C++最易读手撸神经网络两隐藏层(任意Nodes每层)梯度下降230821a
// c++神经网络手撸20梯度下降22_230820a.cpp : 此文件包含 "main" 函数。程序执行将在此处开始并结束。
#include<iostream>
#include<vector>
#include<iomanip> // setprecision
#include<sstream> // getline stof()
#include<fstream>
using namespace std;
//
float Loss误差损失之和001 = 0.0;
class NN神经网络NN {
private:
const int inputNode输入层之节点数s, hidden01Node隐藏层01结点数s, hidden22Nodes, outputNode输出层结点数s;
/*
vector<vector<float>> 输入层到第1隐藏层之权重矩阵, 隐藏层1到第二隐藏层2之权重矩阵1to2, 隐藏22到输出层de权重矩阵; //这些变量为矩阵
vector<float> 隐藏层1偏置1, 隐藏层2偏置2, O输出层偏置;
vector<float>隐藏层1数据1, 隐藏层2数据2, 输出数据output; */
void initLayer每一层的WeightsAndBiases(vector<vector<float>>& weights权重, vector<float>& biases偏置)
{
for (size_t i = 0; i < weights权重.size(); ++i) {//for110i
for (size_t j = 0; j < weights权重[0].size(); ++j) { weights权重[i][j] = ((rand() % 2) - 1) / 1.0; }
biases偏置[i] = ((rand() % 2) - 1) / 1.0;
}//for110i
}//void initLayerWeightsAndBiases(
void initWeightsAndBiases初始化权重和偏置矩阵() {
initLayer每一层的WeightsAndBiases(输入层到第1隐藏层之权重矩阵, 隐藏层1偏置1);
initLayer每一层的WeightsAndBiases(隐藏层1到第二隐藏层2之权重矩阵1to2, 隐藏层2偏置2);
initLayer每一层的WeightsAndBiases(隐藏22到输出层de权重矩阵 , O输出层偏置);
}
//激活函数-激活的过程
vector<float> activate(const vector<float>& inputs, const vector< vector<float>>& weights, const vector<float>& biases) {
vector<float> layer_output(weights.size(), 0.0);
for (size_t i = 0; i < weights.size(); i++) {
for (size_t j = 0; j < inputs.size(); j++) {
layer_output[i] += inputs[j] * weights[i][j];
}//for220j
layer_output[i] += biases[i];
layer_output[i] = sigmoid(layer_output[i]);
}//for110i
return layer_output;
}//vector<float> activate
//subtract求差:两个 向量的差
vector<float> subtract(const vector<float>& a, const vector<float>& b) {
vector<float> result(a.size(), 0.0);
for (size_t i = 0; i < a.size(); i++) {
result[i] = a[i] - b[i];
}
return result;
}//vector<float>subtract
//dotT点乘
vector<float> dotT(const vector<float>& a, const vector< vector<float>>& b) {
vector<float> result(b[0].size(), 0.0);
for (size_t i = 0; i < b[0].size(); i++) {
for (size_t j = 0; j < a.size(); j++) {
result[i] += a[j] * b[j][i];
}
}
return result;
}
//更新权重矩阵s(们), 和偏置(向量)S们
void updateWeights(const vector<float>& inputs, const vector<float>& errors, const vector<float>& outputs,
vector< vector<float>>& weights, vector<float>& biases, float lr) {
for (size_t i = 0; i < weights.size(); i++) {
for (size_t j = 0; j < weights[0].size(); j++) {
weights[i][j] += lr * errors[i] * sigmoid导函数prime(outputs[i]) * inputs[j];
}
biases[i] += lr * errors[i] * sigmoid导函数prime(outputs[i]);
}
}//void updateWeights(
public:
vector<vector<float>> 输入层到第1隐藏层之权重矩阵, 隐藏层1到第二隐藏层2之权重矩阵1to2, 隐藏22到输出层de权重矩阵; //这些变量为矩阵
vector<float> 隐藏层1偏置1, 隐藏层2偏置2, O输出层偏置;
vector<float>隐藏层1数据1, 隐藏层2数据2, 输出数据output;
