opencv 进阶15-检测DoG特征并提取SIFT描述符cv2.SIFT_create()
前面我们已经了解了Harris函数来进行角点检测,因为角点的特性,这些角点在图像旋转的时候也可以被检测到。但是,如果我们放大或缩小图像时,就可能会丢失图像的某些部分,甚至有可能增加角点的质量。这种损失的现象需要一种与图像比例无关的角点检测方法来解决。
SIFT(Scale-Invariant Feature Transform)尺度不变特征变换可以解决这个问题。
注意: SIFT 并不检测关键点(关键点由Difference of Gaussians检测),SIFT会通过一个特征向量来描述关键点周围区域的情况。DoG操作的最终结果会得到感兴趣的区域(关键点),这将通过SIFT来进行说明。
函数说明:
sift =cv2.SIFT_create([, nfeatures[, nOctaveLayers[,
contrastThreshold[, edgeThreshold]]]])
参数:
-
nfeatures: 保留的最佳功能的数量。这些特征按其分数排名(在SIFT算法中作为局部对比度测量)。
-
nOctaveLayers:每个八度中的层数。3是D.Lowe(原作者)论文中使用的值。八度的数量是根据图像分辨率自动计算的。
-
contrastThreshold:用于过滤掉半均匀(低对比度)区域中的弱特征的对比度阈值。阈值越大,检测器产生的特征越少。应用过滤时,对比度阈值将被nOctaveLayers除。当nOctaveLayers设置为默认值并且如果要使用D.Lowe论文中使用的值0.03时,请将此参数设置为0.09。
-
edgeThreshold:用于过滤边缘特征的阈值。请注意,其含义与contrastThreshold不同,即edgeThreshold越大,滤除的特征越少(保留的特征越多)。
返回值:
- sift:实例化一个sift特征检测器。
示例:对图像检测DoG特征并提取SIFT描述符
实验原图:

import cv2
import numpy as npimg = cv2.imread('images\\sumian.png')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)sift = cv2.xfeatures2d.SIFT_create()
keypoints, descriptor = sift.detectAndCompute(gray, None)img = cv2.drawKeypoints(image= img, outImage= img, keypoints= keypoints, flags= cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS, color= (0, 0, 255))cv2.imshow('sift', img)
cv2.waitKey()
cv2.destroyAllWindows()
发现是,如果你沿用之前的代码即
descriptor = cv2.xfeatures2d.SIFT_create()
会出现一个warning,但不影响结果。
[ WARN:0@0.037] global shadow_sift.hpp:15 cv::xfeatures2d::SIFT_create DEPRECATED: cv.xfeatures2d.SIFT_create() is deprecated due SIFT tranfer to the main repository. https://github.com/opencv/opencv/issues/16736
这是因为新版本的SIFT可以直接引用,不再需要安装contrib包,即
descriptor = cv2.SIFT_create()
官方公告可参见 OpenCV Google Summer of Code 2020

新代码如下:
import cv2img = cv2.imread('images\\sumiao.png')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)#sift = cv2.xfeatures2d.SIFT_create()
sift = cv2.SIFT_create()
keypoints, descriptor = sift.detectAndCompute(gray, None)img = cv2.drawKeypoints(image= img, outImage= img, keypoints= keypoints, flags= cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS, color= (0, 0, 255))cv2.imshow('sift', img)
cv2.waitKey()
cv2.destroyAllWindows()
运行效果:

相关文章:
opencv 进阶15-检测DoG特征并提取SIFT描述符cv2.SIFT_create()
前面我们已经了解了Harris函数来进行角点检测,因为角点的特性,这些角点在图像旋转的时候也可以被检测到。但是,如果我们放大或缩小图像时,就可能会丢失图像的某些部分,甚至有可能增加角点的质量。这种损失的现象需要一…...
ES5 的构造函数和 ES6 的类有什么区别
文章目录 语法不同方法定义方式不同继承方式不同类内部的this指向不同静态成员定义方式不同访问器属性类的类型检查 在JavaScript中,类和构造函数都被用来创建对象,接下来会从以下几点说说两者的区别: 语法不同 构造函数使用函数来定义类使用…...
AUTOSAR配置与实践(配置篇) 如何条件控制PDU外发
AUTOSAR配置与实践(配置篇)如何条件控制PDU外发 一、需求1.1 需求简要分析1.2 需求进一步分析二、流程实现和具体配置一、需求 需要针对特定的PDU(外发)进行条件控制,这里要通过不同配置字进行PDU是否外发的控制 1.1 需求简要分析 正常PDU分组时分为两组,接收报文组和…...
