神经网络的基本骨架—nn.Module使用
一、pytorch官网中torch.nn的相关简介

可以看到torch.nn中有许多模块:

二、Containers模块
1、MODULE(CLASS : torch.nn.Module)

import torch.nn as nn
import torch.nn.functional as Fclass Model(nn.Module):#nn.Module---所有神经网络模块的基类。def __init__(self): #初始化super(Model, self).__init__()self.conv1 = nn.Conv2d(1, 20, 5)self.conv2 = nn.Conv2d(20, 20, 5)def forward(self, x): #前向计算x = F.relu(self.conv1(x))return F.relu(self.conv2(x))forward(*input)
Defines the computation performed at every call. Should be overridden by all subclasses.
2、搭建神经网络模型
import torch
import torch.nn as nn
import torch.nn.functional as F
# 定义自己的神经网络模板
class Lemon(nn.Module):def __init__(self) -> None:super().__init__()def forward(self,input):output = input + 1return output
# 创建神经网络
lemon = Lemon()
x = torch.tensor(1.0)
output = lemon(x)
print(output)三、Convolution Layers
nn.Conv1d/nnCon2d


input – input tensor of shape (minibatch,in_channels,iH,iW)输入
weight – filters of shape (out_channels,groupsin_channels,kH,kW)权重/卷积核
bias – optional bias tensor of shape (out_channels). Default: None偏置
stride – the stride of the convolving kernel. Can be a single number or a tuple (sH, sW). Default: 1步进/长 SH和SW分别控制横向的步进和纵向的步进
padding – implicit paddings on both sides of the input. Can be a single number or a tuple (padH, padW). Default: 0
dilation – the spacing between kernel elements. Can be a single number or a tuple (dH, dW). Default: 1
groups – split input into groups, in_channelsin_channels should be divisible by the number of groups. Default: 1

import torch
import torch.nn.functional as F
# 输入
input = torch.tensor([[1,2,0,3,1],[0,1,2,3,1],[1,2,1,0,0],[5,2,3,1,1],[2,1,0,1,1]])
# 卷积核
kernel = torch.tensor([[1,2,1],[0,1,0],[2,1,0]])
print(input.shape) #torch.Size([5, 5])
print(kernel.shape) #torch.Size([3, 3])
#官方文档中输入input和卷积核weight需要四个参数——>input tensor of shape (minibatch,in_channels,iH,iW)
#所以可以使用reshape二参变四参
input = torch.reshape(input,(1,1,5,5)) #torch.Size([1, 1, 5, 5])
kernel = torch.reshape(kernel,(1,1,3,3)) #torch.Size([1, 1, 3, 3])
print(input.shape) #torch.Size([5, 5])
print(kernel.shape) #torch.Size([3, 3])output = F.conv2d(input,kernel,stride=1)
print(output)一般来讲,输出的维度 = 输入的维度 - 卷积核大小/stride + 1
padding =1,为上下左右各填充一行,空的地方默认为0

