当前位置: 首页 > news >正文

A 题:震源属性识别模型构建与震级预测 :代码分析:

 

问题 1: 针对附件 1~8 中的地震波数据,找出一系列合适的指
标与判据,构建震源属性识别模型,进行天然地震事件(附件 1~7)
与非天然地震事件(附件 8)的准确区分;

问题一:

import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.svm import SVC
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
import matplotlib.font_manager as fm
# 读取文件夹中的地震波数据和标签
data = []
labels = []
folder_path = "A/"# 读取文件夹中的所有数据文件
for i in range(1, 8):for j in range(1, 21):file_path = folder_path + f"附件{i}/{j}.txt"with open(file_path, "r") as file:lines = file.readlines()wave_data = []for line in lines:line_data = line.strip().split()  # 分割成单个浮点数line_data = np.array([float(num) for num in line_data])  # 转换为浮点数类型wave_data.extend(line_data)data.append(wave_data)labels.append("天然地震")for i in range(1, 31):file_path = folder_path + f"附件8/{i}.txt"with open(file_path, "r") as file:lines = file.readlines()wave_data = []for line in lines:line_data = line.strip().split()  # 分割成单个浮点数line_data = np.array([float(num) for num in line_data])  # 转换为浮点数类型wave_data.extend(line_data)data.append(wave_data)labels.append("非天然地震")# 将数据转换为numpy数组
data = np.array(data)
labels = np.array(labels)# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(data, labels, test_size=0.2, random_state=42)# 创建SVM分类器
model = SVC()# 训练模型
model.fit(X_train, y_train)# 在测试集上进行预测
y_pred = model.predict(X_test)# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print("准确率:", accuracy)# 绘制折线图
sns.set(style="darkgrid")
plt.rcParams['font.family'] = 'Arial Unicode MS'
# 显示真实结果和预测结果
plt.plot(y_test, label='True Labels')
plt.plot(y_pred, label='Predicted Labels')
plt.xlabel("Sample Index")
plt.ylabel("Label")
plt.title("True and Predicted Labels")
plt.legend()plt.tight_layout()
plt.show()


当对这段代码进行分块分析时,可以将其分为以下几个部分:
第一部分:

import numpy as np
import matplotlib.pyplot as plt
import seaborn as snsfrom sklearn.svm 
import SVCfrom sklearn.model_selection 
import train_test_splitfrom sklearn.metrics 
import accuracy_scoreimport matplotlib.font_manager as fm


这部分代码包含了引入需要使用的Python库。
第二部分:

# 读取文件夹中的地震波数据和标签
data = []
labels = []
folder_path = "A/"
# 读取文件夹中的所有数据文件for i in range(1, 8):for j in range(1, 21):file_path = folder_path + f"附件{i}/{j}.txt"with open(file_path, "r") as file:lines = file.readlines()wave_data = []for line in lines:line_data = line.strip().split()  # 分割成单个浮点数line_data = np.array([float(num) for num in line_data])  # 转换为浮点数类型wave_data.extend(line_data)data.append(wave_data)labels.append("天然地震")
for i in range(1, 31):file_path = folder_path + f"附件8/{i}.txt"with open(file_path, "r") as file:lines = file.readlines()wave_data = []for line in lines:line_data = line.strip().split()  # 分割成单个浮点数line_data = np.array([float(num) for num in line_data])  # 转换为浮点数类型wave_data.extend(line_data)data.append(wave_data)labels.append("非天然地震")


这部分代码读取文件夹中的地震波数据和标签,将数据存储在data变量中,将标签存储在labels变量中。
通过嵌套循环,依次读取每个数据文件,将文件路径拼接后通过open函数读取文件内容,并使用readlines方法获取每行的数据。然后,通过字符串处理和类型转换,将每行数据转换为numpy数组,并将数据按照附件类型加入data列表中,同时将标签加入labels列表中。
第三部分:

# 将数据转换为numpy数组
data = np.array(data)
labels = np.array(labels)


这部分代码将data和labels列表转换为numpy数组。
第四部分:

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(data, labels, test_size=0.2, random_state=42)


