当前位置: 首页 > news >正文

【多思路解决喝汽水问题】1瓶汽水1元,2个空瓶可以换一瓶汽水,给20元,可以喝多少汽水

题目内容

喝汽水问题

喝汽水,1瓶汽水1元,2个空瓶可以换一瓶汽水,给20元,可以喝多少汽水(编程实现)。

题目分析

数学思路分析

根据给出的问题和引用内容,我们可以得出答案。

首先,我们用20元购买了20瓶汽水,现在有20个空瓶。

接下来,我们将这20个空瓶兑换成新的10瓶汽水

然后,将这10个空瓶再次兑换成新的5瓶汽水,此时还剩下一个空瓶。

我们将这个剩余的空瓶与后面的空瓶结合兑换,得到1瓶新的汽水

因此,到目前为止,我们总共获得了20+10+5+2+1+1=39瓶汽水。

所以,给了20元我们可以喝到39瓶汽水。

编程思路分析

思路一 循环实现

total = 20;  //汽水总数
    int k = 0;     //空瓶数
    int s = 0 ;     //剩余空瓶

第一次(k=20)。

第二次(k=20/2=10,s=20%2=0),此时total又增加10了;

第三次(k=10/2=5,s=10%2=0);

第四次(k=5/2=2, s=5%2=1,);

第五次(k=2/2=1,s=2%2=0);

(s=1)。

#include<stdio.h>
#include<stdlib.h>
int main()
{int total = 20;  //汽水总数int k = 0;     //空瓶数int s = 0 ;     //剩余空瓶k = 20;while(k>=1){k= k+s;total = total+k/2;//原有的汽水数+换来的汽水数s = k%2;k=k/2;//两个空瓶子换1个新汽水,汽水喝完就是1个瓶子}printf("%d\n",total);system("pause");return 0;
}

思路二 递归实现

第一次和第二次买汽水 ,分别花了一块钱(+2),

从第三次开始,每次去花一块钱买汽水,再加上用第一次和第二次的空瓶子可以换来一瓶,一共可以获得两瓶汽水(+2),

第四次拿着第三次那两空瓶子,再花一块钱,又可以得到两瓶汽水(+2),

第五次,第六次,以此类推,接下来的每一次都是相当于花1元钱和两个空瓶子,来获得两瓶新的汽水

那么到最后一次时,手里已经没有钱了,即此时只有两个空瓶子换来一瓶汽水(+1)。

去买汽水的过程定义为一个函数就可以递归计算最终结果。

#include<stdio.h>
#include<stdlib.h>
int  Buy(int money)
{if(money==1)return 1;else return Buy(money-1)+2;
}
int main()
{int money = 20;printf("%d\n",Buy(money));system("pause");return 0;
}


 

相关文章:

【多思路解决喝汽水问题】1瓶汽水1元,2个空瓶可以换一瓶汽水,给20元,可以喝多少汽水

题目内容 喝汽水问题 喝汽水&#xff0c;1瓶汽水1元&#xff0c;2个空瓶可以换一瓶汽水&#xff0c;给20元&#xff0c;可以喝多少汽水&#xff08;编程实现&#xff09;。 题目分析 数学思路分析 根据给出的问题和引用内容&#xff0c;我们可以得出答案。 首先&#xff…...

P1591 阶乘数码(Java高精度)

题目描述 求 n ! n! n! 中某个数码出现的次数。 输入格式 第一行为 t ( t ≤ 10 ) t(t \leq 10) t(t≤10)&#xff0c;表示数据组数。接下来 t t t 行&#xff0c;每行一个正整数 n ( n ≤ 1000 ) n(n \leq 1000) n(n≤1000) 和数码 a a a。 输出格式 对于每组数据&a…...

Mybatis的动态SQL及关键属性和标识的区别(对SQL更灵活的使用)

&#xff08; 虽然文章中有大多文本内容&#xff0c;想了解更深需要耐心看完&#xff0c;必定大有受益 &#xff09; 目录 一、动态SQL ( 1 ) 是什么 ( 2 ) 作用 ( 3 ) 优点 ( 4 ) 特殊标签 ( 5 ) 演示 二、#和$的区别 2.1 #使用 ( 1 ) #占位符语法 ( 2 ) #优点 2.…...

mysql下载

网址 MySQL :: Download MySQL Community Serverhttps://dev.mysql.com/downloads/mysql/ 2、选择MSI进行安装 3、这里我选择离线安装 4、这里我选择直接下载 5、等待下载安装即可...

