当前位置: 首页 > news >正文

解密长短时记忆网络(LSTM):从理论到PyTorch实战演示

目录

  • 1. LSTM的背景
    • 人工神经网络的进化
    • 循环神经网络(RNN)的局限性
    • LSTM的提出背景
  • 2. LSTM的基础理论
    • 2.1 LSTM的数学原理
      • 遗忘门(Forget Gate)
      • 输入门(Input Gate)
      • 记忆单元(Cell State)
      • 输出门(Output Gate)
    • 2.2 LSTM的结构逻辑
      • 遗忘门:决定丢弃的信息
      • 输入门:选择性更新记忆单元
      • 更新单元状态
      • 输出门:决定输出的隐藏状态
      • 门的相互作用
      • 逻辑结构的实际应用
      • 总结
    • 2.3 LSTM与GRU的对比
      • 1. 结构
        • LSTM
        • GRU
      • 2. 数学表达
        • LSTM
        • GRU
      • 3. 性能和应用
      • 小结
  • 3. LSTM在实际应用中的优势
      • 处理长期依赖问题
      • 遗忘门机制
      • 梯度消失问题的缓解
      • 广泛的应用领域
      • 灵活的架构选项
      • 成熟的开源实现
      • 小结
  • 4. LSTM的实战演示
    • 4.1 使用PyTorch构建LSTM模型
      • 定义LSTM模型
      • 训练模型
      • 评估和预测
  • 5. LSTM总结
        • **解决长期依赖问题**
        • **广泛的应用领域**
        • **灵活与强大**
        • **开源支持**
        • **持战与展望**
        • 总结反思

本文深入探讨了长短时记忆网络(LSTM)的核心概念、结构与数学原理,对LSTM与GRU的差异进行了对比,并通过逻辑分析阐述了LSTM的工作原理。文章还详细演示了如何使用PyTorch构建和训练LSTM模型,并突出了LSTM在实际应用中的优势。

关注TechLead,分享AI与云服务技术的全维度知识。作者拥有10+年互联网服务架构、AI产品研发经验、团队管理经验,同济本复旦硕,复旦机器人智能实验室成员,阿里云认证的资深架构师,项目管理专业人士,上亿营收AI产品研发负责人。

file

1. LSTM的背景

人工神经网络的进化

人工神经网络(ANN)的设计灵感来源于人类大脑中神经元的工作方式。自从第一个感知器模型(Perceptron)被提出以来,人工神经网络已经经历了多次的演变和优化。

  • 前馈神经网络(Feedforward Neural Networks): 这是一种基本的神经网络,信息只在一个方向上流动,没有反馈或循环。
  • 卷积神经网络(Convolutional Neural Networks, CNN): 专为处理具有类似网格结构的数据(如图像)而设计。
  • 循环神经网络(Recurrent Neural Networks, RNN): 为了处理序列数据(如时间序列或自然语言)而引入,但在处理长序列时存在一些问题。

循环神经网络(RNN)的局限性

循环神经网络(RNN)是一种能够捕捉序列数据中时间依赖性的网络结构。但是,传统的RNN存在一些严重的问题:

  • 梯度消失问题(Vanishing Gradient Problem): 当处理长序列时,RNN在反向传播时梯度可能会接近零,导致训练缓慢甚至无法学习。
  • 梯度爆炸问题(Exploding Gradient Problem): 与梯度消失问题相反,梯度可能会变得非常大,导致训练不稳定。
  • 长依赖性问题: RNN难以捕捉序列中相隔较远的依赖关系。

由于这些问题,传统的RNN在许多应用中表现不佳,尤其是在处理长序列数据时。

LSTM的提出背景

长短时记忆网络(LSTM)是一种特殊类型的RNN,由Hochreiter和Schmidhuber于1997年提出,目的是解决传统RNN的问题。

  • 解决梯度消失问题: 通过引入“记忆单元”,LSTM能够在长序列中保持信息的流动。
  • 捕捉长依赖性: LSTM结构允许网络捕捉和理解长序列中的复杂依赖关系。
  • 广泛应用: 由于其强大的性能和灵活性,LSTM已经被广泛应用于许多序列学习任务,如语音识别、机器翻译和时间序列分析等。

