当前位置: 首页 > news >正文

大理网站推广/网站代运营价格

大理网站推广,网站代运营价格,北京网站设计外包公司,找做网站app分布式搜索ES 11.分布式搜索 ESa.介绍ESb.IK分词器c.索引库操作 (类似于MYSQL的Table)d.查看、删除、修改 索引库e.文档操作 (类似MYSQL的数据)1) 添加文档2) 查看文档3) 删除文档4) 修改文档 f.RestClient操作索引库1) 创建索引库2) 删除索引库/判断索引库 g.RestClient操作文…

分布式搜索ES

  • 11.分布式搜索 ES
    • a.介绍ES
    • b.IK分词器
    • c.索引库操作 (类似于MYSQL的Table)
    • d.查看、删除、修改 索引库
    • e.文档操作 (类似MYSQL的数据)
      • 1) 添加文档
      • 2) 查看文档
      • 3) 删除文档
      • 4) 修改文档
    • f.RestClient操作索引库
      • 1) 创建索引库
      • 2) 删除索引库/判断索引库
    • g.RestClient操作文档
      • 1) 新增文档
      • 2) 查询文档
      • 3) 修改文档
      • 4) 删除文档
      • 5) 批量导入数据到ES
    • h.DSL查询文档
      • 1) 查询所有
      • 2) 全文检索查询
      • 3) 精确查询
      • 4) 地理查询
      • 5) 复合查询
        • 1) Function Score Query
        • 2) Boolean Query
    • i.DSL搜索结果处理
      • 1) 排序
      • 2) 分页
      • 3) 高亮
    • j.RestClient查询文档
      • 1) 全文检索文档
      • 2) 排序和分页
      • 3) 高亮

11.分布式搜索 ES

a.介绍ES

elasticsearch是一款非常强大的开源搜索引擎,可以帮助我们从海量数据中快速找到需要的内容。

elasticsearch结合kibana、Logstash、Beats,也就是elastic stack(ELK)。被广泛应用在日志数据分析、实时监控等领域。

elasticsearch是elastic stack的核心,负责存储、搜索、分析数据。

正向索引和倒排索引

传统数据库(如MySQL)采用正向索引

elasticsearch采用倒排索引:

  • 文档(document):每条数据就是一个文档
  • 词条(term):文档按照语义分成的词语

在这里插入图片描述

在这里插入图片描述

文档

elasticsearch是面向文档存储的,可以是数据库中的一条商品数据,一个订单信息。

文档数据会被序列化为json格式后存储在elasticsearch中。

在这里插入图片描述

索引(Index)

  • 索引(index):相同类型的文档的集合

  • 映射(mapping):索引中文档的字段约束信息,类似表的结构约束

在这里插入图片描述

在这里插入图片描述

架构

  • Mysql:擅长事务类型操作,可以确保数据的安全和一致性
  • Elasticsearch:擅长海量数据的搜索、分析、计算

在这里插入图片描述

b.IK分词器

分词器的作用是什么?

  • 创建倒排索引时对文档分词
  • 用户搜索时,对输入的内容分词

IK分词器有几种模式?

  • ik_smart:智能切分,粗粒度
  • ik_max_word:最细切分,细粒度

IK分词器如何拓展词条?如何停用词条?

  • 利用config目录的IkAnalyzer.cfg.xml文件添加拓展词典和停用词典
  • 在词典中添加拓展词条或者停用词条

c.索引库操作 (类似于MYSQL的Table)

mapping是对索引库中文档的约束,常见的mapping属性包括:

  • type:字段数据类型,常见的简单类型有:

    • 字符串:text(可分词的文本)、keyword(精确值,例如:品牌、国家、ip地址)
    • 数值:long、integer、short、byte、double、float、
    • 布尔:boolean
    • 日期:date
    • 对象:object
  • index:是否创建索引,默认为true

  • analyzer:使用哪种分词器

  • properties:该字段的子字段

在这里插入图片描述

创建索引库

ES中通过Restful请求操作索引库、文档。请求内容用DSL语句来表示。创建索引库和mapping的DSL语法如下:

在这里插入图片描述

# 创建索引库
PUT /heima
{"mappings": {"properties": {"info":{"type": "text","analyzer": "ik_smart"},"email":{"type":"keyword","index": false},"name":{"type":"object","properties": {"firstname":{"type": "keyword"},"lastname":{"type": "keyword"}}}}}
}

d.查看、删除、修改 索引库

查看索引库语法:

GET /索引库名

示例:

GET /heima

删除索引库的语法:

DELETE /索引库名

示例:

DELETE /heima

修改索引库

索引库和mapping一旦创建无法修改,但是可以添加新的字段,语法如下:

PUT /索引库名/_mapping
{"properties": {"新字段名":{"type": "integer"}}
}

示例:

PUT /heima/_mapping
{"properties": {"age":{"type": "integer"}}
}

e.文档操作 (类似MYSQL的数据)

1) 添加文档

新增文档的DSL语法如下:

在这里插入图片描述

# 插入文档
POST /heima/_doc/1
{"info": "黑马程序员","email": "abcd@qq.com","name":{"firstname": "云","lastname" : "赵"}
}

2) 查看文档

查看文档语法:

GET /索引库名/_doc/文档id

示例:

GET /heima/_doc/1

3) 删除文档

删除文档的语法:

DELETE /索引库名/_doc/文档id

示例:

DELETE /heima/_doc/1

4) 修改文档

方式一:全量修改,会先删除旧文档,再添加新文档

在这里插入图片描述

# 全量修改文档
PUT /heima/_doc/3
{"info": "黑马程序员","email": "zhaoyun@123.com","name":{"firstname": "云","lastname" : "赵"}
}

方式二:增量修改,修改指定字段值

在这里插入图片描述

# 局部修改
POST /heima/_update/1
{"doc":{"email": "zYUN@qq.com"}
}

f.RestClient操作索引库

1.引入es的RestHighLevelClient依赖

<dependency><groupId>org.elasticsearch.client</groupId><artifactId>elasticsearch-rest-high-level-client</artifactId><version>7.12.1</version>
</dependency>

2.因为SpringBoot默认的ES版本是7.6.2,所以我们需要覆盖默认的ES版本:

<properties><java.version>1.8</java.version><elasticsearch.version>7.12.1</elasticsearch.version>
</properties>

3.初始化RestHighLevelClient:

public class HotelIndexTest {private RestHighLevelClient client;@Testvoid testInit(){System.out.println(client);}@BeforeEachvoid setUp(){this.client = new RestHighLevelClient(RestClient.builder(HttpHost.create("http://192.168.58.128:9200")));}@AfterEachvoid afterAll() throws Exception {this.client.close();}
}

1) 创建索引库

创建索引库代码如下:

@Test
void createHotelIndex() throws Exception {// 1.创建Request对象CreateIndexRequest request = new CreateIndexRequest("hotel");// 2.准备请求的参数:DSL语句request.source(MAPPING_TEMPLATE, XContentType.JSON);// 3.发送请求client.indices().create(request, RequestOptions.DEFAULT);
}

在constants/HotelConstant中写入已编辑好的DSL语句

package cn.itcast.hotel.constants;public class HotelConstants {public static final String MAPPING_TEMPLATE = "{\n" +"  \"mappings\":{\n" +"    \"properties\": {\n" +"      \"id\":{\n" +"        \"type\": \"keyword\"\n" +"      },\n" +"      \"name\":{\n" +"        \"type\": \"text\",\n" +"        \"analyzer\": \"ik_max_word\",\n" +"        \"copy_to\": \"all\"\n" +"      },\n" +"      \"address\":{\n" +"        \"type\": \"keyword\",\n" +"        \"index\": false\n" +"      },\n" +"      \"price\":{\n" +"        \"type\": \"integer\"\n" +"      },\n" +"      \"score\":{\n" +"        \"type\": \"integer\"\n" +"      },\n" +"      \"brand\":{\n" +"        \"type\": \"keyword\",\n" +"        \"copy_to\": \"all\"\n" +"      },\n" +"      \"city\":{\n" +"        \"type\": \"keyword\"\n" +"      },\n" +"      \"starName\":{\n" +"        \"type\": \"keyword\"\n" +"      },\n" +"      \"business\":{\n" +"        \"type\": \"keyword\",\n" +"        \"copy_to\": \"all\"\n" +"      },\n" +"      \"location\":{\n" +"        \"type\": \"geo_point\"\n" +"      },\n" +"      \"pic\":{\n" +"        \"type\": \"keyword\",\n" +"        \"index\": false\n" +"      },\n" +"      \"all\":{\n" +"        \"type\": \"text\",\n" +"        \"analyzer\": \"ik_max_word\"\n" +"      }\n" +"    }\n" +"  }\n" +"}";
}

2) 删除索引库/判断索引库

删除索引库代码如下:

/*** 删除索引库* @throws Exception*/
@Test
void testDeleteHotelIndex() throws Exception{// 1.创建Request对象DeleteIndexRequest request = new DeleteIndexRequest("hotel");// 2.发送请求client.indices().delete(request, RequestOptions.DEFAULT);
}

判断索引库代码如下:

/*** 判断索引库是否存在* @throws Exception*/
@Test
void testExistsHotelIndex() throws Exception{// 1.创建Request对象GetIndexRequest request = new GetIndexRequest("hotel");// 2.发送请求boolean exists = client.indices().exists(request, RequestOptions.DEFAULT);// 3.输出System.out.println(exists ? "索引库已经存在" : "索引库不存在");
}

g.RestClient操作文档

1) 新增文档

先查询酒店数据,然后给这条数据创建倒排索引,即可完成添加:

@Autowired
private IHotelService hotelService;/*** 新增文档*/
@Test
void testAddDocument() throws IOException {// 根据id查询酒店数据Hotel hotel = hotelService.getById(61083L);// 转换为文档类型HotelDoc hotelDoc = new HotelDoc(hotel);// 1.准备Request对象IndexRequest request = new IndexRequest("hotel").id(hotelDoc.getId().toString());// 2.准备json文档request.source(JSON.toJSONString(hotelDoc), XContentType.JSON);// 3.发送请求client.index(request, RequestOptions.DEFAULT);
}

2) 查询文档

根据id查询到的文档数据是json,需要反序列化为java对象:

/*** 查询文档* @throws Exception*/
@Test
void testGetDocument() throws Exception{// 1.准备RequestGetRequest request = new GetRequest("hotel", "61083");// 2.发送请求,得到响应GetResponse response = client.get(request, RequestOptions.DEFAULT);// 3.解析响应结果String json = response.getSourceAsString();HotelDoc hotelDoc = JSON.parseObject(json, HotelDoc.class);System.out.println(hotelDoc);
}

3) 修改文档

修改文档数据有两种方式:

  • 方式一:全量更新。再次写入id一样的文档,就会删除旧文档,添加新文档
    • 和新增代码没有区别
  • 方式二:局部更新。只更新部分字段
/*** 更新文档* @throws Exception*/
@Test
void testUpdateDocumentById() throws Exception {// 1.创建Request对象UpdateRequest request = new UpdateRequest("hotel", "61083");// 2.准备参数,每2个参数为一对 key valuerequest.doc("price","952","starName","四钻");// 3.更新文档client.update(request, RequestOptions.DEFAULT);
}

4) 删除文档

删除文档代码如下:

/*** 删除文档* @throws Exception*/
@Test
void testDeleteDocument() throws Exception{// 1.创建Request对象DeleteRequest request = new DeleteRequest("hotel", "61083");// 3.更新文档client.delete(request, RequestOptions.DEFAULT);
}

5) 批量导入数据到ES

需求:批量查询酒店数据,然后批量导入索引库中

  • 1.利用mybatis-plus查询酒店数据
  • 2.将查询到的酒店数据(Hotel)转换为文档类型数据(HotelDoc)
  • 3.利用JavaRestClient中的Bulk批处理,实现批量新增文档,示例代码如下
/*** 批量导入数据到ES* @throws Exception*/
@Test
void testBulkRequest() throws Exception {// 批量查询酒店数据List<Hotel> hotels = hotelService.list();// 1.创建Request对象BulkRequest request = new BulkRequest();// 2.准备参数, 添加多个新增的Requestfor (Hotel hotel : hotels) {// 转换为文档类型HotelDocHotelDoc hotelDoc = new HotelDoc(hotel);// 创建新增文档的Request对象request.add(new IndexRequest("hotel").id(hotelDoc.getId().toString()).source(JSON.toJSONString(hotelDoc), XContentType.JSON));}// 3.发送请求client.bulk(request, RequestOptions.DEFAULT);
}

h.DSL查询文档

ES提供了基于JSON的DSL(Domain Specific Language)来定义查询。常见的查询类型包括:

  • 查询所有:查询出所有数据,一般测试用。例如:match_all
  • 全文检索(full text)查询:利用分词器对用户输入内容分词,然后去倒排索引库中匹配。
    • match_query
    • multi_match_query
  • 精确查询:根据精确词条值查找数据,一般是查找keyword、数值、日期、boolean等类型字段。
    • ids
    • range
    • term
  • 地理(geo)查询:根据经纬度查询。
    • geo_distance
    • geo_bounding_box
  • 复合(compound)查询:复合查询可以将上述各种查询条件组合起来,合并查询条件。
    • bool
    • function_score

1) 查询所有

DSL Query基本语法

查询的基本语法如下: 查询所有不需要指定条件值

在这里插入图片描述

# 查询所有
GET /hotel/_search
{"query": {"match_all": {}}
}

2) 全文检索查询

全文检索查询,会对用户输入内容分词,常用于搜索框搜索:

  • match查询 (推荐):全文检索查询的一种,会对用户输入内容分词,然后去倒排索引库检索

在这里插入图片描述

# match查询
GET /hotel/_search
{"query": {"match": {"all": "外滩如家"}}
}
  • multi_match:与match查询类似,只不过允许同时查询多个字段 (参与查询的字段越多,会降低性能)

