大数据-玩转数据-Flink窗口函数
一、Flink窗口函数
前面指定了窗口的分配器, 接着我们需要来指定如何计算, 这事由window function来负责. 一旦窗口关闭, window function 去计算处理窗口中的每个元素.
window function 可以是ReduceFunction,AggregateFunction,or ProcessWindowFunction中的任意一种.
ReduceFunction,AggregateFunction更加高效, 原因就是Flink可以对到来的元素进行增量聚合 . ProcessWindowFunction 可以得到一个包含这个窗口中所有元素的迭代器, 以及这些元素所属窗口的一些元数据信息.
ProcessWindowFunction不能被高效执行的原因是Flink在执行这个函数之前, 需要在内部缓存这个窗口上所有的元素。
除了一些简单聚合,比如 sum,max,min,maxBay,minBay ,有以下窗口聚合函数。
二、ReduceFunction(增量聚合函数)
输入和输出必须一致
package com.lyh.flink07;import com.lyh.bean.WaterSensor;
import org.apache.flink.api.common.functions.ReduceFunction;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.assigners.TumblingProcessingTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;public class Window_s_function {public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();env.setParallelism(1);env.socketTextStream("hadoop100",9999).map(line -> {String[] data = line.split(",");return new WaterSensor(data[0],Long.valueOf(data[1]),Integer.valueOf(data[2]));}).keyBy(WaterSensor::getId).window(TumblingProcessingTimeWindows.of(Time.seconds(5))).reduce(new ReduceFunction<WaterSensor>() {@Overridepublic WaterSensor reduce(WaterSensor value1,WaterSensor value2) throws Exception {System.out.println("Window_s_function.reduce");value1.setVc ( value1.getVc() + value2.getVc());return (value1);}}).print();env.execute();}
}
运行结果


三、AggregateFunction(增量聚合函数)
输入和输出可以不一致
package com.lyh.flink07;import com.lyh.bean.WaterSensor;
import org.apache.flink.api.common.functions.AggregateFunction;
import org.apache.flink.api.common.functions.ReduceFunction;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.windowing.ProcessWindowFunction;
import org.apache.flink.streaming.api.windowing.assigners.TumblingProcessingTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
import org.apache.flink.util.Collector;
import org.apache.kafka.common.metrics.stats.Avg;import java.util.List;public class Window_s_function_2 {public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();env.setParallelism(1);env.socketTextStream("hadoop100",9999).map(line -> {String[] data = line.split(",");return new WaterSensor(data[0],Long.valueOf(data[1]),Integer.valueOf(data[2]));}).keyBy(WaterSensor::getId).window(TumblingProcessingTimeWindows.of(Time.seconds(5))).aggregate(new AggregateFunction<WaterSensor, Avg, Double>() {@Overridepublic Avg createAccumulator() {return new Avg();}@Overridepublic Avg add(WaterSensor value, Avg acc) {acc.sum += value.getVc();acc.couunt++;return acc;}@Overridepublic Double getResult(Avg acc) {return acc.sum * 1.0 / acc.couunt;}@Overridepublic Avg merge(Avg avg, Avg acc1) {return null;}},new ProcessWindowFunction<Double, String, String, TimeWindow>() {@Overridepublic void process(String key,Context ctx,Iterable<Double> elements,Collector<String> out) throws Exception {Double result = elements.iterator().next();long starttime = ctx.window().getStart();long endtime = ctx.window().getEnd();out.collect("窗口:" + starttime + " " + endtime + " key: " + key + " result: " + result);}}).print();env.execute();}public static class Avg {public Integer sum = 0;public Long couunt = 0L;};
}
运行结果


四、ProcessWindowFunction(全窗口函数)
上面例子里已经用到
new ProcessWindowFunction<Double, String, String, TimeWindow>() {@Overridepublic void process(String key,Context ctx,Iterable<Double> elements,Collector<String> out) throws Exception {Double result = elements.iterator().next();long starttime = ctx.window().getStart();long endtime = ctx.window().getEnd();out.collect("窗口:" + starttime + " " + endtime + " key: " + key + " result: " + result);}}
相关文章:
大数据-玩转数据-Flink窗口函数
一、Flink窗口函数 前面指定了窗口的分配器, 接着我们需要来指定如何计算, 这事由window function来负责. 一旦窗口关闭, window function 去计算处理窗口中的每个元素. window function 可以是ReduceFunction,AggregateFunction,or ProcessWindowFunction中的任意一种. Reduc…...
Docker网络-探索容器网络如何相互通信
当今世界,企业热衷于容器化,这需要强大的网络技能来正确配置容器架构,因此引入了 Docker Networking 的概念。Docker 是一种容器化平台,允许您在独立、轻量级的容器中运行应用程序和服务。Docker 提供了一套强大的网络功能&#x…...
