当前位置: 首页 > news >正文

[oneAPI] 基于BERT预训练模型的SWAG问答任务

[oneAPI] 基于BERT预训练模型的SWAG问答任务

  • 基于Intel® DevCloud for oneAPI下的Intel® Optimization for PyTorch
  • 基于BERT预训练模型的SWAG问答任务
    • 数据集下载和描述
    • 数据集构建
    • 问答选择模型
    • 训练
  • 结果
  • 参考资料

比赛:https://marketing.csdn.net/p/f3e44fbfe46c465f4d9d6c23e38e0517
Intel® DevCloud for oneAPI:https://devcloud.intel.com/oneapi/get_started/aiAnalyticsToolkitSamples/

基于Intel® DevCloud for oneAPI下的Intel® Optimization for PyTorch

在Intel® DevCloud for oneAPI平台上,我们搭建了实验环境,充分发挥其完全虚拟化的优势,使我们能够专注于模型开发和优化,无需过多关心底层配置和维护工作。为了进一步提升我们的实验效果,我们充分利用了Intel® Optimization for PyTorch,将其应用于我们的PyTorch模型中,从而实现了高效的优化。这一优化策略不仅提升了模型的训练速度和推断性能,还使模型在英特尔硬件上的表现更加卓越,从而加速了实验的整体进程。

在我们的实验中,我们选择了Bert预训练模型,并将其应用于SQuAD英文问答任务中。通过数据预处理、Fine-tuning等步骤,我们成功地将Bert模型应用于问答任务中,取得了令人满意的效果。在这一过程中,Intel® Optimization for PyTorch的应用进一步加速了模型的训练和推断过程,提高了整体效率。

这一实验方案不仅仅是技术上的创新,更是在实际应用中带来的价值。通过提升模型的性能,我们不仅可以更快地训练和部署模型,还可以提供更高质量的问答结果,从而提升用户体验。这对于自然语言处理领域的研究和应用都具有重要意义。
在这里插入图片描述

基于BERT预训练模型的SWAG问答任务

SWAG任务是一项常见的自然语言处理任务,旨在对给定的句子上下文中的多个选项进行排列,从而确定最可能的下一句。该任务有助于模型理解句子的语境和逻辑,具有广泛的应用价值。下来介绍该任务的我们使用的解决方案:

  • 数据准备: 首先,从SWAG数据集中获取句子上下文和多个选项。每个样本包含一个上下文句子以及四个候选选项,其中一个是正确的。需要将这些文本数据转换成Bert模型可以理解的输入格式。
  • 预训练模型选择: 选择合适的预训练Bert模型,如BERT-base或BERT-large。这些模型在大规模语料库上进行了预训练,捕捉了丰富的语义信息。
  • Fine-tuning: 将预训练的Bert模型应用于SWAG任务,使用已标注的训练数据进行Fine-tuning。在Fine-tuning时,使用正确的选项作为标签,通过最大化正确选项的预测概率来优化模型。
  • 模型推断: 使用Fine-tuned的模型对测试数据进行预测,从多个选项中选择最可能的下一句。

数据集下载和描述

在这里,我们使用到的也是论文中所提到的SWAG(The Situations With Adversarial Generations )数据集,即给定一个情景(一个问题或一句描述),任务是模型从给定的四个选项中预测最有可能的一个。

如下所示便是部分原始示例数据:

1 ,video-id,fold-ind,startphrase,sent1,sent2,gold-source,ending0,ending1,ending2,ending3,label
2 0,anetv_NttjvRpSdsI,19391,The people are in robes. They,The people are in robes.,They,gold,are wearing colorful costumes.,are doing karate moves on the floor.,shake hands on their hips.,do a flip to the bag.,0
3 1,lsmdc3057_ROBIN_HOOD-27684,16344,She smirks at someone and rides off. He,She smirks at someone and rides off.,He,gold,smiles and falls heavily.,wears a bashful smile.,kneels down behind her.,gives him a playful glance.,1

如上所示数据集中一共有12个字段包含两个样本,我们这里需要用到的就是sent1,ending0,ending1,ending2,ending3,label这6个字段。例如对于第一个样本来说,其形式如下:

The people are in robes. TheyA) wearing colorful costumes.# 正确选项B) are doing karate moves on the floor.C) shake hands on their hips.  D) do a flip to the bag.

