分类预测 | MATLAB实现1D-2D-CNN-GRU的多通道输入数据分类预测
分类预测 | MATLAB实现1D-2D-CNN-GRU的多通道输入数据分类预测
目录
- 分类预测 | MATLAB实现1D-2D-CNN-GRU的多通道输入数据分类预测
- 分类效果
- 基本介绍
- 程序设计
- 参考资料
分类效果
基本介绍
结合1D时序-2D图像多模态融合的CNN-GRU故障识别算法,基于一维时序信号和二维图像多元信息融合的卷积神经网络结门控循环单元网络的数据分类预测/故障识别算法。要求2020版以上。
采用双支路输入,一路为图像输入经CNN提取特征,一路为特征序列输入经GRU提取特征,特征融合后计算输出结果。
1、多模态融合:将一维时序信号和二维图像融合,可以综合利用不同模态的信息,从而更全面地描述数据的特征。这有助于提取更丰富、更有区别性的特征,从而提高分类和识别的准确性。
2、时序信息捕获:GRU(门控循环单元)是一种适用于时序数据的循环神经网络,它能够捕获一维时序信号中的动态变化和趋势。通过将GRU与CNN结合,算法可以同时考虑时序特征和空间特征,进一步提升了算法的性能。
3、空间特征学习:CNN(卷积神经网络)在图像处理中表现出色,能够有效地学习图像的空间特征和局部模式。将CNN用于图像数据的处理可以帮助提取图像的纹理、形状和边缘等特征,有助于更准确地进行分类和故障识别。
4、融合优势:通过融合不同模态的信息,算法可以弥补一维时序信号和二维图像各自的局限性。例如,图像可能对于某些故障模式更敏感,而时序信号则对于其他模式更敏感。将它们结合起来,可以增强算法的鲁棒性和泛化能力。
5、提高泛化能力:多模态融合可以帮助算法更好地理解数据的本质特征,从而减少过拟合的风险,提高算法在新数据上的泛化能力。
适用于轴承故障识别/诊断/分类,变压器油气故障识别识别/诊断/分类,电力系统输电线路故障区域识别/诊断/分类,绝缘子、配网故障识别/诊断/分类等等。
直接替换数据就可以,使用EXCEL表格直接导入,直接更换图像数据,不需要对程序大幅修改。程序内有详细注释,便于理解程序运行。
程序设计
- 完整源码和数据获取方式: 私信回复MATLAB实现1D-2D-CNN-GRU的多通道输入数据分类预测。
%--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
clc
clear all
figure
plot( preY,'o','Color','linewidth',2)
hold on
plot(true_label,'-+','Color',[0 0 0]./255,'linewidth',2)
legend('预测值','真实值')
xlabel('预测样本')
ylabel('预测结果')
string = {'测试集预测结果对比'; ['准确率=' num2str(acc*100) '%']};
title(string)
grid
%--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/116071412
[2] https://blog.csdn.net/kjm13182345320?spm=1010.2135.3001.5343
相关文章:
分类预测 | MATLAB实现1D-2D-CNN-GRU的多通道输入数据分类预测
分类预测 | MATLAB实现1D-2D-CNN-GRU的多通道输入数据分类预测 目录 分类预测 | MATLAB实现1D-2D-CNN-GRU的多通道输入数据分类预测分类效果基本介绍程序设计参考资料 分类效果 基本介绍 结合1D时序-2D图像多模态融合的CNN-GRU故障识别算法,基于一维时序信号和二维图…...
【LeetCode】125. 验证回文串 - 双指针
这里写自定义目录标题 2023-8-24 09:31:12 125. 验证回文串 2023-8-24 09:31:12 最关键的是 注意 题目中的 “字母和数字都属于字母数字字符。” 使用ascii码进行判断就行了 class Solution {public boolean isPalindrome(String s) {int p 0, q s.length() - 1;while (…...
centos7设置java后端项目开机自启【脚本、开机自启】
1.切换目录 cd /etc/init.d/2.编辑脚本 vim wbs-service-start.sh编辑内容 #!/bin/bash # chkconfig: 2345 80 90 # description: auto_runnohup java -jar /usr/java/wbs-service.jar > /dev/null 2>&1 & echo $! > /var/run/wbs-service.pid3.添加进入系…...