NN神经网络NN(int inputNode输入层之节点数s, int hidden01Node隐藏层01结点数s, int hidden22Nodes, int outputNode输出层结点数s)
:inputNode输入层之节点数s(inputNode输入层之节点数s), hidden01Node隐藏层01结点数s(hidden01Node隐藏层01结点数s), hidden22Nodes(hidden22Nodes), outputNode输出层结点数s(outputNode输出层结点数s)
{
srand(time(NULL));
//初始换权重矩阵
输入层到第1隐藏层之权重矩阵.resize(hidden01Node隐藏层01结点数s, vector<float>(inputNode输入层之节点数s));
隐藏层1到第二隐藏层2之权重矩阵1to2.resize(hidden22Nodes, vector<float>(hidden01Node隐藏层01结点数s));
隐藏22到输出层de权重矩阵.resize(outputNode输出层结点数s, vector<float>(hidden22Nodes));//
隐藏层1偏置1.resize(hidden01Node隐藏层01结点数s);
隐藏层2偏置2.resize(hidden22Nodes);
O输出层偏置.resize(outputNode输出层结点数s);
initWeightsAndBiases初始化权重和偏置矩阵();
}//NN神经网络NN(i
//sigmoid激活函数及导数
float sigmoid(float x){ return 1.0 / (1.0 + exp(-x)); }
float sigmoid导函数prime(float x) { return x * (1 - x); }
//Forward前向传播
vector<float> predict(const vector<float>& input输入数据) {
//用激活函数sigmoid-激活的过程
隐藏层1数据1 = activate(input输入数据, 输入层到第1隐藏层之权重矩阵, 隐藏层1偏置1); //激活函数
// 第一隐藏层到第二隐藏层
隐藏层2数据2 = activate(隐藏层1数据1, 隐藏层1到第二隐藏层2之权重矩阵1to2, 隐藏层2偏置2);//hidden1, wh1h2, bias_h2);
// 第二隐藏层到输出层
输出数据output = activate(隐藏层2数据2, 隐藏22到输出层de权重矩阵, O输出层偏置);// , wh2o, bias_o);
return 输出数据output;
}//vector<float>predict(
// 反向传播//Backpropagation
void train(const vector<float>& inputs, const vector<float>& target目标数据s, float lr学习率) {
vector<float> output尝试的输出数据s = predict(inputs);
// 输出层误差
vector<float> output_error输出误差s = subtract(target目标数据s, output尝试的输出数据s);//
Loss误差损失之和001 = 0.0;
for (int ii = 0; ii < outputNode输出层结点数s; ++ii) { Loss误差损失之和001 += fabs(output_error输出误差s[ii]); }
//=========================================================================
// 隐藏层2误差
vector<float> hidden2_errors = dotT(output_error输出误差s, 隐藏22到输出层de权重矩阵);
// 隐藏层1误差
vector<float> hidden1_errors = dotT(hidden2_errors, 隐藏层1到第二隐藏层2之权重矩阵1to2);
// 更新权重: 隐藏层2到输出层(的权重矩阵
updateWeights(隐藏层2数据2, output_error输出误差s, output尝试的输出数据s, 隐藏22到输出层de权重矩阵, O输出层偏置, lr学习率);
// 更新权重: 隐藏层1到隐藏层2
updateWeights(隐藏层1数据1, hidden2_errors, 隐藏层2数据2, 隐藏层1到第二隐藏层2之权重矩阵1to2, 隐藏层2偏置2, lr学习率);
// 更新权重: 输入层到隐藏层1的权重矩阵)
updateWeights(inputs, hidden1_errors, 隐藏层1数据1, 输入层到第1隐藏层之权重矩阵, 隐藏层1偏置1, lr学习率);
}// void train(
// // 反向传播//Backpropagation
};//class NN神经网络NN {
//----------------------------------------------------------------------------------------
void writeVectorToFile(const std::vector<float>& A, const std::string& fileName) {
std::ofstream outFile(fileName);
if (outFile.is_open()) {
for (float value : A) {
outFile << value << std::endl;
}
outFile.close();
}
else {
std::cerr << "Unable to open file for writing: " << fileName << std::endl;
}
}//writeVectorToFile
void readVectorFromFile(std::vector<float>& B, const std::string& fileName) {
std::ifstream inFile(fileName);