同时,由于该数据集已经做了训练集、验证集和测试集(没有标签)的划分,所以后续我们也就不需要来手动划分了。

数据集构建

import torch
from torch.utils.data import DataLoader
from tqdm import tqdm
import pandas as pd
import json
import logging
import os
from sklearn.model_selection import train_test_split
import collections
import sixclass Vocab:"""根据本地的vocab文件,构造一个词表vocab = Vocab()print(vocab.itos)  # 得到一个列表,返回词表中的每一个词;print(vocab.itos[2])  # 通过索引返回得到词表中对应的词;print(vocab.stoi)  # 得到一个字典,返回词表中每个词的索引;print(vocab.stoi['我'])  # 通过单词返回得到词表中对应的索引print(len(vocab))  # 返回词表长度"""UNK = '[UNK]'def __init__(self, vocab_path):self.stoi = {}self.itos = []with open(vocab_path, 'r', encoding='utf-8') as f:for i, word in enumerate(f):w = word.strip('\n')self.stoi[w] = iself.itos.append(w)def __getitem__(self, token):return self.stoi.get(token, self.stoi.get(Vocab.UNK))def __len__(self):return len(self.itos)def build_vocab(vocab_path):"""vocab = Vocab()print(vocab.itos)  # 得到一个列表,返回词表中的每一个词;print(vocab.itos[2])  # 通过索引返回得到词表中对应的词;print(vocab.stoi)  # 得到一个字典,返回词表中每个词的索引;print(vocab.stoi['我'])  # 通过单词返回得到词表中对应的索引"""return Vocab(vocab_path)def pad_sequence(sequences, batch_first=False, max_len=None, padding_value=0):"""对一个List中的元素进行paddingPad a list of variable length Tensors with ``padding_value``a = torch.ones(25)b = torch.ones(22)c = torch.ones(15)pad_sequence([a, b, c],max_len=None).size()torch.Size([25, 3])sequences:batch_first: 是否把batch_size放到第一个维度padding_value:max_len :当max_len = 50时,表示以某个固定长度对样本进行padding,多余的截掉;当max_len=None是,表示以当前batch中最长样本的长度对其它进行padding;Returns:"""if max_len is None:max_len = max([s.size(0) for s in sequences])out_tensors = []for tensor in sequences:if tensor.size(0) < max_len:tensor = torch.cat([tensor, torch.tensor([padding_value] * (max_len - tensor.size(0)))], dim=0)else:tensor = tensor[:max_len]out_tensors.append(tensor)out_tensors = torch.stack(out_tensors, dim=1)if batch_first:return out_tensors.transpose(0, 1)return out_tensorsdef cache(func):"""本修饰器的作用是将SQuAD数据集中data_process()方法处理后的结果进行缓存,下次使用时可直接载入!:param func::return:"""def wrapper(*args, **kwargs):filepath = kwargs['filepath']postfix = kwargs['postfix']data_path = filepath.split('.')[0] + '_' + postfix + '.pt'if not os.path.exists(data_path):logging.info(f"缓存文件 {data_path} 不存在,重新处理并缓存!")data = func(*args, **kwargs)with open(data_path, 'wb') as f:torch.save(data, f)else:logging.info(f"缓存文件 {data_path} 存在,直接载入缓存文件!")with open(data_path, 'rb') as f:data = torch.load(f)return datareturn wrapperclass LoadSingleSentenceClassificationDataset:def __init__(self,vocab_path='./vocab.txt',  #tokenizer=None,batch_size=32,max_sen_len=None,split_sep='\n',max_position_embeddings=512,pad_index=0,is_sample_shuffle=True):""":param vocab_path: 本地词表vocab.txt的路径:param tokenizer::param batch_size::param max_sen_len: 在对每个batch进行处理时的配置;当max_sen_len = None时,即以每个batch中最长样本长度为标准,对其它进行padding当max_sen_len = 'same'时,以整个数据集中最长样本为标准,对其它进行padding当max_sen_len = 50, 表示以某个固定长度符样本进行padding,多余的截掉;:param split_sep: 文本和标签之前的分隔符,默认为'\t':param max_position_embeddings: 指定最大样本长度,超过这个长度的部分将本截取掉:param is_sample_shuffle: 是否打乱训练集样本(只针对训练集)在后续构造DataLoader时,验证集和测试集均指定为了固定顺序(即不进行打乱),修改程序时请勿进行打乱因为当shuffle为True时,每次通过for循环遍历data_iter时样本的顺序都不一样,这会导致在模型预测时返回的标签顺序与原始的顺序不一样,不方便处理。"""self.tokenizer = tokenizerself.vocab = build_vocab(vocab_path)self.PAD_IDX = pad_indexself.SEP_IDX = self.vocab['[SEP]']self.CLS_IDX = self.vocab['[CLS]']# self.UNK_IDX = '[UNK]'self.batch_size = batch_sizeself.split_sep = split_sepself.max_position_embeddings = max_position_embeddingsif isinstance(max_sen_len, int) and max_sen_len > max_position_embeddings:max_sen_len = max_position_embeddingsself.max_sen_len = max_sen_lenself.is_sample_shuffle = is_sample_shuffle@cachedef data_process(self, filepath, postfix='cache'):"""将每一句话中的每一个词根据字典转换成索引的形式,同时返回所有样本中最长样本的长度:param filepath: 数据集路径:return:"""raw_iter = open(filepath, encoding="utf8").readlines()data = []max_len = 0for raw in tqdm(raw_iter, ncols=80):line = raw.rstrip("\n").split(self.split_sep)s, l = line[0], line[1]tmp = [self.CLS_IDX] + [self.vocab[token] for token in self.tokenizer(s)]if len(tmp) > self.max_position_embeddings - 1:tmp = tmp[:self.max_position_embeddings - 1]  # BERT预训练模型只取前512个字符tmp += [self.SEP_IDX]tensor_ = torch.tensor(tmp, dtype=torch.long)l = torch.tensor(int(l), dtype=torch.long)max_len = max(max_len, tensor_.size(0))data.append((tensor_, l))return