当前位置: 首页 > news >正文

清风数学建模——拟合算法

拟合算法

文章目录

  • 拟合算法
      • 概念
    • 确定拟合曲线
      • 最小二乘法的几何解释
      • 求解最小二乘法
      • matlab求解最小二乘法
      • 如何评价拟合的好坏
      • 计算拟合优度的代码

概念

在前面的篇幅中提到可以使用插值算法,通过给定的样本点推算出一定的曲线从而推算出一些想要的值。但存在一些问题。一是若样本点过多,那么多项式的次数过高会造成龙格现象;二是为了避免龙格现象而通过分段的思想求得拟合曲线,但这样会导致曲线函数非常复杂。

针对以上问题,在拟合问题中,不需要曲线一定经过给定的点。拟合问题的目标是寻求一个函数(曲线),而该函数尽可能设置得较为简单,使得该曲线在某种准则下与所有的数据点最为接近,即只要保证误差足够小即可,(最小化损失函数),这就是拟合是思想。

确定拟合曲线

给定一组数据[x,y],找出y和x之间的拟合曲线

image-20230811201338259

在matlab上通过画图得出这组数据对应的图像

plot(x,y,'o');

image-20230811205402341

拟合一个曲线去接近样本点,这里我用一个简单的拟合曲线y=kx+b。现在的问题是,k和b取何值时,样本点和拟合曲线最接近。

最小二乘法的几何解释

image-20230811210132216

  • 第一种定义有绝对值,后续不容易求导,因此计算较复杂。所以我们往往使用第二种定义,这正是最小二乘法的思想
  • 我们也不使用三次方,因为三次方计算样本点到拟合曲线的距离会出现负数,那么该距离就会正负抵消
  • 我们也不使用四次方,使用4次方时,若出现某个异常值离曲线较远,那么该拟合曲线受到的影响较大

image-20230811210708976

求解最小二乘法

image-20230811210825318

最终落脚到的两个公式:k</sup>和b<sup>推导公式

  • 该公式通过对k和b一介求导,然后分离系数所得

matlab求解最小二乘法

image-20230811211416247

根据公式不难得出代码

plot(x,y,'o');
xlabel("x");
ylabel("y");
n=size(x,1);%% 数据的个数
k=(n*sum(x.*y)-sum(x)*sum(y))/(n*sum(x.*x)-sum(x)*sum(x));
b=(sum(x.*x)*sum(y)-sum(x)*sum(x.*y))/(n*sum(x.*x)-sum(x)*sum(x));
hold on;%% 写上这句后续可以继续在之前的图形上画图形
grid on;%% 图形显示网格线
f=@(x) k*x+b; %% f=kx+b是匿名函数,该函数图形不需要另外传参数也能形成图形
fplot(f,[2.5,7]);
legend('样本数据','拟合函数','location','southeast');
  1. f函数是匿名函数,该函数图形不需要另外传参数也能形成图形。在matlab中画出图形需要传参。比如正常情况下f函数需要传参x否则不能画出图形,而匿名函数系统会根据需求自己给出一定范围的参数以得画出图形

匿名函数的基本用法

handle = @(arglist) anonymous_function
  • 其中handle为调用匿名函数时使用的名字。

  • arglist为匿名函数的输入参数,可以是一个,也可以是多个,用逗号分隔。

  • anonymous_function为匿名函数的表达式。

  • 注意输入参数和表达式之间要用空格

  1. fplot可用于画出匿名一元函数的图形

基本用法

fplot(f,xinterval) 
  • 将匿名函数f在指定区间xinterval绘图。xinterval = [xmin xmax] 表示定义域的范围

image-20230811214612764

如何评价拟合的好坏

image-20230811214710021

  • 根据SST、SSE、SSR可以证明:
  1. SST=SSE+SSR
  2. 拟合优度:0<=1-SSE/SST<=1;而SSE误差平方和越小,拟合优度R2越接近1。误差越小说明拟合的越好
  3. 注意:拟合优度R2只能用于拟合函数是线性函数,若拟合函数是其他函数,直接看误差平方和即可,SSE越小,说明拟合度越好
  4. 线性函数是指在函数中,参数仅以一次方出现,且不能乘以或除以其他任何的参数,并不能出现参数的复合函数形式。该参数不是指自变量x。比如y=kx+b,该参数指的是区别于自变量x和因变量y以外的参数k和b。

