当前位置: 首页 > news >正文

matlab使用教程(25)—常微分方程(ODE)选项

1.ODE 选项摘要

        解算 ODE 经常要求微调参数、调整误差容限或向求解器传递附加信息。本主题说明如何指定选项以及每个选项与哪些微分方程求解器兼容。

1.1 选项语法

        使用 odeset 函数创建 options 结构体,然后将其作为第四个输入参数传递给求解器。例如,要调整相对和绝对误差容限,请使用以下命令:
opts = odeset('RelTol',1e-2,'AbsTol',1e-5);
[t,y] = ode45(@odefun,tspan,y0,opts);
        如果您使用不带输入参数的 odeset 命令,MATLAB 将显示每个选项的可能值列表,并以花括号 {} 表示默认值。
        odeget 函数可以查询现有结构体中的选项值,您可以用该函数来根据条件动态更改选项值。例如,以下代码检测 Stats 是否设置为 'on' ,并根据需要更改其值:
if isempty(odeget(opts,'Stats'))
odeset(opts,'Stats','on')
end

1.2 选项与每个求解器的兼容性

        在 odeset 中,有些选项是通用的,可与任何求解器兼容,还有一些选项是特定于求解器的。下表总结了每个选项与不同求解器之间的兼容性。

        * 只有在解算不涉及质量矩阵的问题时,才对 ode15s ode23t ode23tb 求解器使用 NonNegative 参数。
        ** ode15i 的事件函数必须接受 yp 的第三个输入参数。

1.3 用法示例

        MATLAB 包含几个示例文件,说明了如何使用各种选项。例如,键入 edit ballode 查看使用 'Events' 指定事件函数的示例,或键入 edit batonode 查看使用 'Mass' 指定质量矩阵的示例。有关示例文件及其使用的选项的完整总结,请参阅 “ODE 示例和文件摘要” 。

2.ODE 事件位置

2.1 什么是事件位置?

        某些 ODE 方程组的解算难度部分在于确定停止求解的合适时间。积分区间中的最终时间可能由具体事件(而非数字)进行定义。从树上落下的苹果便是一个示例。ODE 求解器应当在苹果落地后立即停止,但您事前并不知道该事件会在何时发生。与之相似地,有些问题所涉及的事件则不会终止求解。沿行星轨道运行的卫星便是一个示例。这种情况下,您可能不希望提前停止积分,但仍希望检测到卫星每次围绕较大天体完成一个运行周期的时刻。
        在 ODE 的求解过程中,使用事件函数来检测发生特定事件的时刻。事件函数采用您指定的表达式,并在该表达式等于零时检测事件。它们还能在检测到事件时提示 ODE 求解器停止积分。

2.2 编写事件函数

        使用 odeset 函数的 'Events' 选项指定事件函数。事件函数必须具有一般形式
[value,isterminal,direction] = myEventsFcn(t,y)
        在 ode15i 的情况下,事件函数还必须接受 yp 的第三个输入参数。
        输出参数 value isterminal direction 均为向量,其第 i 个元素与第 i 个事件相对应:
        • value(i) 是描述第 i 个事件的数学表达式。当 value(i) 等于零时发生事件。
        • 如果当第 i 个事件发生时停止积分,则 isterminal(i) = 1 。否则为 0
        • 如果需要查找全零值(默认值),则 direction(i) = 0 。值为 +1 时仅在事件函数递增的位置查找零,值为 -1 时仅在事件函数递减的位置查找零。指定 direction = [] 将对所有事件使用默认值 0。再次考虑苹果从树上落下的情形。表示落体的 ODE 为
        初始条件为 y 0 = 1 y ′ 0 = 0 。您可以使用事件函数来确定 y t = 0 的时刻,即苹果落地的时刻。对于此问题,检测苹果何时落地的事件函数为
function [position,isterminal,direction] = appleEventsFcn(t,y)
position = y(1); % The value that we want to be zero
isterminal = 1; % Halt integration
direction = 0; % The zero can be approached from either direction
end

2.3 事件信息

        如果指定了事件函数,则使用三个额外的输出参数调用 ODE 求解器,如下所示
[t,y,te,ye,ie] = odeXY(odefun,tspan,y0,options)
        求解器返回的三个附加输出对应于检测到的事件:
        • te 是发生事件的时刻的列向量。
        • ye 包含 te 中的每个事件时刻对应的解值。
        • ie 包含事件函数返回的向量的索引。这些值指示求解器检测到的事件。
        您也可以使用单个输出来调用求解器,如下所示
sol = odeXY(odefun,tspan,y0,options)
        这种情况下,事件信息以 sol.te sol.ye sol.ie 的形式存储在结构体中。