亿赛通电子文档安全管理系统 RCE漏洞复现(QVD-2023-19262)
0x01 产品简介 亿赛通电子文档安全管理系统(简称:CDG)是一款电子文档安全加密软件,该系统利用驱动层透明加密技术,通过对电子文档的加密保护,防止内部员工泄密和外部人员非法窃取企业核心重要数据资产&…...
一文读懂 Nuxt.js 服务端组件
服务端组件在 Web 开发生态系统中变得越来越普遍。传统上,在单页面应用中,即使是服务端渲染的应用,服务端仅与第一次加载相关,之后将由客户端接管。这意味着 Web 应用的每个部分都必须能够在客户端和服务端上渲染。 相反…...
LeetCode--HOT100题(39)
目录 题目描述:101. 对称二叉树(简单)题目接口解题思路代码 PS: 题目描述:101. 对称二叉树(简单) 给你一个二叉树的根节点 root , 检查它是否轴对称。 LeetCode做题链接:LeetCode-…...
“车-路-网”电动汽车充电负荷时空分布预测(matlab)
目录 1 主要内容 2 部分代码 3 程序结果 4 下载链接 1 主要内容 该程序参考《基于动态交通信息的电动汽车充电负荷时空分布预测》和《基于动态交通信息的电动汽车充电需求预测模型及其对配网的影响分析》文献模型,考虑私家车、出租车和共用车三类交通工具特性和…...
【核磁共振成像】方格化重建
目录 一、缩放比例二、方格化变换的基础三、重建时间四、方格化核 一、缩放比例 对于笛卡尔K空间直线轨迹数据可直接用FFT重建,而如果K空间轨迹的任何部分都是非均匀取样的 可用DFT直接重建,有时称为共轭相位重建,但此法太慢不实用。把数据再…...
JAVA中时间戳和LocalDateTime的互转
时间戳转LocalDateTime: 要将时间戳转换为LocalDateTime并将LocalDateTime转换回时间戳,使用Java的java.time包。以下是示例代码: import java.time.Instant; import java.time.LocalDateTime; import java.time.ZoneId;public class Times…...
无涯教程-进程 - 创建终止
到现在为止,我们知道无论何时执行程序,都会创建一个进程,并且该进程将在执行完成后终止,如果我们需要在程序中创建一个进程,并且可能希望为其安排其他任务,该怎么办。能做到吗?是的,显然是通过…...
LLMs参考资料第一周以及BloombergGPT特定领域的训练 Domain-specific training: BloombergGPT
1. 第1周资源 以下是本周视频中讨论的研究论文的链接。您不需要理解这些论文中讨论的所有技术细节 - 您已经看到了您需要回答讲座视频中的测验的最重要的要点。 然而,如果您想更仔细地查看原始研究,您可以通过以下链接阅读这些论文和文章。 1.1 Trans…...
LeetCode字符串数组最长公共前缀
编写一个函数来查找字符串数组中的最长公共前缀。 如果不存在公共前缀,返回空字符串 “”。 示例 1: 输入:strs [“flower”,“flow”,“flight”] 输出:“fl” 示例 2: 输入:strs [“dog”,“raceca…...
Git gui教程---第八篇 Git gui的使用 创建一个分支
一般情况下一个主分支下代码稳定的情况下会新建出一个分支,然后在分支上修改,修改完成稳定后再合并到主分支上。 或者几个人合作写一份代码,每个人各一个分支,测试稳定再合并到主分支上。 在git gui选择菜单栏“分支”࿰…...
Docker修改daemon.json添加日志后无法启动的问题
docker实战(一):centos7 yum安装docker docker实战(二):基础命令篇 docker实战(三):docker网络模式(超详细) docker实战(四):docker架构原理 docker实战(五):docker镜像及仓库配置 docker实战(六):docker 网络及数据卷设置 docker实战(七):docker 性质及版本选择 认知升…...