聚合函数与窗口函数

聚合函数 回答一 聚合函数&#xff08;Aggregate Functions&#xff09;是SQL中的函数&#xff0c;用于对一组数据进行计算&#xff0c;并返回单个结果。聚合函数通常用于统计和汇总数据&#xff0c;包括计算总和、平均值、计数、最大值和最小值等。 以下是一些常见的聚合函…...

c语言实现堆

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言一、树1、树的概念2、树的相关概念3、树的表示 二、二叉树1、二叉树概念2、特殊的二叉树3、二叉树的性质4、二叉树的顺序结构5、二叉树的链式结构 三、堆(二叉树…...

ubuntu 如何将文件打包成tar.gz

要将文件打包成.tar.gz文件&#xff0c;可以使用以下命令&#xff1a; tar -czvf 文件名.tar.gz 文件路径 其中&#xff0c;-c表示创建新的归档文件&#xff0c;-z表示使用gzip进行压缩&#xff0c;-v表示显示详细的打包过程&#xff0c;-f表示指定归档文件的名称。 例如&am…...

前端优化页面加载速度的方法(持续更新)

提速方法方向 延迟脚本加载 使用 async 属性&#xff1a; 在这种方法中&#xff0c;脚本将在下载完成后立即执行&#xff0c;而不会阻塞其他页面资源的加载和渲染。这适用于那些不依赖于其他脚本和页面内容的脚本&#xff0c;例如分析脚本等。示例如下&#xff1a; html …...

利用SSL证书的SNI特性建立自己的爬虫ip服务器

今天我要和大家分享一个关于自建多域名HTTPS爬虫ip服务器的知识&#xff0c;让你的爬虫ip服务器更加强大&#xff01;无论是用于数据抓取、反爬虫还是网络调试&#xff0c;自建一个支持多个域名的HTTPS爬虫ip服务器都是非常有价值的。本文将详细介绍如何利用SSL证书的SNI&#…...

HTML和CSS

HTML HTML(Hyper Text Markup Language):超文本语言 超文本&#xff1a;超越了文本的限制&#xff0c;比普通文本更强大。除了文字信息&#xff0c;还可以定义图片、音频、视频等内容。 标记语言&#xff1a;由标签构成的语言 HTML标签都是预定义好的。例如&#xff1a;使用&l…...

C#的IndexOf

在 C# 中&#xff0c;IndexOf 是一个字符串、数组或列表的方法&#xff0c;用于查找指定元素的第一个匹配项的索引。它返回一个整数值&#xff0c;表示匹配项在集合中的位置&#xff0c;如果未找到匹配项&#xff0c;则返回 -1。 IndexOf 方法有多个重载形式&#xff0c;可以根…...

深度学习2.神经网络、机器学习、人工智能

目录 深度学习、神经网络、机器学习、人工智能的关系 大白话解释深度学习 传统机器学习 VS 深度学习 深度学习的优缺点 4种典型的深度学习算法 卷积神经网络 – CNN 循环神经网络 – RNN 生成对抗网络 – GANs 深度强化学习 – RL 总结 深度学习 深度学习、神经网络…...

利用LLM模型微调的短课程;钉钉宣布开放智能化底座能力

&#x1f989; AI新闻 &#x1f680; 钉钉宣布开放智能化底座能力AI PaaS&#xff0c;推动企业数智化转型发展 摘要&#xff1a;钉钉在生态大会上宣布开放智能化底座能力AI PaaS&#xff0c;与生态伙伴探寻企业服务的新发展道路。AI PaaS结合5G、云计算和人工智能技术的普及和…...

软件工程(七) UML之用例图详解

1、UML-4+1视图 UML-4+1视图将会与后面的架构4+1视图会一一对应上 视图往往出现在什么场景:我们看待一个事物,我们觉得它很复杂,难以搞清楚,为了化繁为简,我们会从一个侧面去看,这就是视图。而4+1视图就是分不同角度去看事物。 逻辑视图(logical view) 一般使用类与对…...

pd.cut()函数--Pandas

1. 函数功能 将连续性数值进行离散化处理&#xff1a;如对年龄、消费金额等进行分组 2. 函数语法 pandas.cut(x, bins, rightTrue, labelsNone, retbinsFalse, precision3, include_lowestFalse, duplicatesraise, orderedTrue)3. 函数参数 参数含义x要离散分箱操作的数组&…...

DataBinding的基本使用

目录 一、MVC、MVP和MVVM框架的使用场景二、Java使用 一、MVC、MVP和MVVM框架的使用场景 MVC&#xff1a; 适用于小型项目&#xff0c;够灵活&#xff0c; 缺点&#xff1a;Activity不仅要做View的事情还要做控制和模型的处理&#xff0c;导致Activity太过臃肿&#xff0c;管理…...

eslint和prettier格式化冲突

下载插件 ESLint 和 Prettier ESLint 进入setting.json中 setting.json中配置 {"editor.tabSize": 2,"editor.linkedEditing": true,"security.workspace.trust.untrustedFiles": "open","git.autofetch": true,"…...

matlab使用教程(26)—常微分方程的求解

1.求解非刚性 ODE 本页包含两个使用 ode45 来求解非刚性常微分方程的示例。MATLAB 提供几个非刚性 ODE 求解器。 • ode45 • ode23 • ode78 • ode89 • ode113 对于大多数非刚性问题&#xff0c;ode45 的性能最佳。但对于允许较宽松的误差容限或刚度适中的问题&…...

