytorch函数》总目录 相关文章: 深入浅出Pytorch函数——torch.nn.init.calculate_gain 深入浅出Pytorch函数——torch.nn.init.uniform_ 深入浅出Pytorch函数——torch.nn.init.normal_ 深入浅出Pytorch函数——torch.nn.init.c…...
优橙内推安徽专场——5G网络优化(中高级)工程师
可加入就业QQ群:801549240 联系老师内推简历投递邮箱:hrictyc.com 内推公司1:浙江省邮电工程建设有限公司 内推公司2:北京宜通华瑞科技有限公司 内推公司3:浙江明讯网络技术有限公司 浙江省邮电工程建设有限公司 …...
2023年计算机设计大赛国三 数据可视化 (源码可分享)
2023年暑假参加了全国大学生计算机设计大赛,并获得了国家三等奖(国赛答辩出了点小插曲)。在此分享和记录本次比赛的经验。 目录 一、作品简介二、作品效果图三、设计思路四、项目特色 一、作品简介 本项目实现对农产品近期发展、电商销售、灾…...
工业生产全面感知!工业感知云来了
面向工业企业数字化转型需求,天翼物联基于感知云平台创新能力和5G工业物联数采能力,为客户提供工业感知云服务,包括工业泛协议接入、感知云工业超轻数采平台、工业感知数据治理、工业数据看板四大服务,构建工业感知神经系统新型数…...
Lnton羚通关于Optimization在【PyTorch】中的基础知识
OPTIMIZING MODEL PARAMETERS (模型参数优化) 现在我们有了模型和数据,是时候通过优化数据上的参数来训练了,验证和测试我们的模型。训练一个模型是一个迭代的过程,在每次迭代中,模型会对输出进行猜测&…...
冒泡排序算法
//version 1 void bubblesort(vector<int>& nums){int n=nums.size();for(int i...
无人机航管应答机 ping200XR
产品概述 ping200XR是一个完整的系统,旨在满足航管应答器和自动相关监视广播(ADS-B)的要求,在管制空域操作无人航空系统(UAS)。该系统完全可配置为模式A,模式C,模式S转发器和扩展ADS-B发射机的任何组合。ping200XR包括一个精度超…...
oracle归档日志满了导致启动不起来解决
oracle启动不起来解决 原因:闪回归档区的空间满了 [oraclepre-oracle ~]$ sqlplus / as sysdbaSQL*Plus: Release 11.2.0.4.0 Production on Tue Aug 22 14:48:50 2023Copyright (c) 1982, 2013, Oracle. All rights reserved.Connected to: Oracle Database 11g…...
高等数学:线性代数-第二章
文章目录 第2章 矩阵及其运算2.1 线性方程组和矩阵2.2 矩阵的运算2.3 逆矩阵2.4 Cramer法则 第2章 矩阵及其运算 2.1 线性方程组和矩阵 n \bm{n} n 元线性方程组 设有 n 个未知数 m 个方程的线性方程组 { a 11 x 1 a 12 x 2 ⋯ a 1 n x n b 1 a 21 x 1 a 22 x 2 ⋯ a …...
星戈瑞分析FITC-PEG-Alkyne的荧光特性和光谱特性
欢迎来到星戈瑞荧光stargraydye!小编带您盘点: FITC-PEG-Alkyne的荧光特性和光谱特性是对其荧光性能进行分析的方面。以下是FITC-PEG-Alkyne的一些常见荧光特性和光谱特性: **1. 荧光激发波长:**FITC-PEG-Alkyne的荧光激发波长通…...
VB.NET调用VB6 Activex EXE实现PowerBasic和FreeBasic的标准DLL调用
VB6写的ActiveX EXE公共对象是外置进程,因此,尽管它是x86 32位的进程,但可以集成到 VB.NET的x64和x32程序中使用。 VS2022的VB.NET程序,调用ActiveX DLL对象我在上篇笔记中写了 VB.NET通过VB6 ActiveX DLL调用PowerBasic及FreeB…...
深入了解Unity的Physics类:一份详细的技术指南(七)(下篇)
接着上一篇深入了解Unity的Physics类(上篇),我们继续把Physics类剩余的属性和方法进行讲解 碰撞检测和忽略: (这些方法和属性涉及查询和处理物体之间的碰撞) Physics.CheckBox: 检查给定位置的盒子是否与任何碰撞器接触或者位于任何碰撞器内部。 Physics.CheckCapsu…...
