当前位置: 首页 > news >正文

数据可视化:图表绘制详解

数据可视化是一种将抽象的数字和数据转化为直观图形的技术,使数据的模式、趋势和关系一目了然。本文将详细介绍如何绘制各种类型的图表,包括柱状图、折线图、饼图、散点图和热力图等。

第一部分:图表类型和选择
1. 柱状图
柱状图是用于比较类别数据的常见图表。横轴表示类别,纵轴表示数值。柱状图可以是垂直的,也可以是水平的。

2. 折线图
折线图用于展示数据随时间的变化趋势。横轴通常是时间,纵轴是数值。多条折线可以在同一图表中对比。

3. 饼图
饼图用于展示整体中各部分的比例。每个扇形的大小表示该类别的比例。

4. 散点图
散点图用于展示两个变量之间的关系。横轴和纵轴分别表示两个变量。

5. 热力图
热力图用于表示矩阵数据,其中每个单元格的颜色表示对应的数值。

在选择图表类型时,需要根据数据的特性和目标进行决策。例如,如果要比较不同类别的数值,可以选择柱状图;如果要展示时间序列数据,可以选择折线图;如果要展示比例,可以选择饼图;如果要展示两个变量之间的关系,可以选择散点图;如果要展示矩阵数据,可以选择热力图。

第二部分:图表绘制实践
我们将使用Python的matplotlib和seaborn库来进行图表的绘制。

1. 柱状图
python
Copy
import matplotlib.pyplot as plt

# 数据
categories = ['A', 'B', 'C', 'D', 'E']
values = [23, 45, 56, 12, 33]

plt.bar(categories, values)
plt.show()
2. 折线图
python
Copy
# 数据
time = [1, 2, 3, 4, 5]
values = [23, 45, 56, 12, 33]

plt.plot(time, values)
plt.show()
3. 饼图
python
Copy
# 数据
labels = ['A', 'B', 'C', 'D', 'E']
sizes = [15, 30, 45, 10]

plt.pie(sizes, labels=labels, autopct='%1.1f%%')
plt.show()
4. 散点图
python
Copy
import seaborn as sns

# 数据
x = [1, 2, 3, 4, 5]
y = [23, 45, 56, 12, 33]

sns.scatterplot(x, y)
plt.show()
5. 热力图
python
Copy
# 数据
data = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

sns.heatmap(data)
plt.show()
第三部分:图表美化
仅仅绘制出图表并不足够,为了使图表更易读,我们还需要进行一些美化操作,包括添加标题、轴标签、图例、调整颜色、调整字体等。

1. 添加标题和轴标签
python
Copy
plt.bar(categories, values)
plt.title('My Bar Chart')  # 添加标题
plt.xlabel('Categories')  # 添加x轴标签
plt.ylabel('Values')  # 添加y轴标签
plt.show()
2. 添加图例
python
Copy
plt.plot(time, values, label='My Line')  # 添加图例标签```python
plt.legend()  # 显示图例
plt.show()
3. 调整颜色
python
Copy
plt.bar(categories, values, color='skyblue')  # 设置柱状图颜色
plt.show()
4. 调整字体
python
Copy
title_font = {'family': 'serif', 'color': 'darkred', 'size': 20}  # 定义标题字体属性
axis_font = {'family': 'sans-serif', 'color': 'darkblue', 'size': 15}  # 定义轴字体属性

plt.bar(categories, values)
plt.title('My Bar Chart', fontdict=title_font)
plt.xlabel('Categories', fontdict=axis_font)
plt.ylabel('Values', fontdict=axis_font)
plt.show()
第四部分:高级图表类型
对于更复杂的数据,我们可能需要使用更高级的图表类型,如箱线图、小提琴图、双轴图等。

1. 箱线图
箱线图可以展示数据的分布,包括最小值、下四分位数、中位数、上四分位数和最大值。

python
Copy
# 数据
data = [23, 45, 56, 12, 33, 67, 89, 10, 39, 50]

plt.boxplot(data)
plt.show()
2. 小提琴图
小提琴图类似于箱线图,但它还展示了数据的概率密度。

python
Copy
sns.violinplot(data=data)
plt.show()
3. 双轴图
双轴图可以在同一图表中展示两组有不同数值范围的数据。

python
Copy
fig, ax1 = plt.subplots()

