机器学习实战之模型的解释性:Scikit-Learn的SHAP和LIME库详解
引言:机器学习模型的“黑箱”困境
机器学习模型的崛起让我们惊叹不已!不论是预测房价、识别图片中的猫狗,还是推荐给你喜欢的音乐,这些模型都表现得非常出色。但是,有没有想过,这些模型到底是如何做出这些决策的呢?
作为一名Python爱好者,我们自然希望能够了解模型背后的原理。好消息是,SHAP和LIME这两个库能帮助我们! 它们可以帮助我们揭示模型的内部结构,让我们能够更好地理解和优化模型。
一:SHAP值到底是什么?
SHAP(SHapley Additive exPlanations)是一种解释机器学习模型的方法,它基于博弈论中的Shapley值。Shapley值的核心思想是给每个特征分配一个贡献值,用以表示该特征对预测结果的影响程度。
1.1 SHAP值的计算方法
首先,我们需要安装shap库:
!pip install shap
假设我们已经用Scikit-Learn训练好了一个模型model。为了计算SHAP值,我们需要先初始化一个KernelExplainer对象:
import shapexplainer = shap.KernelExplainer(model.predict, X_train)
然后就可以用shap_values方法计算每个特征的SHAP值了:
shap_values = explainer.shap_values(X_test)
这样,我们就得到了每个特征对每个预测样本的贡献值。🚀
1.2 用SHAP值分析模型
SHAP库提供了一些可视化方法,帮助我们更直观地分析模型。例如,我们可以用summary_plot方法来绘制SHAP值的总体情况:
shap.summary_plot(shap_values, X_test)
这张图展示了每个特征的SHAP值随着特征值的变化。从图中我们可以看出,不同特征对预测结果的影响程度有很大差异。
二:LIME如何揭示模型局部特性?
LIME(Local Interpretable Model-Agnostic Explanations)则是另一种解释机器学习模型的方法。它的主要思想是在每个预测样本周围建立一个简单的线性模型,从而帮助我们理解模型在局部的行为。
2.1 使用LIME分析模型
首先,我们需要安装lime库:
!pip install lime
假设我们已经用Scikit-Learn训练好了一个模型model。为了使用LIME,我们需要先创建一个LimeTabularExplainer对象:
from lime.lime_tabular import LimeTabularExplainerexplainer = LimeTabularExplainer(X_train.values, feature_names=X_train.columns, class_names=['prediction'], verbose=True)
然后我们可以为某个预测样本生成LIME解释:
i = 42 # 随便选一个样本
exp = explainer.explain_instance(X_test.values[i], model.predict_proba)
最后,我们可以用show_in_notebook方法将LIME解释可视化:
exp.show_in_notebook()
这样我们就可以看到一个简单的线性模型,展示了各个特征对预测结果的贡献。
2.2 LIME的局限性
虽然LIME能够帮助我们理解模型在局部的行为,但它也有一些局限性。例如,LIME依赖于一个简单的线性模型,可能无法很好地捕捉到复杂模型的特性。
三:SHAP与LIME的比较
既然我们已经了解了SHAP和LIME这两个库,那么自然会产生一个疑问:它们之间有什么区别,该如何选择呢?
3.1 二者的异同
首先总结一下它们的相似之处:
-
都能帮助我们解释机器学习模型;
-
都可以为每个特征分配一个贡献值;
-
都支持Scikit-Learn中的模型。
不同之处:
-
SHAP基于Shapley值,具有一定的理论基础;
-
LIME关注局部特性,用简单模型解释复杂模型;
-
SHAP可以捕捉到特征间的相互作用,而LIME不行。
3.2 如何选择?
虽然SHAP和LIME都有各自的优缺点,但总体来说,SHAP更具有理论基础,而且能捕捉到特征间的相互作用。因此,在大多数情况下,我们推荐使用SHAP库。但如果您对局部特性更感兴趣,那么LIME也是一个不错的选择。
技术总结
通过这些方法,我们可以更好地理解模型的内部结构,进而优化模型,提高预测准确率。最后,欢迎在评论区留言分享你的见解,告诉我们你是如何运用这些知识解决实际问题的!
相关文章:
机器学习实战之模型的解释性:Scikit-Learn的SHAP和LIME库详解
引言:机器学习模型的“黑箱”困境 机器学习模型的崛起让我们惊叹不已!不论是预测房价、识别图片中的猫狗,还是推荐给你喜欢的音乐,这些模型都表现得非常出色。但是,有没有想过,这些模型到底是如何做出这些决…...
【网络安全】防火墙知识点全面图解(二)
本系列文章包含: 【网络安全】防火墙知识点全面图解(一)【网络安全】防火墙知识点全面图解(二) 防火墙知识点全面图解(二) 21、路由器的访问控制列表是什么样的?22、防火墙的安全策…...