LSTM的提出不仅解决了RNN的核心问题,还开启了许多先前无法解决的复杂序列学习任务的新篇章。

2. LSTM的基础理论

2.1 LSTM的数学原理

file

长短时记忆网络(LSTM)是一种特殊的循环神经网络,它通过引入一种称为“记忆单元”的结构来克服传统RNN的缺点。下面是LSTM的主要组件和它们的功能描述。

file

遗忘门(Forget Gate)

遗忘门的作用是决定哪些信息从记忆单元中遗忘。它使用sigmoid激活函数,可以输出在0到1之间的值,表示保留信息的比例。

[
f_t = \sigma(W_f \cdot [h_{t-1}, x_t] + b_f)
]

其中,(f_t)是遗忘门的输出,(\sigma)是sigmoid激活函数,(W_f)和(b_f)是权重和偏置,(h_{t-1})是上一个时间步的隐藏状态,(x_t)是当前输入。

输入门(Input Gate)

输入门决定了哪些新信息将被存储在记忆单元中。它包括两部分:sigmoid激活函数用来决定更新的部分,和tanh激活函数来生成候选值。

[
i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i)
]
[
\tilde{C}t = \tanh(W_C \cdot [h{t-1}, x_t] + b_C)
]

记忆单元(Cell State)

记忆单元是LSTM的核心,它能够在时间序列中长时间保留信息。通过遗忘门和输入门的相互作用,记忆单元能够学习如何选择性地记住或忘记信息。

[
C_t = f_t \cdot C_{t-1} + i_t \cdot \tilde{C}_t
]

输出门(Output Gate)

输出门决定了下一个隐藏状态(也即下一个时间步的输出)。首先,输出门使用sigmoid激活函数来决定记忆单元的哪些部分将输出,然后这个值与记忆单元的tanh激活的值相乘得到最终输出。

[
o_t = \sigma(W_o \cdot [h_{t-1}, x_t] + b_o)
]
[
h_t = o_t \cdot \tanh(C_t)
]

LSTM通过这些精心设计的门和记忆单元实现了对信息的精确控制,使其能够捕捉序列中的复杂依赖关系和长期依赖,从而大大超越了传统RNN的性能。

2.2 LSTM的结构逻辑

长短时记忆网络(LSTM)是一种特殊的循环神经网络(RNN),专门设计用于解决长期依赖问题。这些网络在时间序列数据上的性能优越,让我们深入了解其逻辑结构和运作方式。

遗忘门:决定丢弃的信息

遗忘门决定了哪些信息从单元状态中丢弃。它考虑了当前输入和前一隐藏状态,并通过sigmoid函数输出0到1之间的值。

输入门:选择性更新记忆单元

输入门决定了哪些新信息将存储在单元状态中。它由两部分组成:

  • 选择性更新:使用sigmoid函数确定要更新的部分。
  • 候选层:使用tanh函数产生新的候选值,可能添加到状态中。

更新单元状态

通过结合遗忘门的输出和输入门的输出,可以计算新的单元状态。旧状态的某些部分会被遗忘,新的候选值会被添加。

输出门:决定输出的隐藏状态

输出门决定了从单元状态中读取多少信息来输出。这个输出将用于下一个时间步的LSTM单元,并可以用于网络的预测。

门的相互作用

  • 遗忘门: 负责控制哪些信息从单元状态中遗忘。
  • 输入门: 确定哪些新信息被存储。
  • 输出门: 控制从单元状态到隐藏状态的哪些信息流动。

这些门的交互允许LSTM以选择性的方式在不同时间步长的间隔中保持或丢弃信息。

逻辑结构的实际应用

LSTM的逻辑结构使其在许多实际应用中非常有用,尤其是在需要捕捉时间序列中长期依赖关系的任务中。例如,在自然语言处理、语音识别和时间序列预测等领域,LSTM已经被证明是一种强大的模型。

总结

LSTM的逻辑结构通过其独特的门控机制为处理具有复杂依赖关系的序列数据提供了强大的手段。其对信息流的精细控制和长期记忆的能力使其成为许多序列建模任务的理想选择。了解LSTM的这些逻辑概念有助于更好地理解其工作原理,并有效地将其应用于实际问题。