这部分代码使用train_test_split函数将数据和标签划分为训练集和测试集,其中test_size参数指定了测试集大小的比例,random_state参数用于指定随机数种子。
第五部分:

# 创建SVM分类器
model = SVC()
# 训练模型
model.fit(X_train, y_train)


这部分代码创建一个支持向量机分类器模型,并通过fit方法对模型进行训练。
第六部分:

# 在测试集上进行预测
y_pred = model.predict(X_test)
# 计算准确率
accuracy = accuracy_score(y_test, y_pred)print("准确率:", accuracy)


这部分代码使用训练好的模型对测试集进行预测,然后通过accuracy_score函数计算模型在测试集上的准确率,并将结果打印出来。
第七部分:

# 绘制折线图
sns.set(style="darkgrid")
plt.rcParams['font.family'] = 'Arial Unicode MS'# 显示真实结果和预测结果
plt.plot(y_test, label='True Labels')
plt.plot(y_pred, label='Predicted Labels')
plt.xlabel("Sample Index")
plt.ylabel("Label")
plt.title("True and Predicted Labels")
plt.legend()plt.tight_layout()
plt.show()


这部分代码使用matplotlib.pyplot和seaborn库绘制折线图,将真实结果和预测结果进行可视化展示。设置了横坐标和纵坐标标签,添加了图表标题,并使用legend函数添加图例。
最后,使用tight_layout函数调整图表布局,并使用show函数显示图表。

问题 2: 地震波的振幅大小、波形特性与震级有着显著关联。根
据已知震级大小的附件 1~7 中数据(震级大小分别为:4.2、5.0、6.0、
6.4、7.0、7.4、8.0),恰当地挑选事件与样本,建立震级预测模型,
尝试给出附件 9 中地震事件的准确震级(精确到小数点后一位)。

问题二:

import os
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
import matplotlib
matplotlib.rcParams['font.family'] = 'Arial Unicode MS'
# 训练集数据路径
train_folder = 'A/'
train_labels = [4.2, 5.0, 6.0, 6.4, 7.0, 7.4, 8.0]
X_train = []
y_train = []# 读取训练集数据
for i, label in enumerate(train_labels):folder_path = os.path.join(train_folder, f"附件{i+1}")for file in os.listdir(folder_path):if file.endswith('.txt'):file_path = os.path.join(folder_path, file)with open(file_path, 'r') as f:lines = f.readlines()magnitudes = []for line in lines[:20]:  # 只读取每个文件的前20个数据magnitude = float(line.strip().split()[0])magnitudes.append(magnitude)X_train.append(magnitudes)y_train.append(label)X_train = np.array(X_train)
y_train = np.array(y_train)# 建立线性回归模型
model = LinearRegression()
# 模型训练
model.fit(X_train, y_train)# 测试集数据路径
test_folder = os.path.join(train_folder, '附件9')
X_test = []# 读取测试集数据
for file in os.listdir(test_folder):if file.endswith('.txt'):file_path = os.path.join(test_folder, file)with open(file_path, 'r') as f:lines = f.readlines()magnitudes = []for line in lines[:12]:  # 只读取12个数据magnitude = float(line.strip().split()[0])magnitudes.append(magnitude)X_test.append(magnitudes)X_test = np.array(X_test)# 预测地震震级
y_pred = model.predict(X_test)# 生成折线图
x_axis = np.arange(1, len(y_pred) + 1)
plt.plot(x_axis, y_pred, marker='o')# 设置横轴刻度和标签
plt.xticks(x_axis)# 设置图表标题和坐标轴标签
plt.title('预测地震事件的地震震级')
plt.xlabel('事件编号')
plt.ylabel('地震震级')plt.show()


当对这段代码进行分块分析时,可以将其分为以下几个部分:
第一部分:
import osimport numpy as npfrom sklearn.linear_model import LinearRegression
这部分代码包含了引入需要使用的Python库。
第二部分:

# 训练集数据路径
train_folder = 'A/'
train_labels = [4.2, 5.0, 6.0, 6.4, 7.0, 7.4, 8.0]
X_train = []
y_train = []
# 读取训练集数据for i, label in enumerate(train_labels):folder_path = os.path.join(train_folder, f"附件{i+1}")for file in os.listdir(folder_path):if file.endswith('.txt'):file_path = os.path.join(folder_path, file)with open(file_path, 'r') as f:lines = f.readlines()magnitudes = []for line in lines[:20]:  # 只读取每个文件的前20个数据magnitude = float(line.strip().split()[0])magnitudes.append(magnitude)X_train.append(magnitudes)y_train.append(label)X_train = np.array(X_train)
y_train = np.array(y_train)


这部分代码定义了训练集的文件夹路径、标签列表以及空的X_train和y_train列表。
通过嵌套循环,依次遍历训练集的文件夹和文件。使用os.path.join函数拼接文件夹路径和文件名,通过open函数打开文件,并使用readlines方法获取每行的数据。然后,通过字符串处理和类型转换,将每行数据的第一个数值转换为浮点数,并将前20个数据加入X_train列表中,同时将对应的标签加入y_train列表中。
最后,将X_train列表和y_train列表转换为numpy数组。
第三部分:

# 建立线性回归模型
model = LinearRegression()# 模型训练
model.fit(X_train, y_train)


这部分代码创建了一个线性回归模型,并通过fit方法对模型进行训练。
第四部分:

# 测试集数据路径
test_folder = os.path.join(train_folder, '附件9')
X_test = []
# 读取测试集数据for file in os.listdir(test_folder):if file.endswith('.txt'):file_path = os.path.join(test_folder, file)with open(file_path, 'r') as f:lines = f.readlines()magnitudes = []for line in lines[:12]:  # 只读取12个数据magnitude = float(line.strip().split()[0])magnitudes.append(magnitude)X_test.append(magnitudes)X_test = np.array(X_test)


这部分代码定义了测试集的文件夹路径以及空的X_test列表。
通过os.path.join函数拼接文件夹路径和文件名,使用open函数打开文件,并使用readlines方法获取每行的数据。然后,通过字符串处理和类型转换,将每行数据的第一个数值转换为浮点数,并将前12个数据加入X_test列表中。
最后,将X_test列表转换为numpy数组。
第五部分:

# 预测地震震级
y_pred = model.predict(X_test)
# 打印预测结果print('预测地震事件的地震震级为:')for i, pred in enumerate(y_pred):print(f'事件{i+1}: {round(pred, 1)}')


这部分代码使用训练好的线性回归模型对测试集进行预测,将预测结果存储在y_pred变量中,并通过循环打印每个事件的预测地震震级。


当对这段代码进行分块分析时,可以将其分为以下几个部分:
第一部分:

import osimport numpy as np
import matplotlib.pyplot as pltfrom sklearn.linear_model 
import LinearRegression
import matplotlib
matplotlib.rcParams['font.family'] = 'Arial Unicode MS'


这部分代码包含了引入需要使用的Python库,并设置使用的字体为’Arial Unicode MS’。
第二部分:

# 训练集数据路径
train_folder = 'A/'
train_labels = [4.2, 5.0, 6.0, 6.4, 7.0, 7.4, 8.0]
X_train = []
y_train = []
# 读取训练集数据for i, label in enumerate(train_labels):folder_path = os.path.join(train_folder, f"附件{i+1}")for file in os.listdir(folder_path):if file.endswith('.txt'):file_path = os.path.join(folder_path, file)with open(file_path, 'r') as f:lines = f.readlines()magnitudes = []for line in lines[:20]:  # 只读取每个文件的前20个数据magnitude = float(line.strip().split()[0])magnitudes.append(magnitude)X_train.append(magnitudes)y_train.append(label)X_train = np.array(X_train)
y_train = np.array(y_train)


这部分代码定义了训练集的文件夹路径、标签列表以及空的X_train和y_train列表。
通过嵌套循环,依次遍历训练集的文件夹和文件。使用os.path.join函数拼接文件夹路径和文件名,通过open函数打开文件,并使用readlines方法获取每行的数据。然后,通过字符串处理和类型转换,将每行数据的第一个数值转换为浮点数,并将前20个数据加入X_train列表中,同时将对应的标签加入y_train列表中。
最后,将X_train列表和y_train列表转换为numpy数组。
第三部分:

# 建立线性回归模型
model = LinearRegression()# 模型训练
model.fit(X_train, y_train)


这部分代码创建了一个线性回归模型,并通过fit方法对模型进行训练。
第四部分:

# 测试集数据路径
test_folder = os.path.join(train_folder, '附件9')
X_test = []
# 读取测试集数据for file in os.listdir(test_folder):if file.endswith('.txt'):file_path = os.path.join(test_folder, file)with open(file_path, 'r') as f:lines = f.readlines()magnitudes = []for line in lines[:12]:  # 只读取12个数据magnitude = float(line.strip().split()[0])magnitudes.append(magnitude)X_test.append(magnitudes)X_test = np.array(X_test)


这部分代码定义了测试集的文件夹路径以及空的X_test列表。
通过os.path.join函数拼接文件夹路径和文件名,使用open函数打开文件,并使用readlines方法获取每行的数据。然后,通过字符串处理和类型转换,将每行数据的第一个数值转换为浮点数,并将前12个数据加入X_test列表中。
最后,将X_test列表转换为numpy数组。
第五部分:

# 预测地震震级
y_pred = model.predict(X_test)


这部分代码使用训练好的线性回归模型对测试集进行预测,将预测结果存储在y_pred变量中。
第六部分:

# 生成折线图
x_axis = np.arange(1, len(y_pred) + 1)
plt.plot(x_axis, y_pred, marker='o')
# 设置横轴刻度和标签
plt.xticks(x_axis)
# 设置图表标题和坐标轴标签
plt.title('预测地震事件的地震震级')
plt.xlabel('事件编号')
plt.ylabel('地震震级')plt.show()


这部分代码使用Matplotlib库生成折线图,其中x_axis定义了横轴刻度,plt.plot绘制折线图并设置了标记点,plt.xticks设置横轴刻度和标签,plt.title、plt.xlabel和plt.ylabel设置图表标题和坐标轴标签。最后,通过plt.show显示生成的折线图。

问题 3: 库深、库容、断层类型、构造活动/基本烈度、岩性等
是影响水库诱发地震震级大小的重要因素。请根据附件 10 中 102 个
水库地震样本,尝试建立水库基本属性资料与震级的关系模型,并给
出合理的依据

问题三:

import pandas as pd
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error# 读取数据
data = pd.read_csv('A\附件10.csv')# 将分类变量进行标签编码
label_encoder = LabelEncoder()
data['断层类型'] = label_encoder.fit_transform(data['断层类型'])
data['构造活动/基本烈度'] = label_encoder.fit_transform(data['构造活动/基本烈度'])
data['岩性'] = label_encoder.fit_transform(data['岩性'])# 准备自变量和因变量
X = data[['库深/m', '库容', '断层类型', '构造活动/基本烈度', '岩性']]
y = data['震级']# 拆分数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 构建线性回归模型并拟合数据
model = LinearRegression()
model.fit(X_train, y_train)# 打印回归系数和截距
print('回归系数:', model.coef_)
print('截距:', model.intercept_)# 预测并评估模型
y_pred = model.predict(X_test)
rmse = mean_squared_error(y_test, y_pred, squared=False)
print('均方根误差:', rmse)

当对这段代码进行分块分析时,可以将其分为以下几个部分:
第一部分:

import pandas as pdfrom sklearn.linear_model 
import LinearRegressionfrom sklearn.preprocessing 
import LabelEncoderfrom sklearn.model_selection 
import train_test_splitfrom sklearn.metrics 
import mean_squared_error


这部分代码包含了引入需要使用的Python库。
第二部分:

# 读取数据
data = pd.read_csv('A\附件10.csv')


这部分代码使用pandas库的read_csv函数读取名为"附件10.csv"的CSV文件,并将数据存储在data变量中。
第三部分:

# 将分类变量进行标签编码
label_encoder = LabelEncoder()
data['断层类型'] = label_encoder.fit_transform(data['断层类型'])
data['构造活动/基本烈度'] = label_encoder.fit_transform(data['构造活动/基本烈度'])
data['岩性'] = label_encoder.fit_transform(data['岩性'])


这部分代码使用sklearn.preprocessing库的LabelEncoder类对数据中的分类变量进行标签编码,将其转换为数值形式。
第四部分:

# 准备自变量和因变量
X = data[['库深/m', '库容', '断层类型', '构造活动/基本烈度', '岩性']]
y = data['震级']


这部分代码将编码后的自变量存储在X变量中,将因变量存储在y变量中。
第五部分:

# 拆分数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)


这部分代码使用sklearn.model_selection库的train_test_split函数将数据集拆分为训练集和测试集,其中训练集占80%,测试集占20%。
第六部分:

# 构建线性回归模型并拟合数据
model = LinearRegression()
model.fit(X_train, y_train)


这部分代码使用sklearn.linear_model库的LinearRegression类构建一个线性回归模型,并使用训练集数据对模型进行拟合。
第七部分:

# 打印回归系数和截距
print('回归系数:', model.coef_)
print('截距:', model.intercept_)


这部分代码打印出线性回归模型的回归系数和截距。
第八部分:

# 预测并评估模型
y_pred = model.predict(X_test)
rmse = mean_squared_error(y_test, y_pred, squared=False)print('均方根误差:', rmse)


这部分代码使用训练好的回归模型对测试集数据进行预测,并计算预测结果与实际结果之间的均方根误差,最后将均方根误差打印出来。

相关文章:

A 题:震源属性识别模型构建与震级预测 :代码分析:

问题 1: 针对附件 1~8 中的地震波数据,找出一系列合适的指 标与判据,构建震源属性识别模型,进行天然地震事件(附件 1~7) 与非天然地震事件(附件 8)的准确区…...

源码分析CompletableFuture使用默认线程池ForkJoinPool的弊端

先说结论: 假如有20CompletableFuture任务并发执行时,都使用默认线程池ForkJoinPool,但cpu的核心数又小于3,那么就会新建20个线程(不使用默认线程池了),这20个线程相互竞争cpu资源和内存&#x…...

连接pgsql数据库 sslmode sslrootcert sslkey sslcert 参数的作用

sslmode 参数的作用 sslmode 参数用于指定数据库连接时使用的 SSL 加密模式。SSL(Secure Sockets Layer)是一种加密协议,用于保护数据在客户端和服务器之间的传输过程,以增加数据传输的安全性。sslmode 参数可以设置不同的值&…...

从零学算法3

3.给定一个字符串 s ,请你找出其中不含有重复字符的 最长子串 的长度。 示例 1: 输入: “abcabcbb” 输出: 3 解释: 因为无重复字符的最长子串是 “abc”,所以其长度为 3。 示例 2: 输入: “bbbbb” 输出: 1 解释: 因为无重复字符的最长子串是 “b”&…...

宠物小程序开发

在当今社会,宠物已成为许多人生活中不可或缺的一部分。宠物市场的持续增长为创业者提供了巨大的商机。然而,作为一个创业者,要在竞争激烈的宠物市场中脱颖而出并不容易。因此,开发一个专属于自己的宠物小程序成为了解决这一难题的…...

07-Vue基础之综合案例——小黑记事本

个人名片: 😊作者简介:一名大二在校生 🤡 个人主页:坠入暮云间x 🐼座右铭:懒惰受到的惩罚不仅仅是自己的失败,还有别人的成功。 🎅**学习目标: 坚持每一次的学习打卡 文章…...

vite4+vue3+electron23.3+ts桌面应用bs端开发 打包windows、linux、max三个系统的安装包

vite4vue3electron23.3ts桌面应用bs端开发 打包windows、linux、max三个系统的安装包 主要包依赖 "electron-store": "^8.1.0", //全局数据状态管理,可选择性安装"electron": "23.3.8","electron-builder": &q…...

限制 el-input 输入 emoji

1. 电脑如何输入 emoji 表情 ? 快捷键 win; 或 win. 2. 代码实现 <template><el-input v-model"input" placeholder"请输入内容" input"inputChange"></el-input> </template><script> export default {name: D…...

【AI】解决Number_Words的安装和使用

It appears that you encountered an error while trying to install the “Numbers_Words” package using the specific version 0.18.2 of the PEAR channel. The error message indicates that there was a problem unpacking the “Math_BigInteger-1.0.3” package, whi…...