float value;
if (inFile.is_open()) {
while (inFile >> value) {
B.push_back(value);
}
inFile.close();
}
else {
std::cerr << "Unable to open file for reading: " << fileName << std::endl;
}
}//readVectorFromFile
#include <iostream>
#include <vector>
#include <fstream>
#include <string>
#include <sstream>
void writeToFile( const std::vector<std::vector<float>>& A , const std::string& filename) {
std::ofstream file(filename);
if (!file) {
std::cerr << "Error opening file for writing: " << filename << std::endl;
return;
}
for (const auto& row : A) {
for (size_t i = 0; i < row.size(); ++i) {
file << row[i];
if (i != row.size() - 1) {
file << ",";
}
}
file << "\n";
}
file.close();
}//void writeToFile
std::vector<std::vector<float>> readFromFile(const std::string& filename) {
std::vector<std::vector<float>> B;
std::ifstream file(filename);
if (!file) {
std::cerr << "Error opening file for reading: " << filename << std::endl;
return B;
}
std::string line;
while (std::getline(file, line)) {
std::vector<float> row;
std::stringstream ss(line);
std::string value;
while (std::getline(ss, value, ',')) {
row.push_back(std::stof(value));
}
B.push_back(row);
}
file.close();
return B;
}//readFromFile(
//----------------------------------------------------------------------------------------
#define Num训练数据的个数s 4
int main()
{
NN神经网络NN nn(2, 4, 3, 1);// 2, 3, 2, 1);// 11, 10, 4);
// Example
int 训练数据的个数s = Num训练数据的个数s;
vector<float> input[Num训练数据的个数s];
/* input[0] = {0,1,0, 0,1,0, 0,1,0}; //1“竖线”或 “1”字{ 1.0, 0.5, 0.25, 0.125 };
input[1] = { 0,0,0, 1,1,1,0,0,0 }; //-“横线”或 “-”减号{ 1.0, 0.5, 0.25, 0.125 };
input[2] = { 0,1,0, 1,1,1, 0,1,0 }; //+“+”加号{ 1.0, 0.5, 0.25, 0.125 };
input[3] = { 0,1,0, 0,1.2, 0, 0,1, 0 }; // '1'或 '|'字型{ 1.0, 0.5, 0.25, 0.125 };
input[4] = { 1,1,0, 1,0,1.2, 1,1,1 }; //“口”字型+{ 1.0, 0.5, 0.25, 0.125 };
vector<float> target[Num训练数据的个数s];
target[0] = { 1.0, 0,0,0 };// , 0};//1 , 0}; //0.0, 1.0, 0.5}; //{ 0.0, 1.0 };
target[1] = { 0, 1.0 ,0,0 };// , 0};//- 91.0, 0};// , 0, 0}; //
target[2] = { 0,0,1.0,0 };// , 0};//+ 1.0, 0.5};
target[3] = { 1.0 ,0,0, 0.5 };// , 0}; //1
target[4] = { 0,0,0,0 };// , 1.0}; //“口”
*/
vector<float> target[Num训练数据的个数s];
input[0] = { 0,0 }; target[0] = { 0 }; //"-"
input[1] = { 1,0 }; target[1] = { 1 };
input[2] = { 1,1}; target[2] = { 0};
input[3] = { 0,1 }; target[3] = { 1 };
string str0001;
LabeStart001:
//--------------------------------------------------------------------------------------
cout << "1_Trainning;" << endl;
cout << "2_Test;" << endl;
cout << "3_quit." << endl;
getline(cin, str0001);
stringstream s01s001(str0001);
string temp;
getline(s01s001, temp, ',');
int choice = (float)stof(temp); //
switch (choice) {
case 1:
goto LabeTraining;
case 2:
goto LabeTest;
case 3:
return 0;
}
LabeTraining:
for (int i = 0; i < 90000; ++i) {//for110i
for (int jj = 0; jj < Num训练数据的个数s ; ++jj) {
//for (auto& val: input ) {
nn.train(input[jj], target[jj], 0.001);
if (0 ==i % 10000) { std::cout << "[Lost:" << Loss误差损失之和001 << endl; }
}//for220jj
}//for110i
// writeToFile( nn.输入层到第1隐藏层之权重矩阵 , "/file输入层到第1隐藏层之权重矩阵Name220101.txt");
writeToFile(nn.输入层到第1隐藏层之权重矩阵, "/file输入层到第1隐藏层之权重矩阵Name220101.txt");
writeToFile(nn.隐藏22到输出层de权重矩阵, "/file隐藏22到输出层de权重矩阵Name220101.txt");
writeToFile(nn.隐藏层1到第二隐藏层2之权重矩阵1to2, "/file隐藏层1到第二隐藏层2之权重矩阵1to2Name220101.txt");
writeVectorToFile( nn.隐藏层1偏置1, "/file隐藏层1偏置1.txt");
writeVectorToFile(nn.隐藏层2偏置2, "/file隐藏层2偏置2.txt");
writeVectorToFile(nn.O输出层偏置, "/fileO输出层偏置.txt");
std::cout << endl;
LabeTest:
//--------------------------------------
input[1] = { 0,1 };// 0, 0, 1, 1, 0.98, 0, 0, 0}; //1/
vector<float> outpu输出数据001t = nn.predict(input[0]);
for (auto& val : outpu输出数据001t)
std::cout << fixed << setprecision(9) << val << " ";
std::cout << endl;
//-------------------------------------------------------------
// do {
std::cout << endl << "请输入一个字符串(要求字符串是包含9个由逗号分隔的数字的字符串,如 1,2,0,0,5,0,0,8,9等): " << endl;
getline( cin, str0001);
stringstream
s01s002(str0001);
for (int i = 0; i < 2;++i) {//
//9; ++i) {
string temp;
getline(s01s002, temp, ',');
input[1][i] = (float) stof(temp); // 将字符串转化为整数
}
std::cout << "数字数组为: ";
for (int i = 0; i < 2;++i) {// 9; ++i) {
std::cout << input[1][i] << " ";
}
//
readVectorFromFile(nn.隐藏层1偏置1, "/file隐藏层1偏置1.txt");
readVectorFromFile(nn.隐藏层2偏置2, "/file隐藏层2偏置2.txt");
readVectorFromFile(nn.O输出层偏置, "/fileO输出层偏置.txt");
nn.输入层到第1隐藏层之权重矩阵 = readFromFile("/file输入层到第1隐藏层之权重矩阵Name220101.txt");
nn.隐藏层1到第二隐藏层2之权重矩阵1to2 = readFromFile("/file隐藏层1到第二隐藏层2之权重矩阵1to2Name220101.txt");
nn.隐藏22到输出层de权重矩阵 = readFromFile("/file隐藏22到输出层de权重矩阵Name220101.txt");
//
outpu输出数据001t = nn.predict(input[1]);
std::cout << endl;
for (auto& val : outpu输出数据001t)
std::cout << fixed << setprecision(9) << val << " ";
cout << endl;
// } while (true);// 1 == 1);
//======================================
std::cout << "Hello World!请继续……您可以继续训练网络,或者测试网络!\n";
goto LabeStart001;
}//main
相关文章:
C++最易读手撸神经网络两隐藏层(任意Nodes每层)梯度下降230821a
// c神经网络手撸20梯度下降22_230820a.cpp : 此文件包含 "main" 函数。程序执行将在此处开始并结束。 #include<iostream> #include<vector> #include<iomanip> // setprecision #include<sstream> // getline stof() #include<fstream…...
Leetcode 2235.两整数相加
一、两整数相加 给你两个整数 num1 和 num2,返回这两个整数的和。 示例 1: 输入:num1 12, num2 5 输出:17 解释:num1 是 12,num2 是 5 ,它们的和是 12 5 17 ,因此返回 17 。示例…...
Postman —— postman实现参数化
什么时候会用到参数化 比如:一个模块要用多组不同数据进行测试 验证业务的正确性 Login模块:正确的用户名,密码 成功;错误的用户名,正确的密码 失败 postman实现参数化 在实际的接口测试中,部分参数每…...