【计算机视觉 | 目标检测】arxiv 计算机视觉关于目标检测的学术速递(8 月 14 日论文合集)
文章目录 一、检测相关(7篇)1.1 Continual Face Forgery Detection via Historical Distribution Preserving1.2 Exploring Predicate Visual Context in Detecting of Human-Object Interactions1.3 Out-of-Distribution Detection for Monocular Depth Estimation1.4 Cyclic-…...
自学设计模式(类图、设计原则、单例模式 - 饿汉/懒汉)
设计模式需要用到面向对象的三大特性——封装、继承、多态(同名函数具有不同的状态) UML类图 eg.—— 描述类之间的关系(设计程序之间画类图) : public; #: protected; -: private; 下划线: static 属性名:类型(默认值…...
python爬虫10:selenium库
python爬虫10:selenium库 前言 python实现网络爬虫非常简单,只需要掌握一定的基础知识和一定的库使用技巧即可。本系列目标旨在梳理相关知识点,方便以后复习。 申明 本系列所涉及的代码仅用于个人研究与讨论,并不会对网站产…...
c++ java rgb与nv21互转
目录 jni函数 c++ rgb转nv21,可以转,不报错,但是转完只有黑白图 java yuv420保存图片,先转nv21,再保存ok: c++ yuv420月bgr互转,测试ok jni函数 JNIEXPORT void JNICALL Java_com_tencent_blazefacencnn_BlazeFaceNcnn_encode(JNIEnv *env,jobject thiz, jobject in…...
多视图聚类(multi-view clustering)简介
多视图聚类 目前大概有以下几种: 多视图k-means聚类多视图谱聚类多视图图聚类多视图子空间聚类 (multi-view subspace clustering)深度学习多视图聚类 (deep multi-view clustering) 其中多视图子空间聚类具有不错的数据表征能力。 对于多视图子空间聚类而言&…...
wazhu配置以及漏洞复现
目录 1.wazhu配置 进入官网下载 部署wazhu 修改网络适配器 重启 本地开启apache wazhu案例复现 前端页面 执行 1.wazhu配置 进入官网下载 Virtual Machine (OVA) - Installation alternatives (wazuh.com) 部署wazhu 修改网络适配器 重启 service network restart 本地…...
javaweb项目部署linux服务器遇到的问题
其他有关本次部署内容请参考本站其他文章 javaweb项目要用war包 IntelliJ IDEA 可以打包out里的子目录 D:\D盘文件\浏览器\webshop\out\artifacts\webshop_war_exploded>jar cvf webshop.war * 方法来源视频 18、web项目的打包与发布_哔哩哔哩_bilibili myeclipse项目…...
【数据结构OJ题】环形链表
原题链接:https://leetcode.cn/problems/linked-list-cycle/description/ 目录 1. 题目描述 2. 思路分析 3. 代码实现 1. 题目描述 2. 思路分析 整体思路:定义快慢指针fast,slow,如果链表确实有环,fast指针一定会…...
PySpark-核心编程
2. PySpark——RDD编程入门 文章目录 2. PySpark——RDD编程入门2.1 程序执行入口SparkContext对象2.2 RDD的创建2.2.1 并行化创建2.2.2 获取RDD分区数2.2.3 读取文件创建 2.3 RDD算子2.4 常用Transformation算子2.4.1 map算子2.4.2 flatMap算子2.4.3 reduceByKey算子2.4.4 Wor…...
vue 在IOS移动端中 windon.open 等跳转外部链接后,返回不触发vue生命周期、mounted等相关事件-解决方法
做了一个列表的h5页面,通过点击列表跳转到外部链接,然后返回是回到原来页面状态,类似缓存。发现在ios端返回后,vue 的mounted() 、create()、路由监听等方法都不会执行。在安卓和pc 端都能正常调用。 解决方案:监听pa…...
股票预测和使用LSTM(长期-短期-记忆)的预测
一、说明 准确预测股市走势长期以来一直是投资者和交易员难以实现的目标。虽然多年来出现了无数的策略和模型,但有一种方法最近因其能够捕获历史数据中的复杂模式和依赖关系而获得了显着的关注:长短期记忆(LSTM)。利用深度学习的力…...
Docker搭建个人网盘、私有仓库
1、使用mysql:5.6和 owncloud 镜像,构建一个个人网盘 [rootlocalhost ~]# docker pull mysql:5.6 [rootlocalhost ~]# docker pull owncloud [rootlocalhost ~]# docker run -itd --name mysql --env MYSQL_ROOT_PASSWORD123456 mysql:5.6 [rootlocalhost ~]# doc…...