2.3 LSTM与GRU的对比

file
长短时记忆网络(LSTM)和门控循环单元(GRU)都是循环神经网络(RNN)的变体,被广泛用于序列建模任务。虽然它们有许多相似之处,但也有一些关键差异。

1. 结构

LSTM

LSTM包括三个门:输入门、遗忘门和输出门,以及一个记忆单元。这些组件共同控制信息在时间序列中的流动。

GRU

file
GRU有两个门:更新门和重置门。它合并了LSTM的记忆单元和隐藏状态,并简化了结构。

2. 数学表达

LSTM

LSTM的数学表达包括以下方程:

[
\begin{align*}
f_t & = \sigma(W_f \cdot [h_{t-1}, x_t] + b_f) \
i_t & = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i) \
\tilde{C}t & = \tanh(W_C \cdot [h{t-1}, x_t] + b_C) \
C_t & = f_t \cdot C_{t-1} + i_t \cdot \tilde{C}t \
o_t & = \sigma(W_o \cdot [h
{t-1}, x_t] + b_o) \
h_t & = o_t \cdot \tanh(C_t)
\end{align*}
]

GRU

GRU的数学表达如下:

[
\begin{align*}
z_t & = \sigma(W_z \cdot [h_{t-1}, x_t] + b_z) \
r_t & = \sigma(W_r \cdot [h_{t-1}, x_t] + b_r) \
n_t & = \tanh(W_n \cdot [r_t \cdot h_{t-1}, x_t] + b_n) \
h_t & = (1 - z_t) \cdot n_t + z_t \cdot h_{t-1}
\end{align*}
]

3. 性能和应用

  • 复杂性: LSTM具有更复杂的结构和更多的参数,因此通常需要更多的计算资源。GRU则更简单和高效。
  • 记忆能力: LSTM的额外“记忆单元”可以提供更精细的信息控制,可能更适合处理更复杂的序列依赖性。
  • 训练速度和效果: 由于GRU的结构较简单,它可能在某些任务上训练得更快。但LSTM可能在具有复杂长期依赖的任务上表现更好。

小结

LSTM和GRU虽然都是有效的序列模型,但它们在结构、复杂性和应用性能方面有所不同。选择哪一个通常取决于具体任务和数据。LSTM提供了更精细的控制,而GRU可能更高效和快速。实际应用中可能需要针对具体问题进行实验以确定最佳选择。

3. LSTM在实际应用中的优势

file
长短时记忆网络(LSTM)是循环神经网络(RNN)的一种扩展,特别适用于序列建模和时间序列分析。LSTM的设计独具匠心,提供了一系列的优势来解决实际问题。

处理长期依赖问题

LSTM的关键优势之一是能够捕捉输入数据中的长期依赖关系。这使其在理解和建模具有复杂时间动态的问题上具有强大的能力。

遗忘门机制

通过遗忘门机制,LSTM能够学习丢弃与当前任务无关的信息,这对于分离重要特征和减少噪音干扰非常有用。

梯度消失问题的缓解

传统的RNN易受梯度消失问题的影响,LSTM通过引入门机制和细胞状态来缓解这个问题。这提高了网络的训练稳定性和效率。

广泛的应用领域

LSTM已被成功应用于许多不同的任务和领域,包括:

  • 自然语言处理: 如机器翻译,情感分析等。
  • 语音识别: 用于理解和转录人类语音。
  • 股票市场预测: 通过捕捉市场的时间趋势来预测股票价格。
  • 医疗诊断: 分析患者的历史医疗记录来进行早期预警和诊断。

灵活的架构选项

LSTM可以与其他深度学习组件(如卷积神经网络或注意力机制)相结合,以创建复杂且强大的模型。

成熟的开源实现

现有许多深度学习框架,如TensorFlow和PyTorch,都提供了LSTM的高质量实现,这为研究人员和工程师提供了方便。

小结

LSTM网络在许多方面表现出色,特别是在处理具有复杂依赖关系的序列数据方面。其能够捕捉长期依赖,缓解梯度消失问题,和广泛的应用潜力使其成为许多实际问题的理想解决方案。随着深度学习技术的不断进步,LSTM可能会继续在新的应用场景和挑战中展示其强大的实用价值。