data, max_lendef load_train_val_test_data(self, train_file_path=None,val_file_path=None,test_file_path=None,only_test=False):postfix = str(self.max_sen_len)test_data, _ = self.data_process(filepath=test_file_path, postfix=postfix)test_iter = DataLoader(test_data, batch_size=self.batch_size,shuffle=False, collate_fn=self.generate_batch)if only_test:return test_itertrain_data, max_sen_len = self.data_process(filepath=train_file_path,postfix=postfix)  # 得到处理好的所有样本if self.max_sen_len == 'same':self.max_sen_len = max_sen_lenval_data, _ = self.data_process(filepath=val_file_path,postfix=postfix)train_iter = DataLoader(train_data, batch_size=self.batch_size,  # 构造DataLoadershuffle=self.is_sample_shuffle, collate_fn=self.generate_batch)val_iter = DataLoader(val_data, batch_size=self.batch_size,shuffle=False, collate_fn=self.generate_batch)return train_iter, test_iter, val_iterdef generate_batch(self, data_batch):batch_sentence, batch_label = [], []for (sen, label) in data_batch:  # 开始对一个batch中的每一个样本进行处理。batch_sentence.append(sen)batch_label.append(label)batch_sentence = pad_sequence(batch_sentence,  # [batch_size,max_len]padding_value=self.PAD_IDX,batch_first=False,max_len=self.max_sen_len)batch_label = torch.tensor(batch_label, dtype=torch.long)return batch_sentence, batch_labelclass LoadMultipleChoiceDataset(LoadSingleSentenceClassificationDataset):def __init__(self, num_choice=4, **kwargs):super(LoadMultipleChoiceDataset, self).__init__(**kwargs)self.num_choice = num_choice@cachedef data_process(self, filepath, postfix='cache'):data = pd.read_csv(filepath)questions = data['startphrase']answers0, answers1 = data['ending0'], data['ending1']answers2, answers3 = data['ending2'], data['ending3']labels = [-1] * len(questions)if 'label' in data:  # 测试集中没有标签labels = data['label']all_data = []max_len = 0for i in tqdm(range(len(questions)), ncols=80):# 将问题中的每个word转换为字典中的token idt_q = [self.vocab[token] for token in self.tokenizer(questions[i])]t_q = [self.CLS_IDX] + t_q + [self.SEP_IDX]# 将答案中的每个word转换为字典中的token idt_a0 = [self.vocab[token] for token in self.tokenizer(answers0[i])]t_a1 = [self.vocab[token] for token in self.tokenizer(answers1[i])]t_a2 = [self.vocab[token] for token in self.tokenizer(answers2[i])]t_a3 = [self.vocab[token] for token in self.tokenizer(answers3[i])]# 计算最长序列的长度max_len = max(max_len, len(t_q) + max(len(t_a0), len(t_a1), len(t_a2), len(t_a3)))seg_q = [0] * len(t_q)# 加1表示还要加上问题和答案组合后最后一个[SEP]的长度seg_a0 = [1] * (len(t_a0) + 1)seg_a1 = [1] * (len(t_a1) + 1)seg_a2 = [1] * (len(t_a2) + 1)seg_a3 = [1] * (len(t_a3) + 1)all_data.append((t_q, t_a0, t_a1, t_a2, t_a3, seg_q,seg_a0, seg_a1, seg_a2, seg_a3, labels[i]))return all_data, max_lendef generate_batch(self, data_batch):batch_qa, batch_seg, batch_label = [], [], []def get_seq(q, a):seq = q + aif len(seq) > self.max_position_embeddings - 1:seq = seq[:self.max_position_embeddings - 1]return torch.tensor(seq + [self.SEP_IDX], dtype=torch.long)for item in data_batch:# 得到 每个问题组合其中一个答案的 input_ids 序列tmp_qa = [get_seq(item[0], item[1]),get_seq(item[0], item[2]),get_seq(item[0], item[3]),get_seq(item[0], item[4])]# 得到 每个问题组合其中一个答案的 token_type_idsseg0 = (item[5] + item[6])[:self.max_position_embeddings]seg1 = (item[5] + item[7])[:self.max_position_embeddings]seg2 = (item[5] + item[8])[:self.max_position_embeddings]seg3 = (item[5] + item[9])[:self.max_position_embeddings]tmp_seg = [torch.tensor(seg0, dtype=torch.long),torch.tensor(seg1, dtype=torch.long),torch.tensor(seg2, dtype=torch.long),torch.tensor(seg3, dtype=torch.long)]batch_qa.extend(tmp_qa)batch_seg.extend(tmp_seg)batch_label.append(item[-1])batch_qa = pad_sequence(batch_qa,  # [batch_size*num_choice,max_len]padding_value=self.PAD_IDX,batch_first=True,max_len=self.max_sen_len)batch_mask = (batch_qa == self.PAD_IDX).view([-1, self.num_choice, batch_qa.size(-1)])# reshape 至 [batch_size, num_choice, max_len]batch_qa = batch_qa.view([-1, self.num_choice, batch_qa.size(-1)])batch_seg = pad_sequence(batch_seg,  # [batch_size*num_choice,max_len]padding_value=self.PAD_IDX,batch_first=True,max_len=self.max_sen_len)# reshape 至 [batch_size, num_choice, max_len]batch_seg = batch_seg.view([-1, self.num_choice, batch_seg.size(-1)])batch_label = torch.tensor(batch_label, dtype=torch.long)return batch_qa, batch_seg, batch_mask, batch_label