# 第一组数据
time = [1, 2, 3, 4, 5]
values1 = [23, 45, 56, 12, 33]
ax1.plot(time, values1, 'g-')
ax1.set_xlabel('Time')
ax1.set_ylabel('Values 1', color='g')

# 第二组数据
values2 = [130, 250, 300, 210, 350]
ax2 = ax1.twinx()
ax2.plot(time, values2, 'b-')
ax2.set_ylabel('Values 2', color='b')

plt.show()
结语
数据可视化是一种强大的工具,可以帮助我们理解和解释数据。选择正确的图表类型,理解如何绘制和美化图表,都是数据分析的重要技能。希望本文能对你有所帮助,让你在数据可视化的道路上更进一步。

总结:数据可视化不仅仅是将数据转化为图表的过程,它还包括理解数据、选择正确的图表类型、绘制图表、美化图表和解释图表的过程。通过学习和实践,我们可以提高数据可视化的技能,从而更好地理解和解释数据。

相关文章:

数据可视化:图表绘制详解

数据可视化是一种将抽象的数字和数据转化为直观图形的技术,使数据的模式、趋势和关系一目了然。本文将详细介绍如何绘制各种类型的图表,包括柱状图、折线图、饼图、散点图和热力图等。 第一部分:图表类型和选择 1. 柱状图 柱状图是用于比较类…...

【中危】Apache Ivy<2.5.2 存在XXE漏洞 (CVE-2022-46751)

漏洞描述 Apache Ivy 是一个管理基于 ANT 项目依赖关系的开源工具,文档类型定义(DTD)是一种文档类型定义语言,它用于定义XML文档中所包含的元素以及元素之间的关系。 Apache Ivy 2.5.2之前版本中,当解析自身配置、Ivy 文件或 Apache Maven 的 POM 文件…...

C#使用自定义的比较器对版本号(编码)字符串进行排序

给定一些数据,如下所示: “1.10.1.1.1.2”, “1.1”, “2.2”, “1.1.1.1”, “1.1.3.1”, “1.1.1”, “2.10.1.1.1”, “1.1.2.1”, “1.2.1.1”, “2.5.1.1”, “1.10.1.1”, “1.10.2.1”, “1.11.3.1”, “1.11.12.1”, “1.11.11.1”, “1.11.3.1”, “1”, “…...

AI在日常生活中的应用:从语音助手到自动驾驶

文章目录 AI的定义和发展AI在日常生活中的应用1. **智能语音助手**2. **智能家居**3. **智能医疗**4. **自动驾驶** 代码示例:使用Python实现基于机器学习的图片分类AI的未来前景结论 🎉欢迎来到AIGC人工智能专栏~探索AI在日常生活中的应用 ☆* o(≧▽≦…...

Windows10查看图片的分辨率

文章目录 查看方法 查看方法 鼠标悬停在想查看分辨率大小的图片上,稍等那么零点几秒,就会弹出图片的分辨率信息,如图所示:...

Spring事务和事务传播机制(2)

前言🍭 ❤️❤️❤️SSM专栏更新中,各位大佬觉得写得不错,支持一下,感谢了!❤️❤️❤️ Spring Spring MVC MyBatis_冷兮雪的博客-CSDN博客 在Spring框架中,事务管理是一种用于维护数据库操作的一致性和…...

计算机视觉 -- 图像分割

文章目录 1. 图像分割2. FCN2.1 语义分割– FCN (Fully Convolutional Networks)2.2 FCN--deconv2.3 Unpool2.4 拓展–DeconvNet 3. 实例分割3.1 实例分割--Mask R-CNN3.2 Mask R-CNN3.3 Faster R-CNN与 Mask R-CNN3.4 Mask R-CNN:Resnet1013…...

ubuntu18.04复现yolo v8之CUDA与pytorch版本问题以及多CUDA版本安装及切换

最近在复现yolo v8的程序,特记录一下过程 环境:ubuntu18.04ros melodic 小知识:GPU并行计算能力高于CPU—B站UP主说的 Ubuntu可以安装多个版本的CUDA。如果某个程序的Pyorch需要不同版本的CUDA,不必删除之前的CUDA,…...