C++入门:引用是什么
目录 1.引用的概念 2.引用的特征 3.常引用 4.引用使用场景 5.传值,传引用效率比较 6.引用与指针的区别 1.引用的概念 引用不是新定义一个变量,而是给已存在变量取了一个别名,编译器不会为引用变量开辟内存空 间,它和它引用…...
2023年人工智能与自动化控制国际学术会议(AIAC 2023)
2023年人工智能与自动化控制国际学术会议(AIAC 2023) The 2023 International Conference on Artificial Intelligence and Automation Control 2023年人工智能与自动化控制国际学术会议(AIAC 2023)将于2023年10月27-29日在中…...
分布式核心知识以及常见微服务框架
分布式中的远程调用 在微服务架构中,通常存在多个服务之间的远程调用的需求。远程调用通常包含两个部分:序列化和通信协议。常见的序列化协议包括json、xml、 hession、 protobuf、thrift、text、 bytes等,目前主流的远程调用技术有基于HTTP…...
Unity记录4.1-存储-根据关键字加载Tile
文章首发见博客:https://mwhls.top/4810.html。 无图/格式错误/后续更新请见首发页。 更多更新请到mwhls.top查看 欢迎留言提问或批评建议,私信不回。 汇总:Unity 记录 摘要:实现完 Tilemap 地图生成后,实现根据关键字…...
数据结构—树表的查找
7.3树表的查找 当表插入、删除操作频繁时,为维护表的有序表,需要移动表中很多记录。 改用动态查找表——几种特殊的树 表结构在查找过程中动态生成 对于给定值key 若表中存在,则成功返回; 否则࿰…...
微信小程序测试策略和注意事项?
一、测试前准备(环境搭建) 1、前端页面 微信 Web 开发者工具安装、授权测试用的微信号可预览和调试小程序 2、管理后台 配置内网测试服务器环境,通过 PC 端 Web 站点管理小程序前端的输出内容,可从开发人员获取管理账号进行测…...
VUE3封装EL-ELEMENT-PLUS input组件
VUE3封装EL-ELEMENT-PLUS input组件 完整代码 <template><div><div><div class"lable_top" v-if"label"><label :class"lable_sty">{{ label }}</label></div><el-inputv-model"inputValue&…...
RISC-V公测平台发布 · 在SG2042上配置Jupiter+Octave科学计算环境
简介 JupyterHub是一个开源的共享计算平台,它为每个用户管理一个单独的 Jupyter 环境, 可以用于学生班级、企业数据科学小组或科学研究小组。它是一个多用户中心,可以生成、管理和代理多个单用户Jupyter笔记本服务器的实例。 GNU Octave是一…...
做不了飞机要看什么网站/b站推广网站2024下载
概念介绍: 1、px (pixel,像素): 是一个虚拟长度单位,是计算机系统的数字化图像长度单位,如果px要换算成物理长度,需要指定精度DPI(Dots Per Inch,每英寸像素数),在扫描打印时一般都有…...
为离职员工做的网站/晋江友情链接是什么意思
这几年微信公众号太火了,无论是传统企业还是互联网公司,基本上都开设了自己的微信公众号,而微信运营之中,最重要的就是写好标题,配好头图,这是做好微信运营的基本。一篇文章的阅读量主要取决于三个因素&…...
西宁电子商务网站建设/免费seo培训
这是松哥之前一个零散的笔记,整理出来分享给大伙! MySQL 读写分离在互联网项目中应该算是一个非常常见的需求了。受困于 Linux 和 MySQL 版本问题,很多人经常会搭建失败,今天松哥就给大伙举一个成功的例子,后面有时间再…...
wordpress 获取分类文章/长沙网站seo分析
首先从 左侧的折叠菜单 开始。看图。 2. CSS 代码 以下是自定义的css代码,由于系统是内部使用,所以优先考虑chrome,firefox 不考虑IE了。 #main-nav {margin-left: 1px;}#main-nav.nav-tabs.nav-stacked > li > a { padding: 10px 8px; font-size:…...
高明铝业网站建站/关于进一步优化当前疫情防控措施
200 请求已成功,请求所希望的响应头或数据体将随此响应返回。 401 当前请求需要用户验证。 403 服务器已经理解请求,但是拒绝执行它。 502 作为网关或者代理工作的服务器尝试执行请求时,从上游服务器接收到无效的响应。 200OK(…...
池州网站建设电话/宁波seo深度优化平台有哪些
安装一些软件 python redis mysql jdk,都需要添加环境变量,一个路径添加到了环境变量,就可以直接在linux控制台输入 xx命令。 否则不添加环境变量,使用xx就会提示找不到命令,需要跳转到那个目录。然后执行 ./xx&#…...