问答选择模型

我们只需要在原始BERT模型的基础上再加一个分类层即可,因此这部分代码相对来说也比较容易理解

定义一个类以及相应的初始化函数

from model.Bert import BertModel
import torch.nn as nnclass BertForMultipleChoice(nn.Module):"""用于类似SWAG数据集的下游任务"""def __init__(self, config, bert_pretrained_model_dir=None):super(BertForMultipleChoice, self).__init__()self.num_choice = config.num_labelsif bert_pretrained_model_dir is not None:self.bert = BertModel.from_pretrained(config, bert_pretrained_model_dir)else:self.bert = BertModel(config)self.dropout = nn.Dropout(config.hidden_dropout_prob)self.classifier = nn.Linear(config.hidden_size, 1)def forward(self, input_ids,attention_mask=None,token_type_ids=None,position_ids=None,labels=None):""":param input_ids: [batch_size, num_choice, src_len]:param attention_mask: [batch_size, num_choice, src_len]:param token_type_ids: [batch_size, num_choice, src_len]:param position_ids::param labels::return:"""flat_input_ids = input_ids.view(-1, input_ids.size(-1)).transpose(0, 1)flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)).transpose(0, 1)flat_attention_mask = attention_mask.view(-1, token_type_ids.size(-1))pooled_output, _ = self.bert(input_ids=flat_input_ids,  # [src_len,batch_size*num_choice]attention_mask=flat_attention_mask,  # [batch_size*num_choice,src_len]token_type_ids=flat_token_type_ids,  # [src_len,batch_size*num_choice]position_ids=position_ids)pooled_output = self.dropout(pooled_output)  # [batch_size*num_choice, hidden_size]logits = self.classifier(pooled_output)  # [batch_size*num_choice, 1]shaped_logits = logits.view(-1, self.num_choice)  # [batch_size, num_choice]if labels is not None:loss_fct = nn.CrossEntropyLoss()loss = loss_fct(shaped_logits, labels.view(-1))return loss, shaped_logitselse:return shaped_logits