相关文章:
神经网络的基本骨架—nn.Module使用
一、pytorch官网中torch.nn的相关简介可以看到torch.nn中有许多模块:二、Containers模块1、MODULE(CLASS : torch.nn.Module)import torch.nn as nn import torch.nn.functional as Fclass Model(nn.Module):#nn.Module---所有神经网络模块的…...
面试官:你是怎样进行react组件代码复用的
mixin Mixin 设计模式 Mixin(混入)是一种通过扩展收集功能的方式,它本质上是将一个对象的属性拷贝到另一个对象上面去,可以拷贝多个属性到一个对象上,为了解决代码复用问题。 常用的方法:JQuery 的 exte…...
arxiv2017 | 用于分子神经网络建模的数据增强 SMILES Enumeration
论文标题:SMILES Enumeration as Data Augmentation for Neural Network Modeling of Molecules论文地址:https://arxiv.org/abs/1703.07076代码地址:https://github.com/Ebjerrum/SMILES-enumeration一、摘要摘要中明显提出:先指…...
倒计时2天!TO B人的传统节日,2023年22客户节(22DAY)
去年,2022.02.22,正月二十二星期二,在这个最多2的一天,成功举办了“首届22客户节(22DAY)”,一群To B互联网人相约杭州见证; 癸卯兔年,2023.02.22,让我们再度…...
java版工程管理系统Spring Cloud+Spring Boot+Mybatis实现工程管理系统源码
java版工程管理系统Spring CloudSpring BootMybatis实现工程管理系统 工程项目各模块及其功能点清单 一、系统管理 1、数据字典:实现对数据字典标签的增删改查操作 2、编码管理:实现对系统编码的增删改查操作 3、用户管理:管理和…...
数据结构刷题(六):142环形链表II、242有效的字母异位词、383赎金信、349两个数组的交集
1.环形链表II题目链接思路:设置快慢双指针注意:(1)是否有环(快慢双指针是否能碰面也就是相等)(2)环形入口的判断。从头结点出发一个指针,从相遇节点 也出发一个指针&…...
OpenGL学习日记之光照计算
引言 现实生活中的光照极其复杂,而且会收到很多因素的影响,是我们当前计算机的算力无法模拟的。因此我们会根据一些简化的模型来模拟现实光照,这样在可以模拟出近似的光照感受,但是又没有那么复杂的计算。 常用的光照模型有&…...
七大排序经典排序算法
吾日三省吾身:高否?富否?帅否?答曰:否。滚去学习!!!(看完这篇文章先)目前只有C和C的功底,暂时还未开启新语言的学习,但是大同小异,语法都差不多。目录:一.排序定义二.排序…...
设计模式—“对象性能”
面向对象很好地解决了“抽象”的问题,但是必不可免地要付出一定的代价。对于通常情况来讲,面向对象的成本大都可以忽略不计。但是某些情况,面向对象所带来的成本必须谨慎处理。 典型模式有:Singleton、Flyweight 一、Flyweight 运用共享技术将大量细粒度的对象进项复用,…...
基于Spring Boot的零食商店
文章目录项目介绍主要功能截图:登录后台首页个人信息管理用户管理前台首页购物车部分代码展示设计总结项目获取方式🍅 作者主页:Java韩立 🍅 简介:Java领域优质创作者🏆、 简历模板、学习资料、面试题库【关…...
Python语言的优缺点
为初学者而著!适合准备入行开发的零基础员学习python。python也是爬虫、大数据、人工智能等知识的基础。感兴趣的小伙伴可以评论区留言,领取视频教程资料和小编一起学习,共同进步!https://www.bilibili.com/video/BV13D4y1G7pt/?…...
3款强大到离谱的电脑软件,个个提效神器,从此远离加班
推荐3款让你偷懒,让你上头的提效电脑软件,个个功能强大,让你远离加班! 很多几个小时才能做好的事情,用上它们,只需要5分钟就行!! 1、JNPF —— 个人最喜欢的低代码软件 它为开发者…...
vue3 使用typescript小结
最近学习vue3 typescript,网上看了很多文章,汇总一下,分享给大家,希望会对大家有帮助。 一. 为props标注类型 defineProps()宏函数支持从它的参数中推导类型: <script setup langts>import { defineProps } fro…...
PYTHON爬虫基础
一、安装package 在使用爬虫前,需要先安装三个包,requests、BeautifulSoup、selenium。 输入如下代码,若无报错,则说明安装成功。 import requests from bs4 import BeautifulSoup import selenium二、Requests应用 了解了原理…...
JavaScript刷LeetCode模板技巧篇(一)
虽然很多人都觉得前端算法弱,但其实 JavaScript 也可以刷题啊!最近两个月断断续续刷完了 leetcode 前 200 的 middle hard ,总结了一些刷题常用的模板代码。 常用函数 包括打印函数和一些数学函数。 const _max Math.max.bind(Math); co…...