2023年湖北中级工程师职称申报专业有哪些?甘建二告诉你
中级职称职称申报专业:环境工程、 土木建筑、土建结构、土建监理、土木工程、岩石工程、岩土、土岩方、风景园林、园艺、园林、园林建筑、园林工程、园林绿化、古建筑园林、工民建、工民建安装、建筑、建筑管理、建筑工程、建筑工程管理、建筑施工、建筑设计、建筑装…...
记录:ubuntu20.04+ORB_SLAM2_with_pointcloud_map+ROS noetic
由于相机实时在线运行需要ROS,但Ubuntu22.04只支持ROS2,于是重装Ubuntu20.04。上一篇文章跑通的是官方版本的ORB_SLAM2,不支持点云显示。高翔修改版本支持RGB-D相机的点云显示功能。 高翔修改版本ORB_SLAM2:https://github.com/ga…...
文心问数Sugar Bot :大模型+BI,多轮会话自动生成可视化图表与数据结论
Sugar BI 的文心问数功能是基于大语言模型实现的,支持您使用自然语言,通过多轮会话的方式,获取实时数据的图表展现,也可以自动为您总结与图表相关的业务结论。 文心问数功能邀测中,欢迎CSDN的用户前来报名:…...
21、WEB漏洞-文件上传之后端黑白名单绕过
目录 前言验证/绕过 前言 关于文件上传的漏洞,目前在网上的常见验证是验证三个方面: 后缀名,文件类型,文件头,其中这个文件头是属于文件内容的一个验证 后缀名:黑名单,白名单 文件类型…...
windows的django项目部署到linux的docker上
编辑dockerfile文件,可以自行寻找相关教程 创建镜像 docker bulid -t imagename:tag .查看镜像 docker images 如果想自己先试一下,那就需要运行容器 docker run -it -d -p 8000:8000 --name volume_name imagename:tag 查看容器 docker ps -a 进…...
【力扣】70. 爬楼梯 <动态规划>
【力扣】70. 爬楼梯 假设你正在爬楼梯。需要 n 阶你才能到达楼顶。每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢? 示例 1: 输入:n 2 输出:2 解释:有两种方法可以爬到楼顶。 1. 1 阶 1 阶 2. …...
数据结构(3)
线性表是多个具有相同特征的数据的有限序列。 前驱元素:A在B前面,称A为B的前驱元素。 后继元素:B在A后面,称B为A的后继元素。 线性表特征: 1.一个元素没有前驱元素,就是头结点; 2.最后一个…...
深入浅出Pytorch函数——torch.nn.init.xavier_uniform_
分类目录:《深入浅出Pytorch函数》总目录 相关文章: 深入浅出Pytorch函数——torch.nn.init.calculate_gain 深入浅出Pytorch函数——torch.nn.init.uniform_ 深入浅出Pytorch函数——torch.nn.init.normal_ 深入浅出Pytorch函数——torch.nn.init.c…...
优橙内推安徽专场——5G网络优化(中高级)工程师
可加入就业QQ群:801549240 联系老师内推简历投递邮箱:hrictyc.com 内推公司1:浙江省邮电工程建设有限公司 内推公司2:北京宜通华瑞科技有限公司 内推公司3:浙江明讯网络技术有限公司 浙江省邮电工程建设有限公司 …...
2023年计算机设计大赛国三 数据可视化 (源码可分享)
2023年暑假参加了全国大学生计算机设计大赛,并获得了国家三等奖(国赛答辩出了点小插曲)。在此分享和记录本次比赛的经验。 目录 一、作品简介二、作品效果图三、设计思路四、项目特色 一、作品简介 本项目实现对农产品近期发展、电商销售、灾…...
工业生产全面感知!工业感知云来了
面向工业企业数字化转型需求,天翼物联基于感知云平台创新能力和5G工业物联数采能力,为客户提供工业感知云服务,包括工业泛协议接入、感知云工业超轻数采平台、工业感知数据治理、工业数据看板四大服务,构建工业感知神经系统新型数…...
Lnton羚通关于Optimization在【PyTorch】中的基础知识
OPTIMIZING MODEL PARAMETERS (模型参数优化) 现在我们有了模型和数据,是时候通过优化数据上的参数来训练了,验证和测试我们的模型。训练一个模型是一个迭代的过程,在每次迭代中,模型会对输出进行猜测&…...
冒泡排序算法
//version 1 void bubblesort(vector<int>& nums){int n=nums.size();for(int i...