LeetCode--HOT100题(41)
目录 题目描述:102. 二叉树的层序遍历(中等)题目接口解题思路代码 PS: 题目描述:102. 二叉树的层序遍历(中等) 给你二叉树的根节点 root ,返回其节点值的 层序遍历 。 (即逐层地&am…...
微信小程序教学系列(6)
第六章:小程序商业化 第一节:小程序的商业模式 在这一节中,我们将探讨微信小程序的商业模式,让你了解如何将你的小程序变成一个赚钱的机器! 1. 广告收入 小程序的商业模式之一是通过广告收入赚钱。你可以在小程序中…...
小程序中的全局配置以及常用的配置项(window,tabBar)
全局配置文件和常用的配置项 app.json: pages:是一个数组,用于记录当前小程序所有页面的存放路径,可以通过它来创建页面 window:全局设置小程序窗口的外观(导航栏,背景,页面的主体) tabBar:设置小程序底部的 tabBar效果 style:是否…...
数据工厂调研及结果展示
数据工厂 一、背景 在开发自测、测试迭代测试、产品验收的过程中,都需要各种各样的前置数据,大致分为如下几类: 账号(实名、权益等级、注册等) 货源(优货、急走、相似、一手、普通货源等) …...
抓包相关,抓包学习
检查网络流量 - 提琴手经典 (telerik.com) Headers Reference - Fiddler Classic (telerik.com) 以上是fiddler官方文档 F12要勾选保留日志 不勾选的话跳转到新页面之前页面的日志不会在下方显示 会保留所有抓到的包 如果重定向到别的页面 F12抓包可能看不到响应信息,但是…...
云原生之使用Docker部署SSCMS内容管理系统
云原生之使用Docker部署SSCMS内容管理系统 一、SSCMS介绍二、本地环境介绍2.1 本地环境规划2.2 本次实践介绍 三、本地环境检查3.1 检查Docker服务状态3.2 检查Docker版本3.3 检查docker compose 版本 四、下载SSCMS镜像五、部署SSCMS内容管理系统5.1 创建SSCMS容器5.2 检查SSC…...
uniapp -- 在组件中拿到pages.json下pages设置navigationBarTitleText这个值?
1:在 pages.json 文件中设置 navigationBarTitleText,例如: {"pages": [{"path": "pages/home/index","style": {"navigationBarTitleText": "首页",&...
Java获取环境变量和运行时环境信息和自定义配置信息
System.getenv() 获取系统环境变量 public static void main1() {Map<String, String> envMap System.getenv();envMap.entrySet().forEach(x-> System.out.println(x.getKey() "" x.getValue())); } System.getenv() 获取的是操作系统环境变量列表&…...
React入门 组件学习笔记
项目页面以组件形式层层搭起来,组件提高复用性,可维护性 目录 一、函数组件 二、类组件 三、 组件的事件绑定 四、获取事件对象 五、事件绑定传递额外参数 六、组件状态 初始化状态 读取状态 修改状态 七、组件-状态修改counter案例 八、this问…...
Windows商店引入SUSE Linux Enterprise Server和openSUSE Leap
在上个月的Build 2017开发者大会上,微软宣布将SUSE,Ubuntu和Fedora引入Windows 商店,反应出微软对开放源码社区的更多承诺。 该公司去年以铂金会员身份加入Linux基金会。现在,微软针对内测者的Windows商店已经开始提供 部分Linux发…...
[NLP]深入理解 Megatron-LM
一. 导读 NVIDIA Megatron-LM 是一个基于 PyTorch 的分布式训练框架,用来训练基于Transformer的大型语言模型。Megatron-LM 综合应用了数据并行(Data Parallelism),张量并行(Tensor Parallelism)和流水线并…...
软考高级系统架构设计师系列论文七十八:论软件产品线技术
软考高级系统架构设计师系列论文七十八:论软件产品线技术 一、摘要二、正文三、总结一、摘要 本人作为某软件公司负责人之一,通过对位于几个省的国家甲级、乙级、丙级设计院的考查和了解,我决定采用软件产品线方式开发系列《设计院信息管理平台》产品。该产品线开发主要有如…...
yolov5中添加ShuffleAttention注意力机制
ShuffleAttention注意力机制简介 关于ShuffleAttention注意力机制的原理这里不再详细解释.论文参考如下链接here yolov5中添加注意力机制 注意力机制分为接收通道数和不接受通道数两种。这次属于接受通道数注意力机制,这种注意力机制由于有通道数要求,所示我们添加的时候…...