Redis三种模式——主从复制,哨兵模式,集群

目录 一、主从复制 1.1主从复制的概念 1.2Redis主从复制作用 1.2.1数据冗余 1.2.2故障恢复 1.2.3负载均衡 1.2.4高可用基石 1.3Redis主从复制流程 1.4部署Redis 主从复制 1.4.1.环境部署 1.4.2.所有服务器都先关闭防火墙 1.4.3.所有服务器都安装Redis 1.4.4修改Master主节点R…...

mysql8.0.31新增只读远程普通用户

在 MySQL 8.0.31 中,可以通过以下步骤新增只读远程普通用户: 1、使用 root 用户登录 MySQL 数据库。 mysql -u root -p 2、创建用户: CREATE USER username% IDENTIFIED WITH mysql_native_password BY password ; 其中,username…...

揭开路由协议隐藏的风险

路由协议在互联网和基于其的服务的运行中发挥着至关重要的作用。然而,许多这些协议的开发都没有考虑到安全问题。 例如,边界网关协议 (BGP) 最初并未考虑对等点之间发生攻击的可能性。过去几十年来,BGP 中的起源和路径验证已投入了大量工作。…...

图片因固定宽高被拉伸了?object-fit:一个神奇的属性

一、问题产生的场景 近期在完成项目开发时,测试人员针对漫画长图上传后的展示提出了一个界面优化的点,因为其特点是长,但是我们展示图片的区域是固定的,如果我们按照正常思路将图片的宽高写死,确实占位大小的问题解决了…...

客户案例:中圣科技—CAC2.0防范盗号威胁,加固安全防线

客户背景 中圣科技(江苏)股份有限公司(以下简称“中圣科技”),是一家以技术研发为驱动,以清洁能源核心成套装备和节能环保工程服务为支撑的科技创新型企业。其以南京为核心运营基地,与当地政府…...

pandas数据分析40——读取 excel 合并单元格的表头

案例背景 真的很容易疯....上班的单位的表格都是不同的人做的,所以就会出现各种合并单元格的情况,要知道我们用pandas读取数据最怕合并单元格了,因为没规律...可能前几列没合并,后面几列又合并了....而且pandas对于索引很严格&am…...

Java后端开发面试题——微服务篇总结

Spring Cloud 5大组件有哪些? 随着SpringCloudAlibba在国内兴起 , 我们项目中使用了一些阿里巴巴的组件 注册中心/配置中心 Nacos 负载均衡 Ribbon 服务调用 Feign 服务保护 sentinel 服务网关 Gateway Ribbon负载均衡策略有哪些 ? RoundRobinRule&…...

第十一章MyBatis查询专题

返回单个Car 返回单个可以直接用Car接收返回参数 Car carCarMapper.getOne(100);返回多个Car 返回多个可以直接用List接收返回参数 List<Car> carCarMapper.getAll();用一个对象无法接受返回多个参数&#xff0c;用list可以接收返回一个参数 返回Map 如果没有合适的…...

测试驱动开发(TDD)

测试驱动开发&#xff08;TDD&#xff09; 本篇文章简单叙述一下什么是测试驱动开发&#xff0c;以及怎么进行测试驱动开发&#xff01; TDD &#xff08;Test Driven Development&#xff09;&#xff1a;&#xff08;源于极限编程&#xff08;XP&#xff09;&#xff09;在不…...

深度学习|CNN卷积神经网络

CNN卷积神经网络 解决的问题人类的视觉原理原理卷积层——提取特征池化层——数据降维全连接层——输出结果 应用图像处理自然语言处理 解决的问题 在CNN没有出现前&#xff0c;图像对人工智能来说非常难处理。 主要原因&#xff1a; 图像要处理的数据量太大了。图像由像素组…...