QT6编译的文件分布情况
工程文件和编译文件位置分布 工程文件是自己建立的源文件位置,而同等级的位置在工程构建时会重新生成一个编译后的文件夹,里面包含了可执行的exe文件。而这个文件夹的内容也是QT ide运行时读取的文件,但这个文件的内容在IDE中如果不重新构建…...
2023中国算力大会 | 中科驭数加入DPU推进计划,探讨DPU如何激活算网融合新基建
8月18日,由工业和信息化部、宁夏回族自治区人民政府共同主办的2023中国算力大会在宁夏银川隆重召开。作为DPU算力基础设施领军企业,中科驭数产品运营部副总经理曹辉受邀在中国信通院承办的算网融合分论坛发表主题演讲《释放极致算力 DPU激活算网融合新基…...
leetcode 115. 不同的子序列
2023.8.25 使用dp数组解决。 定义一个二维dp数组,dp[i][j]的含义为:字符串s(下标为i-1)中,子序列t(下标为j-1)出现的个数。 当字符串s[i-1]和t[j-1]相同时,递推公式为:d…...
gradio应用transformer模块部署生成式人工智能应用程序
文章目录 gradio简介hello world范例文本分类文本问答抽取式问答gr.Interface自定义实现问答Blocks使用gradio简介 gradio只需在原有的代码中增加几行,就能自动化生成交互式web页面,并支持多种输入输出格式,比如图像分类中的图>>标签,超分辨率中的图>>图等。 …...
【目标检测】“复制-粘贴 copy-paste” 数据增强实现
文章目录 前言1. 效果展示代码说明3. 参考文档4. 不合适点 前言 本文来源论文《Simple Copy-Paste is a Strong Data Augmentation Method for Instance Segmentation》(CVPR2020),对其数据增强方式进行实现。 论文地址:https:/…...
深度学习知识总结2:主要涉及深度学习基础知识、卷积神经网络和循环神经网络
往期链接:Summer 1 : Summarize linear neural networks and multi-layer perceptron Summer 2: Summarize CNN and RNN 文章目录 Summer 2: Summarize CNN and RNNPart 1 Deep Learning> 层和块> 参数管理和延后初始化> 读写文件和GPU Part 2 CNN> 从…...
Spring Boot 集成 WebSocket 实现服务端推送消息到客户端
WebSocket 简介 WebSocket 协议是基于 TCP 的一种新的网络协议,它实现了浏览器与服务器全双工(full-duplex)通信—允许服务器主动发送信息给客户端,这样就可以实现从客户端发送消息到服务器,而服务器又可以转发消息到客…...
vr游乐场项目投资方案VR主题游乐馆互动体验
VR文旅景区沉浸互动体验项目是指利用虚拟现实技术在文旅景区中创建沉浸式的互动体验项目。通过虚拟现实技术,游客可以身临其境地体验景区的风景和文化,与虚拟场景中的元素进行互动。 普乐蛙VR设备 普乐蛙VR设备案例分享 这种项目可以为游客带来全新的旅游…...
chrom扩展开发配合百度图像文字识别实现自动登录(后端.net core web api)
好久没做浏览器插件开发了,因为公司堡垒机,每次登录都要输入账号密码和验证码。太浪费时间了,就想着做一个右键菜单形式的扩展。 实现思路也很简单,在这里做下记录,方便下次开发参考。 一,先来了解下chro…...
香港服务器怎么打开SSH
SSH是一种远程登录协议,可以通过加密方式在网络上安全地传输数据。它允许用户在远程服务器上执行命令,管理文件和目录,并进行其他系统管理任务。 如何打开SSH服务? 1.确认已安装OpenSSH服务器: 你可以通过命令sudoapt-geti…...