4. LSTM的实战演示

4.1 使用PyTorch构建LSTM模型

file
LSTM在PyTorch中的实现相对直观和简单。下面,我们将演示如何使用PyTorch构建一个LSTM模型,以便于对时间序列数据进行预测。

定义LSTM模型

我们首先定义一个LSTM类,该类使用PyTorch的nn.Module作为基类。

import torch.nn as nnclass LSTMModel(nn.Module):def __init__(self, input_size, hidden_size, num_layers, output_size):super(LSTMModel, self).__init__()self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)self.fc = nn.Linear(hidden_size, output_size)def forward(self, x):out, _ = self.lstm(x) # LSTM层out = self.fc(out[:, -1, :]) # 全连接层return out
  • input_size: 输入特征的大小。
  • hidden_size: 隐藏状态的大小。
  • num_layers: LSTM层数。
  • output_size: 输出的大小。

训练模型

接下来,我们定义训练循环来训练模型。

import torch.optim as optim# 定义超参数
input_size = 10
hidden_size = 64
num_layers = 1
output_size = 1
learning_rate = 0.001
epochs = 100# 创建模型实例
model = LSTMModel(input_size, hidden_size, num_layers, output_size)# 定义损失函数和优化器
loss_function = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)# 训练循环
for epoch in range(epochs):outputs = model(inputs)optimizer.zero_grad()loss = loss_function(outputs, targets)loss.backward()optimizer.step()print(f'Epoch [{epoch+1}/{epochs}], Loss: {loss.item()}')

这里,我们使用均方误差损失,并通过Adam优化器来训练模型。

评估和预测

训练完成后,我们可以使用模型进行预测,并评估其在测试数据上的性能。

# 在测试数据上进行评估
model.eval()
with torch.no_grad():predictions = model(test_inputs)# ... 进一步评估预测 ...

file

5. LSTM总结

长短时记忆网络(LSTM)自从被提出以来,已经成为深度学习和人工智能领域的一个重要组成部分。以下是关于LSTM的一些关键要点的总结:

解决长期依赖问题

LSTM通过其独特的结构和门控机制,成功解决了传统RNNs在处理长期依赖时遇到的挑战。这使得LSTM在许多涉及序列数据的任务中都表现出色。

广泛的应用领域

从自然语言处理到金融预测,从音乐生成到医疗分析,LSTM的应用领域广泛且多样。

灵活与强大

LSTM不仅可以单独使用,还可以与其他神经网络架构(如CNN、Transformer等)结合,创造更强大、更灵活的模型。

开源支持

流行的深度学习框架如TensorFlow和PyTorch都提供了易于使用的LSTM实现,促进了研究和开发的便利性。

持战与展望

虽然LSTM非常强大,但也有其持战和局限性,例如计算开销和超参数调整。新的研究和技术进展可能会解决这些持战或提供替代方案,例如GRU等。

总结反思

LSTM的出现推动了序列建模和时间序列分析的前沿发展,使我们能够解决以前难以处理的问题。作为深度学习工具箱中的一个关键组件,LSTM为学者、研究人员和工程师提供了强大的工具来解读和预测世界的复杂动态。

关注TechLead,分享AI与云服务技术的全维度知识。作者拥有10+年互联网服务架构、AI产品研发经验、团队管理经验,同济本复旦硕,复旦机器人智能实验室成员,阿里云认证的资深架构师,项目管理专业人士,上亿营收AI产品研发负责人。

相关文章:

解密长短时记忆网络(LSTM):从理论到PyTorch实战演示

目录 1. LSTM的背景人工神经网络的进化循环神经网络(RNN)的局限性LSTM的提出背景 2. LSTM的基础理论2.1 LSTM的数学原理遗忘门(Forget Gate)输入门(Input Gate)记忆单元(Cell State)…...

17.1.2 【Linux】systemd使用的unit分类

systemd 有什么好处? 平行处理所有服务,加速开机流程: 旧的 init 启动脚本是“一项一项任务依序启动”的模式,因此不相依的服务也是得要一个一个的等待。但目前我们的硬件主机系统与操作系统几乎都支持多核心架构了,s…...

vue离线缓存资源文件

本文章主要是解决大文件,实时请求资源浪费网络资源的问题 从而有效的将解决用户体验的问题 话不多说上才艺 ⬇️⬇️⬇️⬇️⬇️⬇️⬇️ 找到项目中的 index.html 文件,并在 html 标签中加入 manifest"manifest.appcache" 安装 appcache-manifest 包 npm ins…...