无人机航管应答机 ping200XR
产品概述 ping200XR是一个完整的系统,旨在满足航管应答器和自动相关监视广播(ADS-B)的要求,在管制空域操作无人航空系统(UAS)。该系统完全可配置为模式A,模式C,模式S转发器和扩展ADS-B发射机的任何组合。ping200XR包括一个精度超…...
oracle归档日志满了导致启动不起来解决
oracle启动不起来解决 原因:闪回归档区的空间满了 [oraclepre-oracle ~]$ sqlplus / as sysdbaSQL*Plus: Release 11.2.0.4.0 Production on Tue Aug 22 14:48:50 2023Copyright (c) 1982, 2013, Oracle. All rights reserved.Connected to: Oracle Database 11g…...
高等数学:线性代数-第二章
文章目录 第2章 矩阵及其运算2.1 线性方程组和矩阵2.2 矩阵的运算2.3 逆矩阵2.4 Cramer法则 第2章 矩阵及其运算 2.1 线性方程组和矩阵 n \bm{n} n 元线性方程组 设有 n 个未知数 m 个方程的线性方程组 { a 11 x 1 a 12 x 2 ⋯ a 1 n x n b 1 a 21 x 1 a 22 x 2 ⋯ a …...
星戈瑞分析FITC-PEG-Alkyne的荧光特性和光谱特性
欢迎来到星戈瑞荧光stargraydye!小编带您盘点: FITC-PEG-Alkyne的荧光特性和光谱特性是对其荧光性能进行分析的方面。以下是FITC-PEG-Alkyne的一些常见荧光特性和光谱特性: **1. 荧光激发波长:**FITC-PEG-Alkyne的荧光激发波长通…...
SciencePlots——绘制论文中的图片
文章目录 安装一、风格二、1 资源 安装 # 安装最新版 pip install githttps://github.com/garrettj403/SciencePlots.git# 安装稳定版 pip install SciencePlots一、风格 简单好用的深度学习论文绘图专用工具包–Science Plot 二、 1 资源 论文绘图神器来了:一行…...
【HarmonyOS 5.0】DevEco Testing:鸿蒙应用质量保障的终极武器
——全方位测试解决方案与代码实战 一、工具定位与核心能力 DevEco Testing是HarmonyOS官方推出的一体化测试平台,覆盖应用全生命周期测试需求,主要提供五大核心能力: 测试类型检测目标关键指标功能体验基…...
MMaDA: Multimodal Large Diffusion Language Models
CODE : https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA,它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构…...
质量体系的重要
质量体系是为确保产品、服务或过程质量满足规定要求,由相互关联的要素构成的有机整体。其核心内容可归纳为以下五个方面: 🏛️ 一、组织架构与职责 质量体系明确组织内各部门、岗位的职责与权限,形成层级清晰的管理网络…...
C++ 基础特性深度解析
目录 引言 一、命名空间(namespace) C 中的命名空间 与 C 语言的对比 二、缺省参数 C 中的缺省参数 与 C 语言的对比 三、引用(reference) C 中的引用 与 C 语言的对比 四、inline(内联函数…...
【git】把本地更改提交远程新分支feature_g
创建并切换新分支 git checkout -b feature_g 添加并提交更改 git add . git commit -m “实现图片上传功能” 推送到远程 git push -u origin feature_g...
工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配
AI3D视觉的工业赋能者 迁移科技成立于2017年,作为行业领先的3D工业相机及视觉系统供应商,累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成,通过稳定、易用、高回报的AI3D视觉系统,为汽车、新能源、金属制造等行…...
k8s业务程序联调工具-KtConnect
概述 原理 工具作用是建立了一个从本地到集群的单向VPN,根据VPN原理,打通两个内网必然需要借助一个公共中继节点,ktconnect工具巧妙的利用k8s原生的portforward能力,简化了建立连接的过程,apiserver间接起到了中继节…...
Element Plus 表单(el-form)中关于正整数输入的校验规则
目录 1 单个正整数输入1.1 模板1.2 校验规则 2 两个正整数输入(联动)2.1 模板2.2 校验规则2.3 CSS 1 单个正整数输入 1.1 模板 <el-formref"formRef":model"formData":rules"formRules"label-width"150px"…...
学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”
2025年#高考 将在近日拉开帷幕,#AI 监考一度冲上热搜。当AI深度融入高考,#时间同步 不再是辅助功能,而是决定AI监考系统成败的“生命线”。 AI亮相2025高考,40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕,江西、…...