在这里插入图片描述

# multi_match查询
GET /hotel/_search
{"query": {"multi_match": {"query": "外滩如家","fields": ["brand", "name", "business"]}}
}

3) 精确查询

精确查询一般是查找keyword、数值、日期、boolean等类型字段。所以不会对搜索条件分词。常见的有:

  • term:根据词条精确值查询 (如:品牌名,城市名,城市星级)
  • range:根据值的范围查询 (如:价格,日期,评分)

在这里插入图片描述

# term查询
GET /hotel/_search
{"query": {"term": {"city": {"value": "深圳"}}}
}
# range查询
GET /hotel/_search
{"query": {"range": {"price": {"gte": 1000,"lte": 3000}}}
}

gte 大于等于,gt 大于,lte 小于等于,lt 小于

4) 地理查询

根据经纬度查询。常见的使用场景包括:

  • 携程:搜索我附近的酒店
  • 滴滴:搜索我附近的出租车
  • 微信:搜索我附近的人

根据经纬度查询,官方文档。例如:

  • geo_bounding_box:查询geo_point值落在某个矩形范围的所有文档

在这里插入图片描述

  • geo_distance:查询到指定中心点小于某个距离值的所有文档

在这里插入图片描述

# geo_distance查询
GET /hotel/_search
{"query": {"geo_distance": {"distance": "5km","location": "31.21, 121.5"}}
}

5) 复合查询

复合(compound)查询:复合查询可以将其它简单查询组合起来,实现更复杂的搜索逻辑

  • ​ fuction score:算分函数查询,可以控制文档相关性算分,控制文档排名。例如百度竞价在这里插入图片描述

当我们利用match查询时,文档结果会根据与搜索词条的关联度打分(_score),返回结果时按照分值降序排列。

在这里插入图片描述

1) Function Score Query

使用 function score query,可以修改文档的相关性算分(query score),根据新得到的算分排序。

在这里插入图片描述

案例:给“外滩如家”这个品牌的酒店排名靠前一些

  • 1.哪些文档需要算分加权? 品牌为如家的酒店
  • 2.算分函数是什么? weight就可以
  • 3.加权模式是什么? 求和
# function_score查询
GET /hotel/_search
{"query": {"function_score": {"query": {"match": {"all": "外滩"}},"functions": [{"filter": {"term": {"brand": "如家"}},"weight": 10}],"boost_mode": "sum"}}
}

2) Boolean Query

布尔查询是一个或多个查询子句的组合。子查询的组合方式有:

  • must:必须匹配每个子查询,类似“与”
  • should:选择性匹配子查询,类似“或”
  • must_not:必须不匹配,不参与算分,类似“非”
  • filter:必须匹配,不参与算分

在这里插入图片描述

案例:利用bool查询实现功能,需求:搜索名字包含“如家”,价格不高于400,在坐标31.21,121.5周围10km范围内的酒店。

# boolean查询
GET /hotel/_search
{"query": {"bool": {"must": [{"match": {"name": "如家"}}],"must_not": [{"range": {"price": {"gt": 400}}}],"filter": [{"geo_distance": {"distance": "10km","location": {"lat": 31.21,  "lon": 121.5}}}]}}
}	

i.DSL搜索结果处理

1) 排序

ES支持对搜索结果排序,默认是根据相关度算分(_score)来排序。可以排序字段类型有:keyword类型、数值类型、地理坐标类型、日期类型等。

在这里插入图片描述

案例:对酒店数据按照用户评价降序排序,评价相同的按照价格升序排序

  • 评价是score字段,价格是price字段,按照顺序添加两个排序规则即可。
# sort排序
GET /hotel/_search
{"query": {"match_all": {}},"sort": [{"score": "desc"},{"price": "asc"}]
}

案例:实现对酒店数据按照到你的位置坐标的距离升序排序

  • 获取经纬度的方式:https://lbs.amap.com/demo/jsapi-v2/example/map/click-to-get-lnglat/
  • lon:113.766782, lat:23.012575
# 距离排序
GET /hotel/_search
{"query": {"match_all": {}},"sort": [{"_geo_distance": {"location": {"lat": 23.012575,"lon": 113.766782},"order": "asc","unit": "km"}}]
}

2) 分页

ES 默认情况下只返回top10的数据。而如果要查询更多数据就需要修改分页参数了。

ES中通过修改from、size参数来控制要返回的分页结果:

在这里插入图片描述

深度分页解决方案

针对深度分页,ES提供了两种解决方案:

  • search after:分页时需要排序,原理是从上一次的排序值开始,查询下一页数据。官方推荐使用的方式。
  • scroll:原理将排序数据形成快照,保存在内存。官方已经不推荐使用。

from + size:

  • 优点:支持随机翻页
  • 缺点:深度分页问题,默认查询上限(from + size)是10000
  • 场景:百度、京东、谷歌、淘宝这样的随机翻页搜索

after search:

  • 优点:没有查询上限(单次查询的size不超过10000)

  • 缺点:只能向后逐页查询,不支持随机翻页

  • 场景:没有随机翻页需求的搜索,例如手机向下滚动翻页

scroll:

  • 优点:没有查询上限(单次查询的size不超过10000)

  • 缺点:会有额外内存消耗,并且搜索结果是非实时的

  • 场景:海量数据的获取和迁移。从ES7.1开始不推荐,建议用 after search方案。

3) 高亮

高亮:就是在搜索结果中把搜索关键字突出显示。

原理是这样的:

  • 将搜索结果中的关键字用标签标记出来
  • 在页面中给标签添加css样式

在这里插入图片描述

默认情况下,ES搜索字段与高亮字段一致

  • 可以加上是否匹配的参数 “require_field_match”: “false”,默认true
# 高亮查询,
GET /hotel/_search
{"query": {"match": {"all": "如家"}},"highlight": {"fields": {"name": {"require_field_match": "false"}}}
}

j.RestClient查询文档

通过match_all来演示下基本的API,先看请求DSL的组织:

在这里插入图片描述

在这里插入图片描述

/*** match_all* @throws IOException*/
@Test
void testMatchAll() throws IOException {// 1.准备RequestSearchRequest request = new SearchRequest("hotel");// 2.准备DSLrequest.source().query(QueryBuilders.matchAllQuery());// 3.发送请求SearchResponse response = client.search(request, RequestOptions.DEFAULT);// 4.解析结果handleResponse(response);
}/*** 抽取出解析结果的代码*/
private void handleResponse(SearchResponse response) {// 4.解析结果SearchHits searchHits = response.getHits();// 4.1.查询的总条数long total = searchHits.getTotalHits().value;System.out.println("共搜索到" + total + "条数据");// 4.2.查询的文档数组SearchHit[] hits = searchHits.getHits();for (SearchHit hit : hits) {// 4.3.获取文档sourceString json = hit.getSourceAsString();// 4.4.反序列化HotelDoc hotelDoc = JSON.parseObject(json, HotelDoc.class);System.out.println("hotelDoc = " + hotelDoc);}
}

RestAPI中其中构建DSL是通过HighLevelRestClient中的resource()来实现的,其中包含了查询、排序、分页、高亮等所有功能:

在这里插入图片描述

RestAPI中其中构建查询条件的核心部分是由一个名为QueryBuilders的工具类提供的,其中包含了各种查询方法:

在这里插入图片描述

1) 全文检索文档

全文检索的match和multi_match查询与match_all的API基本一致。差别是查询条件,也就是query的部分。

同样是利用QueryBuilders提供的方法:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

/*** match / multi_match / term / range / Boolean Query* @throws IOException*/
@Test
void testMatch() throws IOException {// 1.准备RequestSearchRequest request = new SearchRequest("hotel");// 2.准备DSL
//        request.source().query(QueryBuilders.matchQuery("all", "上海如家")); // match
//        request.source().query(QueryBuilders.multiMatchQuery("上海如家", "name", "brand", "business")); // match_all
//        request.source().query(QueryBuilders.termQuery("city", "深圳")); // term
//        request.source().query(QueryBuilders.rangeQuery("price").gte(100).lte(550)); // range// Boolean Query 创建布尔查询BoolQueryBuilder boolQuery = QueryBuilders.boolQuery();// 添加must条件boolQuery.must(QueryBuilders.termQuery("city", "深圳"));// 添加filter条件boolQuery.filter(QueryBuilders.rangeQuery("price").gte(200).lte(500));request.source().query(boolQuery);// 3.发送请求SearchResponse response = client.search(request, RequestOptions.DEFAULT);// 4.解析结果handleResponse(response);
}

要构建查询条件,只要记住一个类:QueryBuilders

2) 排序和分页

搜索结果的排序和分页是与query同级的参数,对应的API如下:

/*** 排序和分页* @throws IOException*/
@Test
void testPageAndSort() throws IOException {// 模拟前端传值的 页码,每页大小int page = 1, size = 5;// 1.准备RequestSearchRequest request = new SearchRequest("hotel");// 2.准备DSL// 2.1.queryrequest.source().query(QueryBuilders.matchAllQuery());// 2.2.排序sortrequest.source().sort("price", SortOrder.ASC);// 2.3.分页 from、sizerequest.source().from((page - 1) * size).size(size);// 3.发送请求SearchResponse response = client.search(request, RequestOptions.DEFAULT);// 4.解析结果handleResponse(response);
}