image-20230811221145242

计算拟合优度的代码

plot(x,y,'o');
xlabel("x");
ylabel("y");
n=size(x,1);%% 数据的个数
k=(n*sum(x.*y)-sum(x)*sum(y))/(n*sum(x.*x)-sum(x)*sum(x));
b=(sum(x.*x)*sum(y)-sum(x)*sum(x.*y))/(n*sum(x.*x)-sum(x)*sum(x));
hold on;%% 写上这句后续可以继续在之前的图形上画图形
grid on;%% 图形显示网格线
f=@(x) k*x+b; %% f=kx+b是匿名函数,该函数图形不需要另外传参数也能形成图形
fplot(f,[2.5,7]);
legend('样本数据','拟合函数','location','southeast');
y_hat=k*x+b;
SSR=sum((y_hat-mean(y)).^2); % 回归平方和
SSE=sum((y-y_hat).^2); % 误差平方和
SST=sum((y-mean(y)).^2); % 总体平方和
disp(SST-SSE-SSR);
R_2=SSR/SST; % 拟合优度
disp(R_2);

image-20230811222406484

  • SST-SSE-SSR的结果不为0的原因是在matlab中浮点数做运算一定程度上结果不精准,但结果是5.6843^-14结果是非常小的即非常接近0
    [外链图片转存中…(img-WkmLP3WM-1692188156893)]

  • SST-SSE-SSR的结果不为0的原因是在matlab中浮点数做运算一定程度上结果不精准,但结果是5.6843^-14结果是非常小的即非常接近0

  • 拟合度为0.9635非常接近1了,说明该拟合函数的拟合度较好

相关文章:

清风数学建模——拟合算法

拟合算法 文章目录 拟合算法概念 确定拟合曲线最小二乘法的几何解释求解最小二乘法matlab求解最小二乘法如何评价拟合的好坏计算拟合优度的代码 概念 在前面的篇幅中提到可以使用插值算法&#xff0c;通过给定的样本点推算出一定的曲线从而推算出一些想要的值。但存在一些问题…...

单片机 (一) 让LED灯 亮

一&#xff1a;硬件电路图 二&#xff1a;软件代码 #include "reg52.h"#define LED_PORT P2void main() {LED_PORT 0x01; // 0000 0001 D1 是灭的 } #include "reg52.h" 这个头文件的作用&#xff1a;包含52 系列单片机内部所有的功能寄存器 三&#…...

c++——单例模式

c单例模式 1、概念&#xff1a; 单例模式确保一个类只有一个实例&#xff0c;并提供一个全局访问点以获取该实例。这通常通过让类的构造函数为私有&#xff0c;以防止外部直接实例化&#xff0c;然后提供一个静态方法来获取实例。 2、实现方法&#xff1a; 实现单例模式的主…...

C# 流Stream详解(2)——FileStream、BinaryReader、MemorySream、SreamReader等之间的关系

【文件流】 电脑上的文件有很多&#xff0c;文本文件、音频文件、视频文件、图片文件等&#xff0c;这些文件会被持久化存储在磁盘上&#xff0c;其本质都是一堆二进制数据。 FileStream用于读取二进制文件。电脑上的所有文件&#xff0c;不管是文本、音频、视频还是其他任意…...

【JavaSE】详解final关键字

在Java中&#xff0c;final可以用来修饰类、方法和变量。final修饰类&#xff0c;表示该类无法被继承&#xff0c;并且此类的设计已被认为很完美而不需要进行修改或扩展。final修饰类中的方法&#xff0c;表示不可以被重写&#xff1b;也就是把该方法锁定了&#xff0c;以防止继…...