定义一个ModelConfig类来对分类模型中的超参数以及其它变量进行管理,代码如下所示:

class ModelConfig:def __init__(self):self.project_dir = os.path.dirname(os.path.abspath(__file__))self.dataset_dir = os.path.join(self.project_dir, 'MultipleChoice')self.pretrained_model_dir = os.path.join(self.project_dir, "weight")self.vocab_path = os.path.join(self.pretrained_model_dir, 'vocab.txt')self.device = torch.device('xpu' if torch.cuda.is_available() else 'cpu')self.train_file_path = os.path.join(self.dataset_dir, 'train.csv')self.val_file_path = os.path.join(self.dataset_dir, 'val.csv')self.test_file_path = os.path.join(self.dataset_dir, 'test.csv')self.model_save_dir = os.path.join(self.project_dir, 'cache')self.logs_save_dir = os.path.join(self.project_dir, 'logs')self.is_sample_shuffle = Trueself.batch_size = 16self.max_sen_len = Noneself.num_labels = 4  # num_choiceself.learning_rate = 2e-5self.epochs = 10self.model_val_per_epoch = 2logger_init(log_file_name='choice', log_level=logging.INFO,log_dir=self.logs_save_dir)if not os.path.exists(self.model_save_dir):os.makedirs(self.model_save_dir)# 把原始bert中的配置参数也导入进来bert_config_path = os.path.join(self.pretrained_model_dir, "config.json")bert_config = BertConfig.from_json_file(bert_config_path)for key, value in bert_config.__dict__.items():self.__dict__[key] = value# 将当前配置打印到日志文件中logging.info(" ### 将当前配置打印到日志文件中 ")for key, value in self.__dict__.items():logging.info(f"### {key} = {value}")

训练

最后,我们便可以通过如下方法完成整个模型的微调:

def train(config):model = BertForMultipleChoice(config,config.pretrained_model_dir)model_save_path = os.path.join(config.model_save_dir, 'model.pt')if os.path.exists(model_save_path):loaded_paras = torch.load(model_save_path)model.load_state_dict(loaded_paras)logging.info("## 成功载入已有模型,进行追加训练......")model = model.to(config.device)optimizer = torch.optim.Adam(model.parameters(), lr=config.learning_rate)'''Apply Intel Extension for PyTorch optimization against the model object and optimizer object.'''model, optimizer = ipex.optimize(model, optimizer=optimizer)model.train()bert_tokenize = BertTokenizer.from_pretrained(model_config.pretrained_model_dir).tokenizedata_loader = LoadMultipleChoiceDataset(vocab_path=config.vocab_path,tokenizer=bert_tokenize,batch_size=config.batch_size,max_sen_len=config.max_sen_len,max_position_embeddings=config.max_position_embeddings,pad_index=config.pad_token_id,is_sample_shuffle=config.is_sample_shuffle,num_choice=config.num_labels)train_iter, test_iter, val_iter = \data_loader.load_train_val_test_data(config.train_file_path,config.val_file_path,config.test_file_path)max_acc = 0for epoch in range(config.epochs):losses = 0start_time = time.time()for idx, (qa, seg, mask, label) in enumerate(train_iter):qa = qa.to(config.device)  # [src_len, batch_size]label = label.to(config.device)seg = seg.to(config.device)mask = mask.to(config.device)loss, logits = model(input_ids=qa,attention_mask=mask,token_type_ids=seg,position_ids=None,labels=label)optimizer.zero_grad()loss.backward()optimizer.step()losses += loss.item()acc = (logits.argmax(1) == label).float().mean()if idx % 10 == 0:logging.info(f"Epoch: {epoch}, Batch[{idx}/{len(train_iter)}], "f"Train loss :{loss.item():.3f}, Train acc: {acc:.3f}")if idx % 100 == 0:y_pred = logits.argmax(1).cpu()show_result(qa, y_pred, data_loader.vocab.itos, num_show=1)end_time = time.time()train_loss = losses / len(train_iter)logging.info(f"Epoch: {epoch}, Train loss: "f"{train_loss:.3f}, Epoch time = {(end_time - start_time):.3f}s")if (epoch + 1) % config.model_val_per_epoch == 0:acc, _ = evaluate(val_iter, model,config.device, inference=False)logging.info(f"Accuracy on val {acc:.3f}")if acc > max_acc:max_acc = acctorch.save(model.state_dict(), model_save_path)

结果

在这里插入图片描述

参考资料

基于BERT预训练模型的SWAG问答任务:https://mp.weixin.qq.com/s/GqsbMBNt9XcFIjmumR04Pg

相关文章:

[oneAPI] 基于BERT预训练模型的SWAG问答任务

[oneAPI] 基于BERT预训练模型的SWAG问答任务 基于Intel DevCloud for oneAPI下的Intel Optimization for PyTorch基于BERT预训练模型的SWAG问答任务数据集下载和描述数据集构建问答选择模型训练 结果参考资料 比赛&#xff1a;https://marketing.csdn.net/p/f3e44fbfe46c465f4d…...