Effective C++条款17——以独立语句将newed 对象置入智能指针(资源管理)
假设我们有个函数用来揭示处理程序的优先权,另一个函数用来在某动态分配所得的widget上进行某些带有优先权的处理: void priority(); void processWidget(std::tr1::shared_ptr<Widget>pw, int priority);由于谨记“以对象管理资源”(条款13&…...
奇迹MU服务器如何选择配置?奇迹MU服务器租用
不同的服务器,根据其特点与性能适用于不同的应用场景,为了让你们更好的理解,我们对服务器进行了分类归纳,结合了服务器不同的特点以及价位进行一个区分,帮助我们更好的选择合适的服务器配置。 VPS服务器 VPS服务器又…...
如何远程管理服务器详解
文章目录 前言一、远程管理类型二、远程桌面三、telnet 命令行远程四、查看本地开放端口 前言 很多公司是有自己的机房的,机房里面会有若干个服务器为员工和用户提供服务。大家可以想想:假设这家公司有上百台服务器,我们作为网络工程师&…...
JavaScript——为什么静态方法不能调用非静态方法
个人简介 👀个人主页: 前端杂货铺 🙋♂️学习方向: 主攻前端方向,正逐渐往全干发展 📃个人状态: 研发工程师,现效力于中国工业软件事业 🚀人生格言: 积跬步…...
【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)
服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...
【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验
系列回顾: 在上一篇中,我们成功地为应用集成了数据库,并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了!但是,如果你仔细审视那些 API,会发现它们还很“粗糙”:有…...
【C++从零实现Json-Rpc框架】第六弹 —— 服务端模块划分
一、项目背景回顾 前五弹完成了Json-Rpc协议解析、请求处理、客户端调用等基础模块搭建。 本弹重点聚焦于服务端的模块划分与架构设计,提升代码结构的可维护性与扩展性。 二、服务端模块设计目标 高内聚低耦合:各模块职责清晰,便于独立开发…...
微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据
微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列,以便知晓哪些列包含有价值的数据,…...
django blank 与 null的区别
1.blank blank控制表单验证时是否允许字段为空 2.null null控制数据库层面是否为空 但是,要注意以下几点: Django的表单验证与null无关:null参数控制的是数据库层面字段是否可以为NULL,而blank参数控制的是Django表单验证时字…...
stm32wle5 lpuart DMA数据不接收
配置波特率9600时,需要使用外部低速晶振...
消防一体化安全管控平台:构建消防“一张图”和APP统一管理
在城市的某个角落,一场突如其来的火灾打破了平静。熊熊烈火迅速蔓延,滚滚浓烟弥漫开来,周围群众的生命财产安全受到严重威胁。就在这千钧一发之际,消防救援队伍迅速行动,而豪越科技消防一体化安全管控平台构建的消防“…...
React父子组件通信:Props怎么用?如何从父组件向子组件传递数据?
系列回顾: 在上一篇《React核心概念:State是什么?》中,我们学习了如何使用useState让一个组件拥有自己的内部数据(State),并通过一个计数器案例,实现了组件的自我更新。这很棒&#…...
SQL注入篇-sqlmap的配置和使用
在之前的皮卡丘靶场第五期SQL注入的内容中我们谈到了sqlmap,但是由于很多朋友看不了解命令行格式,所以是纯手动获取数据库信息的 接下来我们就用sqlmap来进行皮卡丘靶场的sql注入学习,链接:https://wwhc.lanzoue.com/ifJY32ybh6vc…...
Docker、Wsl 打包迁移环境
电脑需要开启wsl2 可以使用wsl -v 查看当前的版本 wsl -v WSL 版本: 2.2.4.0 内核版本: 5.15.153.1-2 WSLg 版本: 1.0.61 MSRDC 版本: 1.2.5326 Direct3D 版本: 1.611.1-81528511 DXCore 版本: 10.0.2609…...