问道管理:机器人概念走势活跃,新时达涨停,拓斯达、丰立智能等大涨

机器人概念17日盘中走势活跃&#xff0c;到发稿&#xff0c;拓斯达大涨18%&#xff0c;昊志机电涨近16%&#xff0c;丰立智能涨超13%&#xff0c;步科股份、优德精细涨超10%&#xff0c;新时达涨停&#xff0c;天玑科技、兆龙互联、中大力德涨逾9%。 消息面上&#xff0c;8月16…...

elementui 修改日期选择器el-date-picker样式

1. 案例&#xff1a; 2. css /* 最外层颜色 */ .el-popper.is-pure {background: url("/assets/imgList/memuBG.png") no-repeat;border: none;background-size:100% 100%}/* 日期 1.背景透明 */ .el-date-picker{background: transparent; }/* 日期 2.标题、左右图…...

自己实现 SpringMVC 底层机制 系列之-实现任务阶段 6-完成控制器方法获取参数-@RequestParam

&#x1f600;前言 自己实现 SpringMVC 底层机制 系列之-实现任务阶段 6-完成控制器方法获取参数-RequestParam &#x1f3e0;个人主页&#xff1a;尘觉主页 &#x1f9d1;个人简介&#xff1a;大家好&#xff0c;我是尘觉&#xff0c;希望我的文章可以帮助到大家&#xff0c…...

数据可视化:图表绘制详解

数据可视化是一种将抽象的数字和数据转化为直观图形的技术&#xff0c;使数据的模式、趋势和关系一目了然。本文将详细介绍如何绘制各种类型的图表&#xff0c;包括柱状图、折线图、饼图、散点图和热力图等。 第一部分&#xff1a;图表类型和选择 1. 柱状图 柱状图是用于比较类…...

【中危】Apache Ivy<2.5.2 存在XXE漏洞 (CVE-2022-46751)

漏洞描述 Apache Ivy 是一个管理基于 ANT 项目依赖关系的开源工具&#xff0c;文档类型定义(DTD)是一种文档类型定义语言,它用于定义XML文档中所包含的元素以及元素之间的关系。 Apache Ivy 2.5.2之前版本中&#xff0c;当解析自身配置、Ivy 文件或 Apache Maven 的 POM 文件…...

C#使用自定义的比较器对版本号(编码)字符串进行排序

给定一些数据&#xff0c;如下所示: “1.10.1.1.1.2”, “1.1”, “2.2”, “1.1.1.1”, “1.1.3.1”, “1.1.1”, “2.10.1.1.1”, “1.1.2.1”, “1.2.1.1”, “2.5.1.1”, “1.10.1.1”, “1.10.2.1”, “1.11.3.1”, “1.11.12.1”, “1.11.11.1”, “1.11.3.1”, “1”, “…...

AI在日常生活中的应用:从语音助手到自动驾驶

文章目录 AI的定义和发展AI在日常生活中的应用1. **智能语音助手**2. **智能家居**3. **智能医疗**4. **自动驾驶** 代码示例&#xff1a;使用Python实现基于机器学习的图片分类AI的未来前景结论 &#x1f389;欢迎来到AIGC人工智能专栏~探索AI在日常生活中的应用 ☆* o(≧▽≦…...

Windows10查看图片的分辨率

文章目录 查看方法 查看方法 鼠标悬停在想查看分辨率大小的图片上&#xff0c;稍等那么零点几秒&#xff0c;就会弹出图片的分辨率信息&#xff0c;如图所示&#xff1a;...

Spring事务和事务传播机制(2)

前言&#x1f36d; ❤️❤️❤️SSM专栏更新中&#xff0c;各位大佬觉得写得不错&#xff0c;支持一下&#xff0c;感谢了&#xff01;❤️❤️❤️ Spring Spring MVC MyBatis_冷兮雪的博客-CSDN博客 在Spring框架中&#xff0c;事务管理是一种用于维护数据库操作的一致性和…...

计算机视觉 -- 图像分割

文章目录 1. 图像分割2. FCN2.1 语义分割– FCN &#xff08;Fully Convolutional Networks&#xff09;2.2 FCN--deconv2.3 Unpool2.4 拓展–DeconvNet 3. 实例分割3.1 实例分割--Mask R-CNN3.2 Mask R-CNN3.3 Faster R-CNN与 Mask R-CNN3.4 Mask R-CNN&#xff1a;Resnet1013…...

ubuntu18.04复现yolo v8之CUDA与pytorch版本问题以及多CUDA版本安装及切换

最近在复现yolo v8的程序&#xff0c;特记录一下过程 环境&#xff1a;ubuntu18.04ros melodic 小知识&#xff1a;GPU并行计算能力高于CPU—B站UP主说的 Ubuntu可以安装多个版本的CUDA。如果某个程序的Pyorch需要不同版本的CUDA&#xff0c;不必删除之前的CUDA&#xff0c;…...