2.4 局限性

        ODE 求解器采用的与事件函数配合使用的求根机制存在下列局限性:
        • 如果在积分的第一步即发生终止事件,则求解器会将该事件记录为非终止事件并继续积分。
        • 如果在第一步发生多个终止事件,则仅记录第一个事件,并且求解器会继续积分。
        • 零值由每步之间的符号交叉确定。因此,对于两步间有偶数个交叉的函数而言,可能会错失其零值。如果求解器步长跨越了多个事件,请尝试减小 RelTol AbsTol 以提高精度。也可以设置 MaxStep 以便为步长设置上限。调整 tspan 不会更改求解器所用的步长。

2.5 简单事件位置:弹球

        此示例说明如何编写一个与 ODE 求解器配合使用的简单事件函数。示例文件 ballode 将模拟弹球的运动。事件函数在球每次弹起时停止积分,然后使用新的初始条件重新开始积分。在球的弹跳过程中,积分多次停止并重新开始。弹球的方程为
function [value,isterminal,direction] = bounceEvents(t,y)
value = y(1); % Detect height = 0
isterminal = 1; % Stop the integration
direction = -1; % Negative direction only
        键入 ballode 以运行该示例并演示使用事件函数模拟球弹跳的过程。
ballode

2.6 高级事件位置:限制性三体问题

        此示例说明如何使用事件函数的定向分量。示例文件 orbitode 模拟限制性三体问题,其中一个主体环绕两个大得多的主体做轨道运行。事件函数将确定轨道中距离环绕主体最近和最远的点。由于事件函数在轨道最近点和最远点的值相同,因此将使用过零的方向来区分二者。限制性三体问题的方程为

        前两个解分量是微小物体的坐标,因此针对一个分量绘制另一个分量可以得到物体的轨迹。orbitode.m 中嵌套的事件函数将搜索两个事件。一个事件查找距离起点最远的点,另一个事件查找宇宙飞船返回到起点的点。即使积分器使用的步长并非通过事件位置确定,也会准确定位事件。在此示例中,指定过零方向的功能非常重要。返回到起点的点和距离起点最远的点具有相同的事件值,并由交叉方向来区分这两个点。为此行为编码的事件函数为

function [value,isterminal,direction] = orbitEvents(t,y)
% dDSQdt is the derivative of the equation for current distance. Local
% minimum/maximum occurs when this value is zero.
dDSQdt = 2 * ((y(1:2)-y0(1:2))' * y(3:4));
value = [dDSQdt; dDSQdt];
isterminal = [1; 0]; % stop at local minimum
direction = [1; -1]; % [local minimum, local maximum]
end
        键入 orbitode 以运行该示例。
orbitode
This is an example of event location where the ability to
specify the direction of the zero crossing is critical. Both
the point of return to the initial point and the point of
maximum distance have the same event function value, and the
direction of the crossing is used to distinguish them.
Calling ODE45 with event functions active...
Note that the step sizes used by the integrator are NOT
determined by the location of the events, and the events are
still located accurately.

相关文章:

matlab使用教程(25)—常微分方程(ODE)选项

1.ODE 选项摘要 解算 ODE 经常要求微调参数、调整误差容限或向求解器传递附加信息。本主题说明如何指定选项以及每个选项与哪些微分方程求解器兼容。 1.1 选项语法 使用 odeset 函数创建 options 结构体,然后将其作为第四个输入参数传递给求解器。例如&#xff0…...

MybatisPlus简单到入门

一、MybatisPlus简介 1、入门案例(重点): 1.SpringBoot整合MP1).创建新模块选择,Spring项初始化。2).选择当前模块使用的技术,只保留MySQL Driver就行,不要选择mybatis避免与后面导入mybatisPlus的依赖发…...

9. 优化器

9.1 优化器 ① 损失函数调用backward方法,就可以调用损失函数的反向传播方法,就可以求出我们需要调节的梯度,我们就可以利用我们的优化器就可以根据梯度对参数进行调整,达到整体误差降低的目的。 ② 梯度要清零,如果梯…...

go学习之流程控制语句

文章目录 流程控制语句1.顺序控制2.分支控制2.1单分支2.2双分支单分支和双分支的四个题目switch分支结构 3.循环控制for循环控制while 和do...while的实现 4.跳转控制语句breakcontinuegotoreturngotoreturn 流程控制语句 介绍:在程序中,程序运行的流程…...

docker基于已有容器和通过Dockerfile进行制作镜像配置介绍

目录 一.制作镜像的两种方式 1.在已有容器中更新并提交这个镜像 2.使用Dockerfile来制作 二.基于容器制作镜像 1.格式 (1)主要格式 (2)可选参数 2.案例 基于容器创建镜像设置标签并进行验证是否可用 (1&…...