ESP32-CAM模块Arduino环境搭建测试
ESP32-CAM模块Arduino环境搭建测试 一.ESP32OV2640摄像头模块CameraWebServer视频查看 二.测试ESP32-CAM(后续称cam模块)代码是否上传执行成功测试 const int led0 12; const int led1 13;void setup() {// put your setup code here, to run once:pinMode(led0, OUTPUT);pin…...
webassembly001 webassembly简述
WebAssembly 官方地址:https://webassembly.org/相关历史 https://en.wikipedia.org/wiki/WebAssembly https://brendaneich.com/2015/06/from-asm-js-to-webassembly/WebAssembly(缩写为Wasm)是一种基于堆栈的虚拟机的二进制指令格式。Wasm 被设计为编…...
vue 使用C-Lodop打印小票
先从官网下载js文件 https://www.lodop.net/LodopDemo.html 打开安装程序,一直下一步既可,我这边已经安装过就不演示了。 // 引入 import { getLodop } from /utils/CLodopfuncs.js;// 使用 let LODOP getLodop()let Count LODOP.GET_PRINTER_COUNT…...
【C++进阶(二)】STL大法--vector的深度剖析以及模拟实现
💓博主CSDN主页:杭电码农-NEO💓 ⏩专栏分类:C从入门到精通⏪ 🚚代码仓库:NEO的学习日记🚚 🌹关注我🫵带你学习C 🔝🔝 vector 1. 前言2. 熟悉vector的接口函数2.1 vec…...
1. import pandas as pd 导入库
【目录】 文章目录 1. import pandas as pd 导入库1. pandas库的概念2. 导入pandas库2.1 常规导入2.2 别名导入 3. 别名的作用4. 课堂练习 【正文】 1. import pandas as pd 导入库 【学习时间】 10分钟 1. pandas库的概念 pandas:熊猫panda的复数, …...
DMK5框选变量之后不显示其他位置的此变量高亮
使用软件MDK5.3.8版本 如下在2的位置选择之后,其他同样的变量没有高亮,因为1的原因折叠了; 展开折叠之后就可以了...
0061__Appium
Appium Documentation - Appium Documentation APP自动化测试(3)-Appium Inspector介绍_六天测试工程师的博客-CSDN博客 https://github.com/appium/appium-inspector https://github.com/appium/appium-desktop https://github.com/appium/appium...
【DEVOPS】需求跟踪管理全面落地
0. 目录 1. 现状/背景2. 需求管理存在的问题3. 改进思路/措施4. 所谓"禅道尚未普及/铺开"5. 最后6. 相关 1. 现状/背景 近期又被领导问到"如何对项目过程中的需求进行量化和跟踪管理"。这真是一个狗皮膏药似的问题,反反复复地,隔一…...
算法修炼Day57|647. 回文子串 ● 516.最长回文子序列
LeetCode:647. 回文子串 647. 回文子串 - 力扣(LeetCode) 1.思路 暴力思路见对应代码… 动规解法:画图推导动规公式,当前状态由左侧和左下角推出,所以首层应该采用倒序的方式,内部采用正序的方式。 2.…...
呈现数据的精妙之道:选择合适的可视化方法
在当今数据时代,数据可视化已成为理解和传达信息的重要手段。然而,选择适合的数据可视化方法对于有效地呈现数据至关重要。不同的数据和目标需要不同的可视化方法,下面我们将探讨如何选择最佳的数据可视化方法来呈现数据。 1. 理解数据类型&a…...
数据结构(Java实现)-java对象的比较
元素的比较 基本类型的比较 在Java中,基本类型的对象可以直接比较大小。 对象比较的问题 Java中引用类型的变量不能直接按照 > 或者 < 方式进行比较 默认情况下调用的就是equal方法,但是该方法的比较规则是:没有比较引用变量引用对象的…...
Wolfram Mathematica 13 for Mac 数学计算工具
Wolfram Mathematica for Mac是一款功能强大、划时代的科学计算软件。它结合了数字和符号计算引擎、图形系统、编程语言、文本系统以及与其他应用程序的高级连接,在许多功能方面处于世界领先地位,截至2009年,它是使用最广泛的数学软件之一。人…...
系统架构设计高级技能 · Web架构
现在的一切都是为将来的梦想编织翅膀,让梦想在现实中展翅高飞。 Now everything is for the future of dream weaving wings, let the dream fly in reality. 点击进入系列文章目录 系统架构设计高级技能 Web架构 一、Web架构介绍1.1 Web架构涉及技术1.2 单台服务…...