开启MySQL的binlog日志

在/etc/my.cnf增加如下配置 #binlog相关 log-bin /testdata/mysql/log/bin/mysql-bin expire_logs_days 7 binlog-format ROW binlog_cache_size 4M max_binlog_cache_size 20G binlog_rows_query_log_events 1 binlog_row_image FULL sync_binlog 1 log_bin_trust_fun…...

【支付宝小程序】支付宝小程序自定义组件技术教程

&#x1f996;我是Sam9029&#xff0c;一个前端 Sam9029的CSDN博客主页:Sam9029的博客_CSDN博客-JS学习,CSS学习,Vue-2领域博主 **&#x1f431;‍&#x1f409;&#x1f431;‍&#x1f409;恭喜你&#xff0c;若此文你认为写的不错&#xff0c;不要吝啬你的赞扬&#xff0c…...

CSDN编程题-每日一练(2023-08-23)

CSDN编程题-每日一练(2023-08-23) 一、题目名称:圆小艺二、题目名称:连续子数组的最大和三、题目名称:投篮一、题目名称:圆小艺 时间限制:1000ms内存限制:256M 题目描述: 最近小艺酱渐渐变成了一个圆滑的形状-球!! 小艺酱开始变得喜欢上球! 小艺酱得到n个同心圆。 …...

解决:Appium Inspector刷新页面一直加载转圈

目录 问题&#xff1a;Appium Inspector刷新页面一直加载转圈 解决办法&#xff1a; 1.进入设置页面-电池-后台耗电管理 2.找到下面3个应用&#xff0c;修改为允许后台高耗电 问题&#xff1a;Appium Inspector刷新页面一直加载转圈 1、手机进行操作后&#xff0c;Appium I…...

Apache Doris 入门教程34:Join 优化

Bucket Shuffle Join Bucket Shuffle Join 是在 Doris 0.14 版本中正式加入的新功能。旨在为某些 Join 查询提供本地性优化&#xff0c;来减少数据在节点间的传输耗时&#xff0c;来加速查询。 它的设计、实现和效果可以参阅 上面的图片展示了Bucket Shuffle Join的工作原理…...

【神州数码】BGP路由器案例

SwitchB、SwitchC和SwitchD位于AS200中&#xff0c;SwitchA位于AS100中。SwitchA和SwitchB共享一个相同的网络段11.0.0.0。而SwitchB和SwitchD彼此物理上不相邻。 则SwitchA的配置如下&#xff1a; SwitchA(config)#router bgp 100SwitchA(config-router-bgp)#neighbor 11.1.1…...

gin框架实现大文件下载

在gin框架中实现大文件下载主要分为两个步骤&#xff1a; 将文件分块读取 由于大文件一次性读取会占用大量内存&#xff0c;容易导致内存溢出等问题&#xff0c;需要将文件分块读取&#xff0c;逐一发送给客户端。 在gin框架中&#xff0c;可以使用context.File方法向客户端…...

数据可视化-canvas-svg-Echarts

数据可视化 技术栈 canvas <canvas width"300" height"300"></canvas>当没有设置宽度和高度的时候&#xff0c;canvas 会初始化宽度为 300 像素和高度为 150 像素。切记不能通过样式去设置画布的宽度与高度宽高必须通过属性设置&#xff0c;…...

深信服 SG上网优化管理系统 catjs.php 任意文件读取漏洞[2023-HW]

深信服 SG上网优化管理系统 catjs.php 任意文件读取漏洞 一、漏洞描述二、漏洞影响三、网络测绘四、漏洞复现小龙POC检测: 五、 修复建议 免责声明&#xff1a;请勿利用文章内的相关技术从事非法测试&#xff0c;由于传播、利用此文所提供的信息或者工具而造成的任何直接或者间…...

java反序列化泛型中json对象

使用 jackson的objectMapper 来实现 import com.fasterxml.jackson.core.JsonProcessingException; import com.fasterxml.jackson.core.type.TypeReference; import com.fasterxml.jackson.databind.DeserializationFeature; import com.fasterxml.jackson.databind.ObjectMa…...