3) 高亮

高亮API包括请求DSL构建和结果解析两部分。

在这里插入图片描述

在这里插入图片描述

/*** 高亮* @throws IOException*/
@Test
void testHighlight() throws IOException {// 1.准备RequestSearchRequest request = new SearchRequest("hotel");// 2.准备DSL// 2.1.queryrequest.source().query(QueryBuilders.matchQuery("all", "如家"));// 2.2.highlightrequest.source().highlighter(new HighlightBuilder().field("name").requireFieldMatch(false));// 3.发送请求SearchResponse response = client.search(request, RequestOptions.DEFAULT);// 4.解析结果handleResponse(response);
}

在解析结果的类上,加上解析高亮的处理逻辑

private void handleResponse(SearchResponse response) {// 4.解析结果SearchHits searchHits = response.getHits();// 4.1.查询的总条数long total = searchHits.getTotalHits().value;System.out.println("共搜索到" + total + "条数据");// 4.2.查询的文档数组SearchHit[] hits = searchHits.getHits();for (SearchHit hit : hits) {// 4.3.获取文档sourceString json = hit.getSourceAsString();// 4.4.反序列化HotelDoc hotelDoc = JSON.parseObject(json, HotelDoc.class);// 获取高亮结果Map<String, HighlightField> highlightFields = hit.getHighlightFields();if (!CollectionUtils.isEmpty(highlightFields)) {// 根据字段名获取高亮结果HighlightField highlightField = highlightFields.get("name");if (highlightField != null){// 获取高亮值String name = highlightField.getFragments()[0].string();// 覆盖非高亮结果hotelDoc.setName(name);}}System.out.println("hotelDoc = " + hotelDoc);}
}

相关文章:

微服务中间件--分布式搜索ES

分布式搜索ES 11.分布式搜索 ESa.介绍ESb.IK分词器c.索引库操作 (类似于MYSQL的Table)d.查看、删除、修改 索引库e.文档操作 (类似MYSQL的数据)1) 添加文档2) 查看文档3) 删除文档4) 修改文档 f.RestClient操作索引库1) 创建索引库2) 删除索引库/判断索引库 g.RestClient操作文…...

触摸屏与PLC之间 EtherNet/IP无线以太网通信

在实际系统中&#xff0c;同一个车间里分布多台PLC&#xff0c;用触摸屏集中控制。通常所有设备距离在几十米到上百米不等。在有通讯需求的时候&#xff0c;如果布线的话&#xff0c;工程量较大耽误工期&#xff0c;这种情况下比较适合采用无线通信方式。 本方案以MCGS触摸屏和…...

Crontab定时任务运行Docker容器(Ubuntu 20)

对于一些离线预测任务&#xff0c;或者D1天的预测任务&#xff0c;可以简单地采用Crontab做定时调用项目代码运行项目 Crontab简介&#xff1a; Linux crontab命令常见于Unix和类Unix的操作系统之中&#xff0c;用于设置周期性被执行的指令。该命令从标准输入设备读取指令&…...

Fegin异步情况丢失上下文问题

在微服务的开发中&#xff0c;我们经常需要服务之间的调用&#xff0c;并且为了提高效率使用异步的方式进行服务之间的调用&#xff0c;在这种异步的调用情况下会有一个严重的问题&#xff0c;丢失上文下 通过以上图片可以看出异步丢失上下文的原因是不在同一个线程&#xff0c…...

《Linux从练气到飞升》No.17 进程创建

&#x1f57a;作者&#xff1a; 主页 我的专栏C语言从0到1探秘C数据结构从0到1探秘Linux菜鸟刷题集 &#x1f618;欢迎关注&#xff1a;&#x1f44d;点赞&#x1f64c;收藏✍️留言 &#x1f3c7;码字不易&#xff0c;你的&#x1f44d;点赞&#x1f64c;收藏❤️关注对我真的…...

python + pyside2,pyside6,运行错误

在visual studio code运行pyside的时候报错 qt.qpa.plugin: Could not find the Qt platform plugin “windows“ in 后来发现在cmd命令行可以正常运行&#xff0c;应该是VScode和虚拟机类似的问题。 额外设置一下环境变量就可以了。 执行print(os.path.dirname(PySide6.__f…...

第60步 深度学习图像识别:误判病例分析(Pytorch)

基于WIN10的64位系统演示 一、写在前面 上期内容基于Tensorflow环境做了误判病例分析&#xff08;传送门&#xff09;&#xff0c;考虑到不少模型在Tensorflow环境没有迁移学习的预训练模型&#xff0c;因此有必要在Pytorch环境也搞搞误判病例分析。 本期以SqueezeNet模型为…...

基于Java+SpringBoot+vue前后端分离夕阳红公寓管理系统设计实现

博主介绍&#xff1a;✌全网粉丝30W,csdn特邀作者、博客专家、CSDN新星计划导师、Java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专…...