Redis三种模式——主从复制,哨兵模式,集群

目录 一、主从复制 1.1主从复制的概念 1.2Redis主从复制作用 1.2.1数据冗余 1.2.2故障恢复 1.2.3负载均衡 1.2.4高可用基石 1.3Redis主从复制流程 1.4部署Redis 主从复制 1.4.1.环境部署 1.4.2.所有服务器都先关闭防火墙 1.4.3.所有服务器都安装Redis 1.4.4修改Master主节点R…...

mysql8.0.31新增只读远程普通用户

在 MySQL 8.0.31 中&#xff0c;可以通过以下步骤新增只读远程普通用户&#xff1a; 1、使用 root 用户登录 MySQL 数据库。 mysql -u root -p 2、创建用户&#xff1a; CREATE USER username% IDENTIFIED WITH mysql_native_password BY password ; 其中&#xff0c;username…...

揭开路由协议隐藏的风险

路由协议在互联网和基于其的服务的运行中发挥着至关重要的作用。然而&#xff0c;许多这些协议的开发都没有考虑到安全问题。 例如&#xff0c;边界网关协议 (BGP) 最初并未考虑对等点之间发生攻击的可能性。过去几十年来&#xff0c;BGP 中的起源和路径验证已投入了大量工作。…...

图片因固定宽高被拉伸了?object-fit:一个神奇的属性

一、问题产生的场景 近期在完成项目开发时&#xff0c;测试人员针对漫画长图上传后的展示提出了一个界面优化的点&#xff0c;因为其特点是长&#xff0c;但是我们展示图片的区域是固定的&#xff0c;如果我们按照正常思路将图片的宽高写死&#xff0c;确实占位大小的问题解决了…...

客户案例:中圣科技—CAC2.0防范盗号威胁,加固安全防线

客户背景 中圣科技&#xff08;江苏&#xff09;股份有限公司&#xff08;以下简称“中圣科技”&#xff09;&#xff0c;是一家以技术研发为驱动&#xff0c;以清洁能源核心成套装备和节能环保工程服务为支撑的科技创新型企业。其以南京为核心运营基地&#xff0c;与当地政府…...

pandas数据分析40——读取 excel 合并单元格的表头

案例背景 真的很容易疯....上班的单位的表格都是不同的人做的&#xff0c;所以就会出现各种合并单元格的情况&#xff0c;要知道我们用pandas读取数据最怕合并单元格了&#xff0c;因为没规律...可能前几列没合并&#xff0c;后面几列又合并了....而且pandas对于索引很严格&am…...

Java后端开发面试题——微服务篇总结

Spring Cloud 5大组件有哪些&#xff1f; 随着SpringCloudAlibba在国内兴起 , 我们项目中使用了一些阿里巴巴的组件 注册中心/配置中心 Nacos 负载均衡 Ribbon 服务调用 Feign 服务保护 sentinel 服务网关 Gateway Ribbon负载均衡策略有哪些 ? RoundRobinRule&…...

第十一章MyBatis查询专题

返回单个Car 返回单个可以直接用Car接收返回参数 Car carCarMapper.getOne(100);返回多个Car 返回多个可以直接用List接收返回参数 List<Car> carCarMapper.getAll();用一个对象无法接受返回多个参数&#xff0c;用list可以接收返回一个参数 返回Map 如果没有合适的…...

测试驱动开发(TDD)

测试驱动开发&#xff08;TDD&#xff09; 本篇文章简单叙述一下什么是测试驱动开发&#xff0c;以及怎么进行测试驱动开发&#xff01; TDD &#xff08;Test Driven Development&#xff09;&#xff1a;&#xff08;源于极限编程&#xff08;XP&#xff09;&#xff09;在不…...