Docker Compose一键管理容器

可以一键批量管理docker的容器。将所有需要创建的容器定义在compose配置文件中&#xff0c;通过一个命令一键可以创建并运行这些容器&#xff0c;而不需要一个一个启动。可以批量启动停止服务。 安装 #安装Docker-Compose并安装到/usr/local/bin/docker-compose curl -L &quo…...

解决Ubuntu22.04 VMware失败的问题 ubuntu入门之二十八

现象1 打开VMware失败 Ubuntu升级之后打开VMware上报需要安装vmmon和vmnet&#xff0c;点击确认后如下提示 最终上报fail 解决方法 内核升级导致&#xff0c;需要在新内核下重新下载编译安装 查看版本 $ vmware -v VMware Workstation 17.5.1 build-23298084$ lsb_release…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》

在注意力分散、内容高度同质化的时代&#xff0c;情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现&#xff0c;消费者对内容的“有感”程度&#xff0c;正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中&#xff0…...

spring:实例工厂方法获取bean

spring处理使用静态工厂方法获取bean实例&#xff0c;也可以通过实例工厂方法获取bean实例。 实例工厂方法步骤如下&#xff1a; 定义实例工厂类&#xff08;Java代码&#xff09;&#xff0c;定义实例工厂&#xff08;xml&#xff09;&#xff0c;定义调用实例工厂&#xff…...

MySQL中【正则表达式】用法

MySQL 中正则表达式通过 REGEXP 或 RLIKE 操作符实现&#xff08;两者等价&#xff09;&#xff0c;用于在 WHERE 子句中进行复杂的字符串模式匹配。以下是核心用法和示例&#xff1a; 一、基础语法 SELECT column_name FROM table_name WHERE column_name REGEXP pattern; …...

Unsafe Fileupload篇补充-木马的详细教程与木马分享(中国蚁剑方式)

在之前的皮卡丘靶场第九期Unsafe Fileupload篇中我们学习了木马的原理并且学了一个简单的木马文件 本期内容是为了更好的为大家解释木马&#xff08;服务器方面的&#xff09;的原理&#xff0c;连接&#xff0c;以及各种木马及连接工具的分享 文件木马&#xff1a;https://w…...

论文笔记——相干体技术在裂缝预测中的应用研究

目录 相关地震知识补充地震数据的认识地震几何属性 相干体算法定义基本原理第一代相干体技术&#xff1a;基于互相关的相干体技术&#xff08;Correlation&#xff09;第二代相干体技术&#xff1a;基于相似的相干体技术&#xff08;Semblance&#xff09;基于多道相似的相干体…...

Golang——7、包与接口详解

包与接口详解 1、Golang包详解1.1、Golang中包的定义和介绍1.2、Golang包管理工具go mod1.3、Golang中自定义包1.4、Golang中使用第三包1.5、init函数 2、接口详解2.1、接口的定义2.2、空接口2.3、类型断言2.4、结构体值接收者和指针接收者实现接口的区别2.5、一个结构体实现多…...

【UE5 C++】通过文件对话框获取选择文件的路径

目录 效果 步骤 源码 效果 步骤 1. 在“xxx.Build.cs”中添加需要使用的模块 &#xff0c;这里主要使用“DesktopPlatform”模块 2. 添加后闭UE编辑器&#xff0c;右键点击 .uproject 文件&#xff0c;选择 "Generate Visual Studio project files"&#xff0c;重…...

第2篇:BLE 广播与扫描机制详解

本文是《BLE 协议从入门到专家》专栏第二篇,专注于解析 BLE 广播(Advertising)与扫描(Scanning)机制。我们将从协议层结构、广播包格式、设备发现流程、控制器行为、开发者 API、广播冲突与多设备调度等方面,全面拆解这一 BLE 最基础也是最关键的通信机制。 一、什么是 B…...

如何让非 TCP/IP 协议驱动屏蔽 IPv4/IPv6 和 ARP 报文?

——从硬件过滤到协议栈隔离的完整指南 引言 在现代网络开发中,许多场景需要定制化网络协议(如工业控制、高性能计算),此时需确保驱动仅处理特定协议,避免被标准协议(如 IPv4/IPv6/ARP)干扰。本文基于 Linux 内核驱动的实现,探讨如何通过硬件过滤、驱动层拦截和协议栈…...