【LeetCode】437.路径总和Ⅲ
题目 给定一个二叉树的根节点 root ,和一个整数 targetSum ,求该二叉树里节点值之和等于 targetSum 的 路径 的数目。 路径 不需要从根节点开始,也不需要在叶子节点结束,但是路径方向必须是向下的(只能从父节点到子节…...
Mybatis-plus中操作JSON字段
1.实体类上要加上自动映射 TableName(value "school", autoResultMap true)2.json字段上加上json处理器 TableField(value "cover_url", typeHandler JacksonTypeHandler.class)private List<String> cover_url;参考博客 http://www.dedeyun.co…...
第十五课、Windows 下打包发布 Qt 应用程序
功能描述:讲解了 Windows 下打包发布 Qt 应用程序的三种方法,并对比优缺点 一、利用 windepolyqt 工具打包发布 Qt 提供了一个 windeployqt 工具来自动创建可部署的文件夹。 打包发布流程: 1. 新建一个文件夹,将编译后的可执行…...
【php】windows下php运行已有php web项目环境配置教程
php环境配置教程 php安装composer安装扩展安装redis扩展安装 composer install 本文操作系统使用的是win11,软件PhpStorm 2023.1 php安装 要安装的php版本可以在composer.json看到,下载安装对应版本 windows下载地址https://windows.php.net/download …...
【mybatis】 mybatis在mysql 更新update 操作 更新时间字段按照年月日时分秒格式 更新为当前时间...
参考链接 【mybatis】 mybatis在mysql 更新update 操作 更新时间字段按照年月日时分秒格式 更新为当前时间…...
C++动态规划经典案例解析之合并石子
1. 前言 区间类型问题,指求一个数列中某一段区间的值,包括求和、最值等简单或复杂问题。此类问题也适用于动态规划思想。 如前缀和就是极简单的区间问题。如有如下数组: int nums[]{3,1,7,9,12,78,32,5,10,11,21,32,45,22}现给定区间信息[…...
做资料分享网站/网站建设哪家好公司
把 downloading 的对象ZIP放到 C:\Users\xxx\.gradle\wrapper\dists\gradle-4.4.1-bin\23iuwefoquifqjweou2354 路径下,再执行bat文件就会跳过下载,自动解压缩。 注:23iuwefoquifqjweou2354 这个每台电脑上的路径是不一样的。都会有这样一串文…...
网站关闭申请书/搜索引擎优化的技巧
解决复杂问题不可能通过一个 SQL 语句完成,我们需要执行多个 SQL 操作。流程控制语句的作用就是控制存储过程中 SQL 语句的执行顺序,是我们完成复杂操作必不可少的一部分。只要是执行的程序,流程就分为三大类: 顺序结构࿱…...
新手用什么程序建网站/免费自制app软件
近日,国际著名的市场研究公司IDC发布了《中国Linux市场2005-2009年预测与分析》报告。报告预测,中国Linux市场2005年到2009年的年平均增长率为23.9%。 报告显示,Turbolinux公司2004年的销售收入相比2003年进一步扩大,居中国Linux市…...
java做网站书/seo建站教程
代码地址: https://gitee.com/DanShenGuiZu/learnDemo/tree/master/springboot_admin_learn 一、介绍 默认情况下,日志文件无法通过执行器端点访问,因此在Spring Boot Admin中不可见。为了启用日志文件执行器端点,可以这样做 或者 设置logg…...
.net购物网站开发/如何制作网页教程
在使用Nginx时,经常会碰到502 Bad Gateway和504 Gateway Time-out错误,下面以NginxPHP-FPM来分析下这两种常见错误的原因和解决方案。 1.502 Bad Gateway错误 在php.ini和php-fpm.conf中分别有这样两个配置项:max_execution_time和request_te…...
西安网站建设报价方案/公司网站如何推广
总是被同学们问到,如何学习C和C才不茫然,才不是乱学,想了一下,这里给出一个总的回复。 一家之言,欢迎拍砖哈。 1、可以考虑先学习C。 大多数时候,我们学习语言的目的,不是为了成为一个语言专家&…...