2023华为杯研赛数学建模A题B题C题D题E题F题资料 华为杯

本次比赛我们将会全程更新华为杯研赛赛题思路模型及代码,大家查看文末名片获取 之前华为杯相关的资料和助攻可以查看 2022华为杯数学建模研赛选题建议和思路分析_方形件组批优化问题_UST数模社_的博客-CSDN博客 我们华为杯更新的流程如下: A题思路&a…...

星际争霸之小霸王之小蜜蜂(六)--让子弹飞

目录 前言 一、添加子弹设置 二、创建子弹 三、创建绘制和移动子弹函数 四、让子弹飞 五、效果 总结 前言 小蜜蜂的基本操作已经完成了,现在开始编写子弹的代码了。 一、添加子弹设置 在我的预想里,我们的小蜜蜂既然是一只猫,那么放出的子弹…...

opencv简单使用

cv2库安装, conda install opencv-python注意cv2使用时,路径不能有中文。(不然会一直’None’ _ update # 处理中文路径问题 def cv_imread(file_path): #使用之前需要导入numpy、cv2库,file_path为包含中文的路径return cv2.imd…...

SpringBoot 微人事 职称管理模块(十三)

职称管理前端页面设计 在职称管理页面添加输入框 export default {name: "JobLevelMarna",data(){return{Jl:{name:""}}}}效果图 添加一个下拉框 v-model的值为当前被选中的el-option的 value 属性值 <el-select v-model"Jl.titlelevel" …...

动态规划之0-1背包问题

动态规划之0-1背包问题 文章目录 动态规划之0-1背包问题一、先给出代码二、讲解第一步&#xff1a;初始化第二步&#xff1a;动态规划&#xff0c;填表第三步&#xff1a;回溯&#xff0c;找到选择方案总结 三、进阶&#xff08;用一维数组解决问题&#xff09; 一、先给出代码…...

为什么需要单元测试?

为什么需要单元测试&#xff1f; 从产品角度而言&#xff0c;常规的功能测试、系统测试都是站在产品局部或全局功能进行测试&#xff0c;能够很好地与用户的需要相结合&#xff0c;但是缺乏了对产品研发细节&#xff08;特别是代码细节的理解&#xff09;。 从测试人员角度而言…...

《合成孔径雷达成像算法与实现》Figure3.13——匹配滤波器的三种实现方式

clc clear close all% 参数设置 TBP 80; % 时间带宽积 T 10e-6; % 脉冲持续时间 N_ZD 60; % 零频点位于中点右侧的距离&#xff0c;P58% 参数计算 B TBP/T; …...

Android企业项目开发实训室建设方案

一 、系统概述 Android企业项目开发作为新一代信息技术的重点和促进信息消费的核心产业&#xff0c;已成为我国转变信息服务业的发展新热点&#xff1a;成为信息通信领域发展最快、市场潜力最大的业务领域。互联网尤其是移动互联网&#xff0c;以其巨大的信息交换能力和快速渗透…...

11_Redis经典五大类型源码及底层实现

Redis经典五大类型源码及底层实现 一、Redis数据类型的底层数据结构 SDS动态字符串双向链表压缩列表 zpilist哈希表 hashtable调表 skiplist整数集合 intset快速列表 quicklist紧凑列表 listpack 二、Redis源码地址 Github&#xff1a;https://github.com/redis/redis 三、…...

AWS WAF实战、优势对比和缺陷解决

文章目录 挑战和目标AWS WAF的优势AWS WAF的不足我是怎么做的?什么是比较好的AWS WAF设计? 笔者为了解决公司Web站点防御性问题&#xff0c;较为深入的研究AWS WAF的相关规则。面对上千万的冲突&#xff0c;笔者不得设计出一种能漂亮处理冲突数据WAF规则。 AWS WAF开发人员在…...

13,【设计模式】代理

代理 代理支持任意参数的简单代理实现 代理 代理的本质是函数指针 代理分为单播&#xff0c;多播&#xff0c;动态多播&#xff08;ue4中提出的&#xff09; 单播&#xff1a;在网络通信中&#xff0c;单播是一种一对一的通信方式 多播&#xff1a;在网络通信中&#xff0c;…...