2022年09月 C/C++(四级)真题解析#中国电子学会#全国青少年软件编程等级考试

第1题&#xff1a;最长上升子序列 一个数的序列bi&#xff0c;当b1 < b2 < … < bS的时候&#xff0c;我们称这个序列是上升的。对于给定的一个序列(a1, a2, …, aN)&#xff0c;我们可以得到一些上升的子序列(ai1, ai2, …, aiK)&#xff0c;这里1 < i1 < i2 &…...

二级MySQL(九)——表格数据处理练习

在Mysql中&#xff0c;可以用INSERT或【REPLACE】语句&#xff0c;向数据库中已一个已有的表中插入一行或多行记录。 在Mysql中&#xff0c;可以用【DELETE】或【TRUNCATE】语句删除表中的所有记录。 在Mysql中&#xff0c;可以用【UPDATE】语句来修改数据表中的记录。 为了完…...

QT ListQvector at赋值出错以及解决办法 QT基础入门【QT存储结构】

1、问题 error: passing const QString as this argument discards qualifiers error: assignment of read-only location vec.QVector<int>::at(0) 在Qt中QList,Qvector一般获取元素都是通过at(index)来获取,但是at()的返回是一个const & 常引用,也就是元素不支…...

STM32 CubeMX (H750)RGB屏幕 LTDC

STM32 CubeMX STM32 RGB888 LTDC STM32 CubeMX一、STM32 CubeMX 设置时钟树LTDC使能设置屏幕参数修改RGB888的GPIO 二、代码部分效果 RGB屏幕线束定义&#xff1a; 一、STM32 CubeMX 设置 时钟树 这里设置的时钟&#xff0c;关于刷新速度 举例子&#xff1a;LCD_CLK24MHz 时…...

Redis问题集合(三)在Redis容器里设置键值对

前言 前提是已经拉取了Redis镜像并创建了对应的容器做个记录&#xff0c;方便后续查看 步骤 查看Redis容器的ID&#xff1a;docker ps -a 进入容器&#xff1a;docker exec -it 容器ID /bin/bash进入redis命令行&#xff1a;redis-cli输入密码&#xff1a;auth 配置密码 查看…...

spark中排查Premature EOF: no length prefix available

报错信息 /07/22 10:20:28 WARN DFSClient: Error Recovery for block BP-888461729-172.16.34.148-1397820377004:blk_15089246483_16183344527 in pipeline 172.16.34.64:50010, 172.16.34.223:50010: bad datanode 172.16.34.64:50010 [DataStreamer for file /bdp/data/u9…...

numpy高级函数之where和extract函数

1 numpy.where() 函数返回输入数组中满足给定条件的元素的索引 ---------------------------------------------------- 代码&#xff1a; n1np.random.randint(10,20,10) n2np.where(n1>15) 结果&#xff1a; [17 15 19 15 12 10 16 11 15 13] #原始数组 (array([…...

用Python写一个武侠游戏

前言 在本教程中&#xff0c;我们将使用Python写一个武侠类的游戏&#xff0c;大的框架全部搭好了&#xff0c;很多元素都可以自己添加&#xff0c;让游戏更丰富 &#x1f4dd;个人主页→数据挖掘博主ZTLJQ的主页 个人推荐python学习系列&#xff1a; ☄️爬虫JS逆向系列专栏 -…...

Java --- 异常处理

目录 一、什么是异常 二、异常抛出机制 三、如何对待异常 四、 Java异常体系 4.1、Throwable 4.2、Error 4.2、Exception 4.2.1、编译时异常 4.2.2、运行时期异常 五、异常处理 5.1、捕获异常&#xff08;try-catch&#xff09; 5.1.2、catch中异常处理方式 …...

CDN/DCDN(全站加速)排查过程中如何获取Eagle ID/UUID

目录 前言1.通过浏览器直接访问文件时获取Request ID 前言 阿里云CDN/DCDN(全站加速)为接收到的每个请求分配唯一的服务器请求ID&#xff0c;作为关联各类日志信息的标识符。当您在使用CDN/DCDN(全站加速)过程中遇到错误且希望阿里云技术支持提供协助时&#xff0c;需要提交失…...