尚硅谷宋红康MySQL笔记 14-18

是记录&#xff0c;不会太详细&#xff0c;受本人知识限制会有错误&#xff0c;会有个人的理解在里面 第14章 视图 了解一下&#xff0c;数据库的常见对象 对象描述表(TABLE)表是存储数据的逻辑单元&#xff0c;以行和列的形式存在&#xff0c;列就是字段&#xff0c;行就是记…...

香港全新的虚拟资产服务商发牌制度

香港证监会2023年2月20日通告&#xff0c;原有虛擬資產交易平台如要符合資格參與當作為獲發牌的安排&#xff0c;必須在2023 年6 月1 日至2024 年2 月29 日期間(即由2023 年6 月1 日37起計九個月內)內&#xff0c;根據《打擊洗錢條例》下的虛擬資產服務提供者制度在網上提交完全…...

【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器

一.自适应梯度算法Adagrad概述 Adagrad&#xff08;Adaptive Gradient Algorithm&#xff09;是一种自适应学习率的优化算法&#xff0c;由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率&#xff0c;适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...

质量体系的重要

质量体系是为确保产品、服务或过程质量满足规定要求&#xff0c;由相互关联的要素构成的有机整体。其核心内容可归纳为以下五个方面&#xff1a; &#x1f3db;️ 一、组织架构与职责 质量体系明确组织内各部门、岗位的职责与权限&#xff0c;形成层级清晰的管理网络&#xf…...

DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”

目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...

使用 SymPy 进行向量和矩阵的高级操作

在科学计算和工程领域&#xff0c;向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能&#xff0c;能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作&#xff0c;并通过具体…...

保姆级教程:在无网络无显卡的Windows电脑的vscode本地部署deepseek

文章目录 1 前言2 部署流程2.1 准备工作2.2 Ollama2.2.1 使用有网络的电脑下载Ollama2.2.2 安装Ollama&#xff08;有网络的电脑&#xff09;2.2.3 安装Ollama&#xff08;无网络的电脑&#xff09;2.2.4 安装验证2.2.5 修改大模型安装位置2.2.6 下载Deepseek模型 2.3 将deepse…...

解读《网络安全法》最新修订,把握网络安全新趋势

《网络安全法》自2017年施行以来&#xff0c;在维护网络空间安全方面发挥了重要作用。但随着网络环境的日益复杂&#xff0c;网络攻击、数据泄露等事件频发&#xff0c;现行法律已难以完全适应新的风险挑战。 2025年3月28日&#xff0c;国家网信办会同相关部门起草了《网络安全…...

C++实现分布式网络通信框架RPC(2)——rpc发布端

有了上篇文章的项目的基本知识的了解&#xff0c;现在我们就开始构建项目。 目录 一、构建工程目录 二、本地服务发布成RPC服务 2.1理解RPC发布 2.2实现 三、Mprpc框架的基础类设计 3.1框架的初始化类 MprpcApplication 代码实现 3.2读取配置文件类 MprpcConfig 代码实现…...

从物理机到云原生:全面解析计算虚拟化技术的演进与应用

前言&#xff1a;我的虚拟化技术探索之旅 我最早接触"虚拟机"的概念是从Java开始的——JVM&#xff08;Java Virtual Machine&#xff09;让"一次编写&#xff0c;到处运行"成为可能。这个软件层面的虚拟化让我着迷&#xff0c;但直到后来接触VMware和Doc…...

面试高频问题

文章目录 &#x1f680; 消息队列核心技术揭秘&#xff1a;从入门到秒杀面试官1️⃣ Kafka为何能"吞云吐雾"&#xff1f;性能背后的秘密1.1 顺序写入与零拷贝&#xff1a;性能的双引擎1.2 分区并行&#xff1a;数据的"八车道高速公路"1.3 页缓存与批量处理…...

《信号与系统》第 6 章 信号与系统的时域和频域特性

目录 6.0 引言 6.1 傅里叶变换的模和相位表示 6.2 线性时不变系统频率响应的模和相位表示 6.2.1 线性与非线性相位 6.2.2 群时延 6.2.3 对数模和相位图 6.3 理想频率选择性滤波器的时域特性 6.4 非理想滤波器的时域和频域特性讨论 6.5 一阶与二阶连续时间系统 6.5.1 …...