基于IDEA使用maven创建hibernate项目

1、创建maven项目 2、导入hibernate需要的jar包 <!--hibernate核心依赖--><dependency><groupId>org.hibernate</groupId><artifactId>hibernate-core</artifactId><version>5.4.1.Final</version></dependency><!--…...

使用Termux在安卓手机上搭建Hexo博客网站,并发布到公网访问

文章目录 1. 安装 Hexo2. 安装cpolar内网穿透3. 公网远程访问4. 固定公网地址 Hexo 是一个用 Nodejs 编写的快速、简洁且高效的博客框架。Hexo 使用 Markdown 解析文章&#xff0c;在几秒内&#xff0c;即可利用靓丽的主题生成静态网页。 下面介绍在Termux中安装个人hexo博客并…...

宝塔 杀死 java服务 netstat -tlnp | grep :7003 kill 2205698

7003 是端口 netstat -tlnp | grep :7003 kill 2205698...

Python3 数据类型转换

Python3 数据类型转换 有时候&#xff0c;我们需要对数据内置的类型进行转换&#xff0c;数据类型的转换&#xff0c;一般情况下你只需要将数据类型作为函数名即可。 Python 数据类型转换可以分为两种&#xff1a; 隐式类型转换 - 自动完成显式类型转换 - 需要使用类型函数来…...

Cookie 和 Session 的工作流程

目录 一、Cookie是什么&#xff1f; 二、Session是什么? 三、Cookie的工作流程 四、Session的工作流程 五、Session和Cookie的区别和联系 一、Cookie是什么&#xff1f; Cookie是一种在网站和用户之间交换信息的机制。它是由Web服务器发送给用户浏览器的小型文本文件&#xff…...

AutoSAR配置与实践(基础篇)3.6 BSW的WatchDog功能

3.6 BSW的WatchDog功能 一、WatchDog功能介绍1.1 WatchDog 模块组成1.2 内外部看门狗区别和原理1.3 常见看门狗校验方式一、WatchDog功能介绍 1.1 WatchDog 模块组成 WatchDog 即看门狗功能。这个看门狗不是真正看家的狗,而是软件的一个模块,但是因为功能类似故以此起名。主…...

运维高级第6次作业

1.安装docker服务&#xff0c;配置镜像加速器 Docker安装与镜像加速器配置_ZRSAI的博客-CSDN博客 2.下载系统镜像&#xff08;Ubuntu、 centos&#xff09; 执行该命令后&#xff0c;Docker会自动从Docker Hub镜像库中下载Ubuntu镜像&#xff0c;并将其保存到本地计算机上: [ro…...

MongoDB使用GridFS存储大数据(Java)

MongoDB 是一个灵活的 NoSQL 数据库&#xff0c;能够存储大量的数据。但是&#xff0c;当涉及到特别大的数据项&#xff0c;比如大文件、视频或大型图片时&#xff0c;MongoDB 提供了一个特殊的方法来存储这些数据&#xff1a;GridFS。 简介&#xff1a; 1. 什么是 GridFS&am…...

内网穿透实战应用-windwos10系统搭建我的世界服务器,内网穿透实现联机游戏Minecraft

文章目录 1. Java环境搭建2.安装我的世界Minecraft服务3. 启动我的世界服务4.局域网测试连接我的世界服务器5. 安装cpolar内网穿透6. 创建隧道映射内网端口7. 测试公网远程联机8. 配置固定TCP端口地址8.1 保留一个固定tcp地址8.2 配置固定tcp地址 9. 使用固定公网地址远程联机 …...

pytorch基于ray和accelerate实现多GPU数据并行的模型加速训练

在pytorch的DDP原生代码使用的基础上&#xff0c;ray和accelerate两个库对于pytorch并行训练的代码使用做了更加友好的封装。 以下为极简的代码示例。 ray ray.py #codingutf-8 import os import sys import time import numpy as np import torch from torch import nn im…...

[蓝帽杯 2022 初赛]domainhacker

打开流量包&#xff0c;追踪TCP流&#xff0c;看到一串url编码 放到瑞士军刀里面解密 最下面这一串会觉得像base64编码 删掉前面两个字符就可以base64解码 依次类推&#xff0c;提取到第13个流&#xff0c;得到一串编码其中里面有密码 导出http对象 发现最后有个1.rar文件 不出…...