再写CentOS7升级OpenSSL-1.0.1U
本文在CentOS7.4以及TencentOS 2.4上测试通过。 原系统自带OpenSSL 1.0.2k-fips。 编译安装方法跟之前的没啥区别。 从官网下载1.0.1u版https://www.openssl.org/source/ 使用tar解包 tar xfz openssl-1.0.1u.tar.gz 依次执行如下: cd openssl-1.0.1u ./con…...
HBase--技术文档--基本概念--《快速扫盲》
官网 Apache HBase – Apache HBase™ Home 阿里云hbase 云数据库HBase_大数据存储_订单风控_数据库-阿里云 云数据库 HBase-阿里云帮助中心 基本概念 HBase是一种分布式、可扩展、支持海量数据存储的NoSQL数据库。它基于Hadoop,采用列式存储方式,可…...
如何利用SFTP协议远程实现更安全的文件传输 ——【内网穿透】
🎬 鸽芷咕:个人主页 🔥 个人专栏: 《高效编程技巧》《cpolar》 ⛺️生活的理想,就是为了理想的生活! 文章目录 1. 安装openSSH1.1 安装SSH1.2 启动ssh 2. 安装cpolar2.1 配置termux服务 3. 远程SFTP连接配置3.1 查看生成的随机公…...
深度学习8:详解生成对抗网络原理
目录 大纲 生成随机变量 可以伪随机生成均匀随机变量 随机变量表示为操作或过程的结果 逆变换方法 生成模型 我们试图生成非常复杂的随机变量…… …所以让我们使用神经网络的变换方法作为函数! 生成匹配网络 培养生成模型 比较基于样本的两个概率分布 …...
sql入门-多表查询
案例涉及表 ----------------------------------建表语句之前翻看之前博客文章 多表查询 -- 学生表 create table studen ( id int primary key auto_increment comment id, name varchar(50) comment 姓名, no varchar(10) comment 学号 ) comment 学生表; insert…...
《从零掌握MIPI CSI-2: 协议精解与FPGA摄像头开发实战》-- CSI-2 协议详细解析 (一)
CSI-2 协议详细解析 (一) 1. CSI-2层定义(CSI-2 Layer Definitions) 分层结构 :CSI-2协议分为6层: 物理层(PHY Layer) : 定义电气特性、时钟机制和传输介质(导线&#…...
基于服务器使用 apt 安装、配置 Nginx
🧾 一、查看可安装的 Nginx 版本 首先,你可以运行以下命令查看可用版本: apt-cache madison nginx-core输出示例: nginx-core | 1.18.0-6ubuntu14.6 | http://archive.ubuntu.com/ubuntu focal-updates/main amd64 Packages ng…...
将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?
Otsu 是一种自动阈值化方法,用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理,能够自动确定一个阈值,将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...
LLM基础1_语言模型如何处理文本
基于GitHub项目:https://github.com/datawhalechina/llms-from-scratch-cn 工具介绍 tiktoken:OpenAI开发的专业"分词器" torch:Facebook开发的强力计算引擎,相当于超级计算器 理解词嵌入:给词语画"…...
Java面试专项一-准备篇
一、企业简历筛选规则 一般企业的简历筛选流程:首先由HR先筛选一部分简历后,在将简历给到对应的项目负责人后再进行下一步的操作。 HR如何筛选简历 例如:Boss直聘(招聘方平台) 直接按照条件进行筛选 例如:…...
【HarmonyOS 5 开发速记】如何获取用户信息(头像/昵称/手机号)
1.获取 authorizationCode: 2.利用 authorizationCode 获取 accessToken:文档中心 3.获取手机:文档中心 4.获取昵称头像:文档中心 首先创建 request 若要获取手机号,scope必填 phone,permissions 必填 …...
GC1808高性能24位立体声音频ADC芯片解析
1. 芯片概述 GC1808是一款24位立体声音频模数转换器(ADC),支持8kHz~96kHz采样率,集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器,适用于高保真音频采集场景。 2. 核心特性 高精度:24位分辨率,…...
Angular微前端架构:Module Federation + ngx-build-plus (Webpack)
以下是一个完整的 Angular 微前端示例,其中使用的是 Module Federation 和 npx-build-plus 实现了主应用(Shell)与子应用(Remote)的集成。 🛠️ 项目结构 angular-mf/ ├── shell-app/ # 主应用&…...
让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比
在机器学习的回归分析中,损失函数的选择对模型性能具有决定性影响。均方误差(MSE)作为经典的损失函数,在处理干净数据时表现优异,但在面对包含异常值的噪声数据时,其对大误差的二次惩罚机制往往导致模型参数…...
redis和redission的区别
Redis 和 Redisson 是两个密切相关但又本质不同的技术,它们扮演着完全不同的角色: Redis: 内存数据库/数据结构存储 本质: 它是一个开源的、高性能的、基于内存的 键值存储数据库。它也可以将数据持久化到磁盘。 核心功能: 提供丰…...