深度学习|CNN卷积神经网络

CNN卷积神经网络 解决的问题人类的视觉原理原理卷积层——提取特征池化层——数据降维全连接层——输出结果 应用图像处理自然语言处理 解决的问题 在CNN没有出现前&#xff0c;图像对人工智能来说非常难处理。 主要原因&#xff1a; 图像要处理的数据量太大了。图像由像素组…...

【洁洁送书第五期】为什么我们要了解可观测性工程

导读 可观测性已成为一个热门话题&#xff0c;并广受关注。随着它的普及&#xff0c;“可观测性”不幸被误作“监控”或“系统遥测”的同义词。可观测性是软件系统的一个特征。而且&#xff0c;只有当团队采用新的实践进行持续开发时&#xff0c;才能在生产软件系统中有效利用这…...

将vue项目通过electron打包成windows可执行程序

将vue项目打包成windows可执行程序 1、准备好dist将整个项目打包 npm run build2、安装electron依赖 npm install electron --save-dev npm install electron-packager --save-dev"electron": "^13.1.4", "electron-packager": "^15.2.0…...

【0基础入门Python Web笔记】三、python 之函数以及常用内置函数

三、python 之函数以及常用内置函数 函数函数定义函数调用函数参数返回值 常用内置函数input()函数range()函数其它 更多实战项目可进入下方官网 函数 函数是一种用于封装可重复使用代码块的工具&#xff0c;能够将一系列操作组织成一个逻辑单元。 函数定义 在Python中&…...

相交链表00

题目链接 相交链表 题目描述 注意点 保证 整个链式结构中不存在环函数返回结果后&#xff0c;链表必须 保持其原始结构如果 listA 和 listB 没有交点&#xff0c;intersectVal 为 0 解答思路 两个链表从头开始遍历&#xff0c;如果其是在同一个位置处相交&#xff0c;则在…...

网络推广发展/杭州seo推广公司

zookeeper是干嘛的呢 Zookeeper的作用1.可以为客户端管理少量的数据kvkey&#xff1a;是以路径的形式表示的&#xff0c;那就意味着&#xff0c;各key之间有父子关系&#xff0c;比如/ 是顶层key用户建的key只能在/ 下作为子节点&#xff0c;比如建一个key&#xff1a; /aa 这个…...

wordpress logo图片/上海有名网站建站开发公司

第一份资料&#xff1a;Kafka实战笔记 Kafka入门为什么选择KafkaKarka的安装、管理和配置 Kafka的集群第一个Kafka程序 afka的生产者 Kafka的消费者深入理解Kafka可靠的数据传递 Spring和Kalka的整合Sprinboot和Kafka的整合Kafka实战之削峰填谷数据管道和流式处理(了解即可) K…...

专业网站定制 北京/百度竞价排名广告定价鲜花

1. 前言 随着信息技术和互联网的发展&#xff0c; 我们已经步入了一个信息过载的时代&#xff0c;这个时代&#xff0c;无论是信息消费者还是信息生产者都遇到了很大的挑战&#xff1a; 信息消费者&#xff1a;如何从大量的信息中找到自己感兴趣的信息&#xff1f;信息生产者…...

其它区便宜营销型网站建设/宁波seo搜索优化费用

eclipse界面定制&#xff0c;让eclipse看着更清爽转载于:https://www.cnblogs.com/passer1991/p/3227755.html...

深圳龙岗疫情最新消息今天又封了/seo站内优化和站外优化

今天在用一键安装mysql的shell脚本安装mysql-5.1.73软件后发现mysql始终无法启动&#xff0c;多次执行后依旧报错&#xff0c;只能去查看error日志&#xff0c;发现了如下的2个错误&#xff1a; 错误一&#xff1a;Fatal error: Cant open and lock privilege tables: Table my…...

深圳商城网站哪家做的好/万网官网域名查询

我正在拍摄照片并将其存储到SD卡中,然后将其从SD卡中查看到ImageView中,但获得轮换…我在纵向模式下捕获它,但在横向模式下获得结果图像…有什么我想念的吗&#xff1f;/*** Displaying captured image/video on the screen* */private void previewMedia(boolean isImage) {//…...