【洁洁送书第五期】为什么我们要了解可观测性工程

导读 可观测性已成为一个热门话题&#xff0c;并广受关注。随着它的普及&#xff0c;“可观测性”不幸被误作“监控”或“系统遥测”的同义词。可观测性是软件系统的一个特征。而且&#xff0c;只有当团队采用新的实践进行持续开发时&#xff0c;才能在生产软件系统中有效利用这…...

将vue项目通过electron打包成windows可执行程序

将vue项目打包成windows可执行程序 1、准备好dist将整个项目打包 npm run build2、安装electron依赖 npm install electron --save-dev npm install electron-packager --save-dev"electron": "^13.1.4", "electron-packager": "^15.2.0…...

未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?

编辑&#xff1a;陈萍萍的公主一点人工一点智能 未来机器人的大脑&#xff1a;如何用神经网络模拟器实现更智能的决策&#xff1f;RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战&#xff0c;在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...

盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来

一、破局&#xff1a;PCB行业的时代之问 在数字经济蓬勃发展的浪潮中&#xff0c;PCB&#xff08;印制电路板&#xff09;作为 “电子产品之母”&#xff0c;其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透&#xff0c;PCB行业面临着前所未有的挑战与机遇。产品迭代…...

Linux简单的操作

ls ls 查看当前目录 ll 查看详细内容 ls -a 查看所有的内容 ls --help 查看方法文档 pwd pwd 查看当前路径 cd cd 转路径 cd .. 转上一级路径 cd 名 转换路径 …...

macOS多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用

文章目录 问题现象问题原因解决办法 问题现象 macOS启动台&#xff08;Launchpad&#xff09;多出来了&#xff1a;Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用。 问题原因 很明显&#xff0c;都是Google家的办公全家桶。这些应用并不是通过独立安装的…...

基础测试工具使用经验

背景 vtune&#xff0c;perf, nsight system等基础测试工具&#xff0c;都是用过的&#xff0c;但是没有记录&#xff0c;都逐渐忘了。所以写这篇博客总结记录一下&#xff0c;只要以后发现新的用法&#xff0c;就记得来编辑补充一下 perf 比较基础的用法&#xff1a; 先改这…...

Mac软件卸载指南,简单易懂!

刚和Adobe分手&#xff0c;它却总在Library里给你写"回忆录"&#xff1f;卸载的Final Cut Pro像电子幽灵般阴魂不散&#xff1f;总是会有残留文件&#xff0c;别慌&#xff01;这份Mac软件卸载指南&#xff0c;将用最硬核的方式教你"数字分手术"&#xff0…...

LLM基础1_语言模型如何处理文本

基于GitHub项目&#xff1a;https://github.com/datawhalechina/llms-from-scratch-cn 工具介绍 tiktoken&#xff1a;OpenAI开发的专业"分词器" torch&#xff1a;Facebook开发的强力计算引擎&#xff0c;相当于超级计算器 理解词嵌入&#xff1a;给词语画"…...

【论文阅读28】-CNN-BiLSTM-Attention-(2024)

本文把滑坡位移序列拆开、筛优质因子&#xff0c;再用 CNN-BiLSTM-Attention 来动态预测每个子序列&#xff0c;最后重构出总位移&#xff0c;预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵&#xff08;S…...

SAP学习笔记 - 开发26 - 前端Fiori开发 OData V2 和 V4 的差异 (Deepseek整理)

上一章用到了V2 的概念&#xff0c;其实 Fiori当中还有 V4&#xff0c;咱们这一章来总结一下 V2 和 V4。 SAP学习笔记 - 开发25 - 前端Fiori开发 Remote OData Service(使用远端Odata服务)&#xff0c;代理中间件&#xff08;ui5-middleware-simpleproxy&#xff09;-CSDN博客…...

Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习)

Aspose.PDF 限制绕过方案&#xff1a;Java 字节码技术实战分享&#xff08;仅供学习&#xff09; 一、Aspose.PDF 简介二、说明&#xff08;⚠️仅供学习与研究使用&#xff09;三、技术流程总览四、准备工作1. 下载 Jar 包2. Maven 项目依赖配置 五、字节码修改实现代码&#…...