在 Pytorch 中使用 TensorBoard

机器学习的训练过程中会产生各类数据&#xff0c;包括 “标量scalar”、“图像image”、“统计图diagram”、“视频video”、“音频audio”、“文本text”、“嵌入Embedding” 等等。为了更好地追踪和分析这些数据&#xff0c;许多可视化工具应运而生&#xff0c;比如之前介绍的…...

Grafana Dashboard 备份方案

文章目录 Grafana Dashboard 备份方案引言工具简介支持的组件要求配置备份安装使用 pypi 安装grafana备份工具配置环境变量使用Grafana Backup Tool 进行备份恢复备份 Grafana Dashboard恢复 Grafana Dashboard结论Grafana Dashboard 备份方案 引言 每个使用 Grafana 的同学都…...

opencv-疲劳检测-眨眼检测

#导入工具包 from scipy.spatial import distance as dist from collections import OrderedDict import numpy as np import argparse import time import dlib import cv2FACIAL_LANDMARKS_68_IDXS OrderedDict([("mouth", (48, 68)),("right_eyebrow",…...

2023-08-24力扣每日一题

链接&#xff1a; 1267. 统计参与通信的服务器 题意&#xff1a; 同行同列可以发生通信&#xff0c;求能发生通信的机器数量 解&#xff1a; 标记每行/每列的机器个数即可 实际代码&#xff1a; #include<bits/stdc.h> using namespace std; class Solution { pub…...

蚂蚁数科持续发力PaaS领域,SOFAStack布局全栈软件供应链安全产品

8月18日&#xff0c;记者了解到&#xff0c;蚂蚁数科再度加码云原生PaaS领域&#xff0c;SOFAStack率先完成全栈软件供应链安全产品及解决方案的布局&#xff0c;包括静态代码扫描Pinpoint、软件成分分析SCA、交互式安全测试IAST、运行时防护RASP、安全洞察Appinsight等&#x…...

祥云网站建设/搜狗推广效果好吗

好久没有写博客了&#xff0c;这次准备写写我这几天的研究成果——Android插件化开发框架CJFrameForAndroid。 好久没有写博客了&#xff0c;这次准备写写我这几天的研究成果——Android插件化开发框架CJFrameForAndroid。背景交代 首先。你须要知道什么是插件化开发。就拿最常…...

安庆建设机械网站/网络口碑营销名词解释

1.80端口问题 进入控制面板-程序和功能-window功能-关闭iis即可 2.3306端口问题 右键phpstudy&#xff0c;以管理员身份运行。 这样就可以像以前一样省事的用默认的80和mysql默认的3306啦。 虽然直接改端口也能解决&#xff0c;不过每次本地测试起来就太麻烦了。还是默认的好。…...

溧阳常州做网站/最新推广方法

Apache web服务器(LAMP架构)&#xff08;week3_day4&#xff09;--技术流ken apache介绍 1).世界上使用率最高的网站服务器&#xff0c;最高时可达70%&#xff1b;官方网站&#xff1a;apache.org 2).http 超文本协议 HTML 超文本标记语言 3).URL 统一资源定位符 http://www.si…...

电子商务网站建设项目规划书/郴州seo外包

转自&#xff1a; 1. v-text 作用 &#xff1a; 操作元素中的纯文本 快捷方式 &#xff1a; {{}} 栗子1 简写形式&#xff1a;将v-text""换成{{}} <div id"app">{{ message }} </div> var app new Vue({el : #app, data : { message : hello …...

手机pc网站模板/什么是百度竞价推广

数据结构——栈与队列相关题目232. 用栈实现队列思路225. 用队列实现栈1.两个队列实现栈2.一个队列实现栈20. 有效的括号思路1047. 删除字符串中的所有相邻重复项思路155. 最小栈150. 逆波兰表达式求值思路239. 滑动窗口最大值单调队列347. 前 K 个高频元素思路232. 用栈实现队…...

教育网站制作价格/产品软文范例1000字

人脸ExtYaleDatabase转载于:https://www.cnblogs.com/Wanggcong/p/5516380.html...