网络安全应急响应预案培训与演练目的

1、增强网络安全意识 网络安全事故隐患往往“生成”于无形。例如&#xff0c;漏洞或黑客攻 击发生之时&#xff0c;受害方企事业单位可能处于非常危险的境地而无所察 觉&#xff0c;一些内部部门人员的网络安全意识也容易懈怠。但不论是内部 员工的疏忽还是管理上的大意&am…...

2023年高教社杯 国赛数学建模思路 - 复盘:校园消费行为分析

文章目录 0 赛题思路1 赛题背景2 分析目标3 数据说明4 数据预处理5 数据分析5.1 食堂就餐行为分析5.2 学生消费行为分析 建模资料 0 赛题思路 &#xff08;赛题出来以后第一时间在CSDN分享&#xff09; https://blog.csdn.net/dc_sinor?typeblog 1 赛题背景 校园一卡通是集…...

7.Oracle视图创建与使用

1、视图的创建与使用 在所有进行的SQL语句之中&#xff0c;查询是最复杂的操作&#xff0c;而且查询还和具体的开发要求有关&#xff0c;那么在开发过程之中&#xff0c;程序员完成的并不是是和数据库的所有内容&#xff0c;而更多的是应该考虑到程序的设计结构。可以没有一个项…...

rust学习-不安全操作

在 Rust 中,不安全代码块用于避开编译器的保护策略 四种不安全操作 解引用裸指针通过 FFI (Foreign Function Interface,外部语言函数接口)调用函数调用不安全的函数内联汇编(inline assembly)解引用裸指针 原始指针(raw pointer,裸指针)* 和引用 &T 有类似的功…...

RHCE——八、DNS域名解析服务器

RHCE 一、概述1、产生原因2、作用3、连接方式4、因特网的域名结构4.1 拓扑4.2 分类4.3 域名服务器类型划分 二、DNS域名解析过程1、分类2、解析图&#xff1a;2.1 图&#xff1a;2.2 过程分析 三、搭建DNS域名解析服务器1、概述2、安装软件3、/bind服务中三个关键文件4、配置文…...

flink cdc初始全量速度很慢原因和优化点

link cdc初始全量速度很慢的原因之一是&#xff0c;它需要先读取所有的数据&#xff0c;然后再写入到目标端&#xff0c;这样可以保证数据的一致性和顺序。但是这样也会导致数据的延迟和资源的浪费。flink cdc初始全量速度很慢的原因之二是&#xff0c;它使用了Debezium作为捕获…...

论文笔记: MOGRIFIER LSTM

2020 ICLR 修改传统LSTM 当前输入和隐藏状态充分交互&#xff0c;从而获得更佳的上下文相关表达 1 Mogrifier LSTM LSTM的输入X和隐藏状态H是完全独立的 机器学习笔记&#xff1a;GRU_gruc_UQI-LIUWJ的博客-CSDN博客这篇论文想探索&#xff0c;如果在输入LSTM之前&#xf…...

Angular中使用drag and drop实现文件拖拽上传,及flask后端接收

效果&#xff1a;拖拽文件到组件上面时 边框变大变红 松手后发送到服务器(或者点击蓝字手动选择文件)并且把文件名显示在框内&#xff0c;美化还没做 html <div class"drapBox"><div id"drop" (dragenter)"dragenter($event)" (dragov…...

Spring Authorization Server入门 (十六) Spring Cloud Gateway对接认证服务

前言 之前虽然单独讲过Security Client和Resource Server的对接&#xff0c;但是都是基于Spring webmvc的&#xff0c;Gateway这种非阻塞式的网关是基于webflux的&#xff0c;对于集成Security相关内容略有不同&#xff0c;且涉及到代理其它微服务&#xff0c;所以会稍微比较麻…...

配置Flink

配置flink_1.17.0 1.Flink集群搭建1.1解压安装包1.2修改集群配置1.3分发安装目录1.4启动集群、访问Web UI 2.Standalone运行模式3.YARN运行模式4.K8S运行模式 1.Flink集群搭建 1.1解压安装包 链接: 下载Flink安装包 解压文件 [gpbhadoop102 software]$ tar -zxvf flink-1.1…...