如何为winform控件注册事件

有很多winform的初学者不知道如何为winform注册的事件代码,本篇博文就是以button控件为例子,为winform注册单击事件,如下: 1、新建一个winform 以visual studio 2019 社区版为例子,新建一个winform程序,如下: 关于visual studio 2019 社区版下载方式点击这里:手把手教…...

【LeetCode-面试经典150题-day15】

目录 104.二叉树的最大深度 100.相同的树 226.翻转二叉树 101.对称二叉树 105.从前序与中序遍历序列构造二叉树 106.从中序与后序遍历序列构造二叉树 117.填充每个节点的下一个右侧节点指针Ⅱ 104.二叉树的最大深度 题意&#xff1a; 给定一个二叉树 root &#xff0c;返回其…...

git查看和修改项目远程仓库地址

git查看和修改项目远程仓库地址 一、背景 项目代码仓库迁移&#xff0c;需要本地更新远程仓库地址,进行代码同步与提交。 二、查看项目的远程仓库地址 # 查看远程地址 git remote -v # 查看远程仓库信息&#xff08;分支、地址等&#xff09; git remote show origin三、修…...

JavaWeb 速通JSON

目录 一、JSON快速入门 1.基本介绍 : 2.定义格式 : 3.入门案例 : 二、JSON对象和字符串的相互转换 1.常用方法 : 2.应用实例 : 3.使用细节 : 三、JSON在Java中的使用 1.基本说明 : 2.应用场景 : 2.1 JSON <---> JavaBean 2.2 JSON <---> List 2.3 JSON …...

20 MySQL(下)

文章目录 视图视图是什么定义视图查看视图删除视图视图的作用 事务事务的使用 索引查询索引创建索引删除索引聚集索引和非聚集索引影响 账户管理&#xff08;了解非DBA&#xff09;授予权限 与 账户的相关操作 MySQL的主从配置 视图 视图是什么 通俗的讲&#xff0c;视图就是…...

测试圈的网红工具:Jmeter到底难在哪里?!

雨果的公司最近推出了一款在线购物应用&#xff0c;吸引了大量用户。然而随着用户数量的增加&#xff0c;应用的性能开始出现问题。用户抱怨说购物过程中页面加载缓慢&#xff0c;甚至有时候无法完成订单&#xff0c;小欧作为负责人员迫切需要找到解决方案。 在学习JMeter之前…...

深度学习10:Attention 机制

目录 Attention 的本质是什么 Attention 的3大优点 Attention 的原理 Attention 的 N 种类型 Attention 的本质是什么 Attention&#xff08;注意力&#xff09;机制如果浅层的理解&#xff0c;跟他的名字非常匹配。他的核心逻辑就是「从关注全部到关注重点」。 Attention…...

简单着色器编写(中下)

这篇我们来介绍另一部分函数。 static unsigned int CreateShader(const std::string& vertexShader, const std::string& fragmentShader) {unsigned int program glCreateProgram();unsigned int vs CompileShader(GL_VERTEX_SHADER,vertexShader);unsigned int f…...

matlab使用教程(24)—常微分方程(ODE)求解器

1.常微分方程 常微分方程 (ODE) 包含与一个自变量 t&#xff08;通常称为时间&#xff09;相关的因变量 y 的一个或多个导数。此处用于表示 y 关于 t 的导数的表示法对于一阶导数为 y ′ &#xff0c;对于二阶导数为 y ′′&#xff0c;依此类推。ODE 的阶数等于 y 在方程中…...

企业级数据共享规模化模式

数据共享正在成为企业数据战略的重要元素。对于公司而言&#xff0c;Amazon Data Exchange 这样的亚马逊云科技服务提供了与其他公司共享增值数据或从这些数据获利的途径。一些企业希望有一个数据共享平台&#xff0c;他们可以在该平台上建立协作和战略方法&#xff0c;在封闭、…...