远控木马病毒分析

一、病毒简介 SHA256:880a402919ba4e896f6b4b2595ecb7c06c987b025af73494342584aaa84544a1 MD5:0902b9ff0eae8584921f70d12ae7b391 SHA1:f71b9183e035e7f0039961b0ac750010808ebb01 二、行为分析 同样在我们win7虚拟机中&#xff0c;使用火绒剑进行监控&#xff0c;分析行为…...

线性代数的学习和整理7:各种特殊效果矩阵汇总

目录 1 矩阵 1.1 1维的矩阵 1.2 2维的矩阵 1.3 没有3维的矩阵---3维的是3阶张量 1.4 下面本文总结的都是各种特殊效果矩阵特例 2 方阵: 正方形矩阵 3 单位矩阵 3.1 单位矩阵的定义 3.2 单位矩阵的特性 3.3 为什么单位矩阵I是 [1,0;0,1] 而不是[0,1;1,0] 或[1,1;1,1]…...

[git]github上传大文件

github客户端最高支持100Mb文件上传&#xff0c;如果要>100M只能用git-lfs&#xff0c;但是测试发现即使用git lfs&#xff0c;我上传2.5GB也不行&#xff0c;测试737M文件可以&#xff0c;GitHub 目前 Git LFS的总存储量为1G左右&#xff0c;超过需要付费。(上传失败时&…...

element ui - el-select获取点击项的整个对象item

1.背景 在使用 el-select 的时候&#xff0c;经常会通过 change 事件来获取当前绑定的 value &#xff0c;即对象中默认的某个 value 值。但在某些特殊情况下&#xff0c;如果想要获取的是点击项的整个对象 item&#xff0c;该怎么做呢&#xff1f; 2.实例 elementUI 中是可…...

实现SSM简易商城项目的购物车实现

实现SSM简易商城项目的购物车实现 在这篇博客中&#xff0c;我们将使用SSM框架来实现一个简易的购物车功能。我们将使用Spring框架来管理Bean&#xff0c;使用SpringMVC框架来处理HTTP请求&#xff0c;使用MyBatis框架来操作数据库。 实现SSM简易商城项目的购物车功能的思路如…...

【学习FreeRTOS】第17章——FreeRTOS任务通知

1.任务通知的简介 任务通知&#xff1a;用来通知任务的&#xff0c;任务控制块中的结构体成员变量 ulNotifiedValue就是这个通知值。 使用队列、信号量、事件标志组时都需另外创建一个结构体&#xff0c;通过中间的结构体进行间接通信&#xff01; 使用任务通知时&#xff0c…...

GO-vscode远程开发和调试

本文内容主要包括&#xff1a; 概述&#xff1a; 主要就是把代码放到服务器上然后远程去开发和调试 工具&#xff1a; vscode 远程端&#xff1a; linux 一.安装远程插件 vscode安装Remote - SSH&#xff0c;Remote Explorer&#xff0c;Remote Development&#xff0c…...

【笔记】判断两个Double类型的值是否相同

在Java中&#xff0c;将两个double值转换为String类型&#xff0c;然后使用equals方法进行比较是一个常见的做法&#xff0c;但是这种方法并不是完全可靠&#xff0c;特别是在涉及浮点数的精度时仍然可能会遇到问题。 浮点数在内部以二进制表示&#xff0c;有时会存在舍入误差…...

Linux —— nfs文件系统

简介 NFS 是Network File System的缩写&#xff0c;即网络文件系统。一种使用于分散式文件系统的协定&#xff0c;由Sun公司开发&#xff0c;于1984年向外公布。功能是通过网络让不同的机器、不同的操作系统能够彼此分享个别的数据&#xff0c;让应用程序在客户端通过网络访问位…...

数据降维 | MATLAB实现T-SNE降维特征可视化

数据降维 | MATLAB实现T-SNE降维特征可视化 目录 数据降维 | MATLAB实现T-SNE降维特征可视化降维效果基本描述程序设计参考资料 降维效果 基本描述 T-SNE降维特征可视化&#xff0c;MATLAB程序。 T-分布随机邻域嵌入&#xff0c;主要用途是对高维数据进行降维并进行可视化&…...

蓝桥杯上岸每日N题 (交换瓶子)

大家好 我是寸铁 希望这篇题解对你有用&#xff0c;麻烦动动手指点个赞或关注&#xff0c;感谢您的关注 题目描述 有 N 个瓶子&#xff0c;编号 1∼N&#xff0c;放在架子上。 比如有 5 个瓶子&#xff1a; 2 1 3 5 4 要求每次拿起 2 个瓶子&#xff0c;交换它们的位置。 …...