ros-sensor_msgs/PointCloud2消息内容解释
1.字段解释 header-----头文件,包含消息的序列号,时间戳(系统时间)和坐标系id,其中secs为秒,nsecs为去除秒数后剩余的纳秒数 height-----点云的高度,如果是无序点云,则为1,例子中的点云为有序点…...
LeetCode 每日一题2347. 最好的扑克手牌
Halo,这里是Ppeua。平时主要更新C语言,C,数据结构算法......感兴趣就关注我吧!你定不会失望。 🌈个人主页:主页链接 🌈算法专栏:专栏链接 我会一直往里填充内容哒! &…...
MMPBSA计算--基于李继存老师gmx_mmpbsa脚本
MMPBSA计算–基于李继存老师gmx_mmpbsa脚本 前期准备 软件安装 安装gromacs, 可以查阅 我的blogGromacs-2022 GPU-CUDA加速版 unbantu 安装 apbs, sudo apt install apbs 安装 gawk, sudo apt install gawk MD模拟好的文件 我们以研究蛋白小分子动态相互作用-III(蛋白配体…...
Kafka优化篇-压测和性能调优
简介 Kafka的配置详尽、复杂,想要进行全面的性能调优需要掌握大量信息,这里只记录一下我在日常工作使用中走过的坑和经验来对kafka集群进行优化常用的几点。 Kafka性能调优和参数调优 性能调优 JVM的优化 java相关系统自然离不开JVM的优化。首先想到…...
MinIo-SDK
3.2.5 SDK 3.2.5.1上传文件 MinIO提供多个语言版本SDK的支持,下边找到java版本的文档: 地址:https://docs.min.io/docs/java-client-quickstart-guide.html 最低需求Java 1.8或更高版本: maven依赖如下: XML<dependency&g…...
后进先出(LIFO)详解
LIFO 是 Last In, First Out 的缩写,中文译为后进先出。这是一种数据结构的工作原则,类似于一摞盘子或一叠书本: 最后放进去的元素最先出来 -想象往筒状容器里放盘子: (1)你放进的最后一个盘子(…...
springboot 百货中心供应链管理系统小程序
一、前言 随着我国经济迅速发展,人们对手机的需求越来越大,各种手机软件也都在被广泛应用,但是对于手机进行数据信息管理,对于手机的各种软件也是备受用户的喜爱,百货中心供应链管理系统被用户普遍使用,为方…...
Docker 运行 Kafka 带 SASL 认证教程
Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明:server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...
大语言模型如何处理长文本?常用文本分割技术详解
为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...
Frozen-Flask :将 Flask 应用“冻结”为静态文件
Frozen-Flask 是一个用于将 Flask 应用“冻结”为静态文件的 Python 扩展。它的核心用途是:将一个 Flask Web 应用生成成纯静态 HTML 文件,从而可以部署到静态网站托管服务上,如 GitHub Pages、Netlify 或任何支持静态文件的网站服务器。 &am…...
学习STC51单片机31(芯片为STC89C52RCRC)OLED显示屏1
每日一言 生活的美好,总是藏在那些你咬牙坚持的日子里。 硬件:OLED 以后要用到OLED的时候找到这个文件 OLED的设备地址 SSD1306"SSD" 是品牌缩写,"1306" 是产品编号。 驱动 OLED 屏幕的 IIC 总线数据传输格式 示意图 …...
RNN避坑指南:从数学推导到LSTM/GRU工业级部署实战流程
本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在聚客AI学院。 本文全面剖析RNN核心原理,深入讲解梯度消失/爆炸问题,并通过LSTM/GRU结构实现解决方案,提供时间序列预测和文本生成…...
Go 并发编程基础:通道(Channel)的使用
在 Go 中,Channel 是 Goroutine 之间通信的核心机制。它提供了一个线程安全的通信方式,用于在多个 Goroutine 之间传递数据,从而实现高效的并发编程。 本章将介绍 Channel 的基本概念、用法、缓冲、关闭机制以及 select 的使用。 一、Channel…...
华为OD机考-机房布局
import java.util.*;public class DemoTest5 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseSystem.out.println(solve(in.nextLine()));}}priv…...
MySQL 索引底层结构揭秘:B-Tree 与 B+Tree 的区别与应用
文章目录 一、背景知识:什么是 B-Tree 和 BTree? B-Tree(平衡多路查找树) BTree(B-Tree 的变种) 二、结构对比:一张图看懂 三、为什么 MySQL InnoDB 选择 BTree? 1. 范围查询更快 2…...