Web服务器-Tomcat详细原理与实现

Tomcat 安装与使用 &#xff1a;MAC 安装配置使用Tomcat - 掘金 安装后本计算机就相当于一台服务器了&#xff01;&#xff01;&#xff01; 方式一&#xff1a;使用本地安装的Tomcat 1、将项目文件移动到Tomcat的webapps目录下。 2、启动Tomcat 3、在浏览器输入想要加载的…...

ARM处理器核心概述

一、基于ARM处理器的嵌入式系统 ARM核深度嵌入SOC中&#xff0c;通过JTAG口进行外部调试。计通常既有外部内存又有内部内存&#xff0c;从而支持不通的内存宽度、速度和大小。一般会包含一个中断控制器。可能包含一些Primece外设&#xff0c;需要从ARM公司取得授权。总线使用A…...

万户协同办公平台 ezoffice存在未授权访问漏洞 附POC

文章目录 万户协同办公平台 ezoffice存在未授权访问漏洞 附POC1. 万户协同办公平台 ezoffice简介2.漏洞描述3.影响版本4.fofa查询语句5.漏洞复现6.POC&EXP7.整改意见8.往期回顾 万户协同办公平台 ezoffice存在未授权访问漏洞 附POC 免责声明&#xff1a;请勿利用文章内的相…...

使用ctcloss训练矩阵生成目标字符串

首先我们需要明确 c t c l o s s ctcloss ctcloss是用来做什么的。比如说要生成的目标字符串长度为 l l l&#xff0c;而这个字符串包含 s s s个字符&#xff0c;字符串允许的最大长度为 L L L&#xff0c;这里认为一个位置是一个时间步&#xff0c;就是一拍&#xff0c;记为 T…...

驱动 - 20230829

练习 基于platform实现 在根节点下&#xff0c;增加设备树 myplatform {compatible"hqyj,myplatform";interrupts-extended<&gpiof 9 0>, <&gpiof 7 0>, <&gpiof 8 0>;led1-gpio<&gpioe 10 0>;reg<0x12345678 59>;}…...

数组(个人学习笔记黑马学习)

一维数组 1、定义方式 #include <iostream> using namespace std;int main() {//三种定义方式//1.int arr[5];arr[0] 10;arr[1] 20;arr[2] 30;arr[3] 40;arr[4] 50;//访问数据元素/*cout << arr[0] << endl;cout << arr[1] << endl;cout &l…...

layui表格事件分析实例

在 layui 的表格组件中&#xff0c;区分表头事件和行内事件是通过事件类型&#xff08;toolbar 和 tool&#xff09;以及 lay-filter 值来实现的。 我们有一个表格&#xff0c;其中有一个工具栏按钮和操作按钮。我们将使用 layui 的 table 组件来处理这些事件。 HTML 结构&…...

Android NDK JNI与Java的相互调用

一、Jni调用Java代码 jni可以调用java中的方法和java中的成员变量,因此JNIEnv定义了一系列的方法来帮助我们调用java的方法和成员变量。 以上就是jni调用java类的大部分方法,如果是静态的成员变量和静态方法,可以使用***GetStaticMethodID、CallStaticObjectMethod等***。就…...

装备制造企业如何执行精益管理?

导 读 ( 文/ 2358 ) 精益管理是一种以提高效率、降低成本和优化流程为目标的管理方法。装备制造行业具备人工参与度高&#xff0c;产成品价值高&#xff0c;质量要求高的特点。 在装备制造企业中实施精益管理可以帮助企业提高竞争力、提升生产效率并提供高质量的产品。本文将…...

PHP8中自定义函数-PHP8知识详解

1、什么是函数&#xff1f; 函数&#xff0c;在英文中的单词是function&#xff0c;这个词语有功能的意思&#xff0c;也就是说&#xff0c;使用函数就是在编程的过程中&#xff0c;实现一定的功能。即函数就是实现一定功能的一段特定代码。 在前面的教学中&#xff0c;我们已…...

虚拟化技术:云计算发展的核心驱动力

文章目录 虚拟化技术的概念和作用虚拟化技术的优势虚拟化技术对未来发展的影响结论 &#x1f389;欢迎来到AIGC人工智能专栏~虚拟化技术&#xff1a;云计算发展的核心驱动力 ☆* o(≧▽≦)o *☆嗨~我是IT陈寒&#x1f379;✨博客主页&#xff1a;IT陈寒的博客&#x1f388;该系…...