GMS基本模块TIN、Solids、Modflow2000/2005、MT3DMS、MODPATH。及其在地下水流动、溶质运移、粒子追踪方面的应用

解决地下水数值模拟技术实施过程中遇到的困难&#xff0c;从而提出切实可行的环境保护措施&#xff0c;达到有效保护环境、防治地下水污染&#xff0c;推动经济社会可持续发展的目的。 &#xff08;1&#xff09;水文地质学&#xff0c;地下水数值模拟基础理论&#xff1b;&am…...

MySQL数据库中间件Mycat介绍及下载安装(教程)

一&#xff0c;介绍 MyCat是开源的、活跃的、基于Java语言编写的MySQL数据库中间件。可以像使用MySQL一样来使用MyCat&#xff0c;对于开发人员来说根本感觉不到MyCat的存在。 开发人员只需要连接MyCat即可&#xff0c;而具体底层用到几台数据库&#xff0c;每一台数据库服务器…...

【VMware】CentOS 设置静态IP(Windows 宿主机)

文章目录 1. 更改网络适配器设置2. 配置虚拟网络编辑器3. 修改 CentOS 网络配置文件4. ping 测试结果 宿主机&#xff1a;Win11 22H2 虚拟机&#xff1a;CentOS-Stream-9-20230612.0 (Minimal) 1. 更改网络适配器设置 Win R&#xff1a;control 打开控制面板 依次点击&#x…...

机器学习十大算法之七——随机森林

0 引言 集成学习&#xff08;ensemble learning&#xff09;是时下非常流行的机器学习算法&#xff0c;它本身不是一个单独的机器学习算法&#xff0c;而是通过在数据上构建多个横型&#xff0c;集成所有模型的建模结果&#xff0c;基本上所有的机器学习领域都可以看到集成学习…...

spring boot 3使用 elasticsearch 提供搜索建议

业务场景 用户输入内容&#xff0c;快速返回建议&#xff0c;示例效果如下 技术选型 spring boot 3elasticsearch server 7.17.4spring data elasticsearch 5.0.1elasticsearch-java-api 8.5.3 pom.xml <dependency><groupId>org.springframework.boot</gr…...

住宅IP:解锁更快速、稳定的互联网,你准备好了吗?

随着互联网的广泛普及&#xff0c;我们对网络的需求也越来越高。无论是工作、学习还是娱乐&#xff0c;我们都希望能够享受到更快速、稳定的互联网连接。而在实现这一目标的过程中&#xff0c;住宅IP正逐渐崭露头角&#xff0c;成为了一种备受关注的解决方案。那么&#xff0c;…...

支持dolby vision的盒子接支持dolby vision的电视,在adaptive hdr时,播放非dv的hdr视频,输出sdr

支持dolby vision的盒子接支持dolby vision的电视&#xff0c;setting选择adaptive hdr&#xff0c;按照这个配置在播放非dv的hdr视频时&#xff0c;会输出sdr。 看起来是很不合理的&#xff0c;高级的产品播放高级的片源&#xff0c;却输出低级的画质。 想要搞清楚这个问题&am…...

使用ffmpeg将WebM文件转换为MP4文件的简单应用程序

tiktok网上下载的short视频是webm格式的&#xff0c;有些程序无法处理该程序&#xff0c;比如roop程序&#xff0c;本文介绍了如何使用wxPython库创建一个简单的GUI应用程序&#xff0c;用于将WebM文件转换为MP4文件。这个应用程序使用Python编写&#xff0c;通过调用FFmpeg命令…...

Prompt-“设计提示模板:用更少数据实现预训练模型的卓越表现,助力Few-Shot和Zero-Shot任务”

Prompt任务&#xff08;Prompt Tasks&#xff09; 通过设计提示&#xff08;prompt&#xff09;模板&#xff0c;实现使用更少量的数据在预训练模型&#xff08;Pretrained Model&#xff09;上得到更好的效果&#xff0c;多用于&#xff1a;Few-Shot&#xff0c;Zero-Shot 等…...

玩转Mysql系列 - 第6篇:select查询基础篇

这是Mysql系列第6篇。 环境&#xff1a;mysql5.7.25&#xff0c;cmd命令中进行演示。 DQL(Data QueryLanguage)&#xff1a;数据查询语言&#xff0c;通俗点讲就是从数据库获取数据的&#xff0c;按照DQL的语法给数据库发送一条指令&#xff0c;数据库将按需求返回数据。 DQ…...

【SpringCloud技术专题】「Gateway网关系列」(1)微服务网关服务的Gateway组件的原理介绍分析

为什么要有服务网关? 我们都知道在微服务架构中&#xff0c;系统会被拆分为很多个微服务。那么作为客户端要如何去调用这么多的微服务呢&#xff1f;难道要一个个的去调用吗&#xff1f;很显然这是不太实际的&#xff0c;我们需要有一个统一的接口与这些微服务打交道&#xf…...