39、springboot的前端静态资源的WebJar支持(bootstrap、jquery等)及自定义图标和首页

★ WebJar支持 Spring Boot支持加载WebJar包中的静态资源&#xff08;图片、JS、CSS&#xff09;&#xff0c; WebJar包中的静态资源都会映射到/webjars/**路径。——这种方式下&#xff0c;完全不需要将静态资源复制到应用的静态资源目录下。只要添加webjar即可。假如在应用的…...

【图论】缩点的综合应用(一)

一.缩点的概念 缩点&#xff0c;也称为点缩法&#xff08;Vertex Contraction&#xff09;&#xff0c;是图论中的一种操作&#xff0c;通常用于缩小图的规模&#xff0c;同时保持了图的某些性质。这个操作的目标是将图中的一些节点合并为一个超级节点&#xff0c;同时调整相关…...

C++—纯虚函数

一、前言 定义一个函数为虚函数&#xff0c;不代表函数为不被实现的函数。 定义函数为虚函数是为了允许用基类的指针来调用子类的这个函数。 定义一个函数为纯虚函数&#xff0c;才代表函数没有被实现。 定义纯虚函数是为了实现一个接口&#xff0c;起到一个规范的作用&…...

经过卷积神经网络之后的图片的尺寸如何计算

经过卷积神经网络&#xff08;Convolutional Neural Network&#xff0c;CNN&#xff09;处理后&#xff0c;图片的尺寸会发生变化&#xff0c;这是由于卷积层、池化层等操作引起的。计算图片经过卷积神经网络后的尺寸变化通常需要考虑卷积核大小、步幅&#xff08;stride&…...

Java升级JDK17(更高版本同理),修改maven

记住三个网址就行&#xff1a;下面这个是oracle的 Java Platform, Standard Edition 17 ReferenceImplementations https://www.oracle.com/java/technologies/downloads/#jdk17-windows 另外一个 redhat旗下的&#xff1a;这个是开源的&#xff08;推荐这个&#xff01;&am…...

wordpress选项卡插件/全网搜索

一 checkinstall 简介&#xff0c;及所需环境 1 Checkinstall 是一个能从 tar.gz类的源代码自动生成RPM&#xff0f;Debian或Slackware安装包的程序。这样使你能用几乎所有的 tar.gz 类的源代码生成“干净”的安装或者卸载包。 2 OS&#xff1a; rhel 6.4 x86_64 3 chechinstal…...

织梦cms做企业网站/北京网络营销公司排名

2019独角兽企业重金招聘Python工程师标准>>> 1&#xff0c;概述 定义 &#xff1a;枚举类是指实例的数量有限的类。比如表示性别的Gender类&#xff0c;它只有两个实例 Gender.FEMALE和Gender.MALE.&#xff1b; 2&#xff0c;例子&#xff1a; package springmvc.c…...

企业营销微网站建设/培训学校

文章目录Leetcode 55. 跳跃游戏问题描述解题报告动态规划贪心算法实现代码动态规划实现贪心算法实现Leetcode 45. 跳跃游戏 II问题描述解题报告动态规划贪心算法实现代码动态规划实现贪心算法实现Leetcode 1306. 跳跃游戏 III问题描述解题报告实现代码Leetcode 1345. 跳跃游戏 …...

好网站求推荐/网站分析

我正试图让我的新samba服务器运行几天,我开始失去理智而不知道我做错了什么.这是我的设置&#xff1a;OpenLDAP 2.4.21服务器,包含~15个组和> 100个用户,所有服务器都具有存储在LDAP中的unix和samba密码,以及分配和存储在LDAP中的用户SID和主要组SID,这些服务器来自SID LDAP…...

wordpress 绝对路径/网络推广电话销售技巧和话术

2.1 阻塞阻塞状态指程序未得到所需计算资源时被挂起的状态。程序在等待某个操作完成期间&#xff0c;自身无法继续干别的事情&#xff0c;则称该程序在该操作上是阻塞的。常见的阻塞形式有&#xff1a;网络 I/O 阻塞、磁盘 I/O 阻塞、用户输入阻塞等。阻塞是无处不在的&#xf…...

wordpress仿站维护/网站优化外包费用

NEW关注Tech逆向思维视频号最新视频→【都2021年了&#xff0c;为什么还有人裸聊被骗&#xff1f;】出品&#xff5c;刺猬公社文 | 晓含编辑 | 石灿国货出圈&#xff1a;将直播间作为新传播渠道&#xff0c;以国风产品留住人心。“蜂花会是下一个鸿星尔克吗”&#xff1f;11月1…...