3种获取OpenStreetMap数据的方法【OSM】
OpenStreetMap 是每个人都可以编辑的世界地图。 这意味着你可以纠正错误、添加新地点,甚至自己为地图做出贡献! 这是一个社区驱动的项目,拥有数百万注册用户。 这是一个社区驱动的项目,旨在在开放许可下向每个人提供所有地理数据。…...
数据处理与统计分析——MySQL与SQL
这里写目录标题 1、初识数据库1.1、什么是数据库1.2、数据库分类1.3、相关概念1.4、MySQL及其安装1.5、基本命令 2、基本命令2.1、操作数据库2.2、数据库的列类型2.3、数据库的字段属性2.4 创建和删除数据库表2.5、数据库存储引擎2.6、修改数据库 3、MySQL数据管理3.1、外键 My…...
OpenCV之特征点匹配
特征点选取 特征点探测方法有goodFeaturesToTrack(),cornerHarris()和SURF()。一般使用goodFeaturesToTrack()就能获得很好的特征点。goodFeaturesToTrack()定义: void goodFeaturesToTrack( InputArray image, OutputArray corners,int maxCorners, double qualit…...
浅谈开关柜绝缘状态检测与故障诊断
贾丽丽 安科瑞电气股份有限公司 上海嘉定 201801 摘要:电力开关柜作为电力系统的关键设备广泛应用于输电配电网络,其运行可靠性直接影响着电力系统供电质量及安全性能。开关柜绝缘状态检测与故障诊断是及时维修、更换和预防绝缘故障的重要技术手段。在阐述开关柜绝…...
Mybatis 动态 SQL
动态 SQL 1. if 标签2. trim 标签3. where 标签4. set 标签5. foreach 标签 1. if 标签 if 标签有很多应用场景, 例如: 在用户进行注册是有些是必填项有些是选填项, 这就会导致前端传入的参数不固定如果还是将参数写死就很难处理, 这时就可以使用 if 标签进行判断 <insert …...
Android studio之 build.gradle配置
在使用Android studio创建项目会出现两个build.gradle: 一. Project项目级别的build.gradle (1)、buildscript{}闭包里是gradle脚本执行所需依赖,分别是对应的maven库和插件。 闭包下包含: 1、repositories闭包 2、d…...
MPNet:旋转机械轻量化故障诊断模型详解python代码复现
目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...
Flask RESTful 示例
目录 1. 环境准备2. 安装依赖3. 修改main.py4. 运行应用5. API使用示例获取所有任务获取单个任务创建新任务更新任务删除任务 中文乱码问题: 下面创建一个简单的Flask RESTful API示例。首先,我们需要创建环境,安装必要的依赖,然后…...
逻辑回归:给不确定性划界的分类大师
想象你是一名医生。面对患者的检查报告(肿瘤大小、血液指标),你需要做出一个**决定性判断**:恶性还是良性?这种“非黑即白”的抉择,正是**逻辑回归(Logistic Regression)** 的战场&a…...
8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂
蛋白质结合剂(如抗体、抑制肽)在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上,高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术,但这类方法普遍面临资源消耗巨大、研发周期冗长…...
Java如何权衡是使用无序的数组还是有序的数组
在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...
大数据零基础学习day1之环境准备和大数据初步理解
学习大数据会使用到多台Linux服务器。 一、环境准备 1、VMware 基于VMware构建Linux虚拟机 是大数据从业者或者IT从业者的必备技能之一也是成本低廉的方案 所以VMware虚拟机方案是必须要学习的。 (1)设置网关 打开VMware虚拟机,点击编辑…...
srs linux
下载编译运行 git clone https:///ossrs/srs.git ./configure --h265on make 编译完成后即可启动SRS # 启动 ./objs/srs -c conf/srs.conf # 查看日志 tail -n 30 -f ./objs/srs.log 开放端口 默认RTMP接收推流端口是1935,SRS管理页面端口是8080,可…...
Neo4j 集群管理:原理、技术与最佳实践深度解析
Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...
USB Over IP专用硬件的5个特点
USB over IP技术通过将USB协议数据封装在标准TCP/IP网络数据包中,从根本上改变了USB连接。这允许客户端通过局域网或广域网远程访问和控制物理连接到服务器的USB设备(如专用硬件设备),从而消除了直接物理连接的需要。USB over IP的…...
Java编程之桥接模式
定义 桥接模式(Bridge Pattern)属于结构型设计模式,它的核心意图是将抽象部分与实现部分分离,使它们可以独立地变化。这种模式通过组合关系来替代继承关系,从而降低了抽象和实现这两个可变维度之间的耦合度。 用例子…...