光伏+旅游景区

传统化石燃料可开发量逐渐减少&#xff0c;并且对环境造成的危害日益突出。全世界都把目光投向了可再生能源&#xff0c;希望可再生能源能够改变人类的能源结构。丰富的太阳能取之不尽、用之不竭&#xff0c;同时对环境没有影响&#xff0c;光伏发电是近些年来发展最快&#xf…...

手搓文本向量数据库(自然语言搜索生成模型)

import paddle import jieba import pandas as pd import numpy as np import os from glob import glob from multiprocessing import Process, Manager, freeze_supportfrom tqdm import tqdm# 首先 确定的是输出的时候一定要使用pd.to_pickle() pd.read_pickle() # 计算的时…...

EVO大赛是什么

价格是你所付出的东西&#xff0c;而价值是你得到的东西 EVO大赛是什么&#xff1f; “EVO”大赛全称“Evolution Championship Series”&#xff0c;是北美最高规格格斗游戏比赛&#xff0c;大赛正式更名后已经连续举办12年&#xff0c;是全世界最大规模的格斗游戏赛事。常见…...

linux中使用clash代理

本机环境&#xff1a;ubuntu16 安装代理工具&#xff08;这里使用clash&#xff09; 可以手动下载解压&#xff0c;下载地址&#xff1a;https://github.com/Dreamacro/clash 也可以直接使用命令行&#xff0c;演示如下&#xff1a; userlocalhost:~$ curl https://glados.r…...

Kafka3.0.0版本——Follower故障处理细节原理

目录 一、服务器信息二、服务器基本信息及相关概念2.1、服务器基本信息2.2、LEO的概念2.3、HW的概念 三、Follower故障处理细节 一、服务器信息 三台服务器 原始服务器名称原始服务器ip节点centos7虚拟机1192.168.136.27broker0centos7虚拟机2192.168.136.28broker1centos7虚拟…...

13.redis集群、主从复制、哨兵

1.redis主从复制 主从复制是指将一台redis服务器&#xff08;主节点-master&#xff09;的数据复制到其他的redis服务器&#xff08;从节点-slave&#xff09;&#xff0c;默认每台redis服务器都是主节点&#xff0c;每个主节点可以有多个或没有从节点&#xff0c;但一个从节点…...

linux字符串处理

目录 1 C 截取字符串,截取两个子串中间的字符串2 获取该字符串后面的字符串用 strstr() 函数查找需要提取的特定字符串&#xff0c;然后通过指针运算获取该字符串后面的字符串用 strtok() 函数分割字符串&#xff0c;找到需要提取的特定字符串后&#xff0c;调用 strtok() 传入…...

Nginx入门——Nginx的docker版本和windows版本安装和使用 代理的概念 负载分配策略

目录 引出nginx是啥正向代理和反向代理正向代理反向代理 nginx的安装使用Docker版本的nginx安装下载创建挂载文件获取配置文件创建docker容器拷贝容器中的配置文件删除容器 创建运行容器开放端口进行代理和测试 Windows版本的使用反向代理多个端口运行日志查看启动关闭重启 负载…...

Zebec Protocol:模块化 L3 链 Nautilus Chain,深度拓展流支付体系

过去三十年间&#xff0c;全球金融科技领域已经成熟并迅速增长&#xff0c;主要归功于不同的数字支付媒介的出现。然而&#xff0c;由于交易延迟、高额转账费用等问题愈发突出&#xff0c;更高效、更安全、更易访问的支付系统成为新的刚需。 此前&#xff0c;咨询巨头麦肯锡的一…...

Oracle-rolling upgrade升级19c

前言: 本文主要描述Oracle11g升19c rolling upgrade升级测试&#xff0c;通过逻辑DGautoupgrade方式实现rolling upgrade&#xff0c;从而达到在较少停机时间内完成Oracle11g升级到19c的目标 升级介绍&#xff1a; 升级技术: rolling upgrade轮询升级&#xff0c;通过采用跨版…...

Spring IOC详解

Spring 笔记 官网&#xff1a;https://spring.io/ 核心功能&#xff1a;当你的项目启动的时候&#xff0c;自动的将当前项目的各种 Bean 都自动的注册到 Spring 容器中&#xff0c;然后在项目的其他地方&#xff0c;如果需要用到这些 Bean&#xff0c;直接去 Spring 容器中查…...

Unity——DOTween插件使用方法简介

缓动动画既是一种编程技术&#xff0c;也是一种动画的设计思路。从设计角度来看&#xff0c;可以有以下描述 事先设计很多基本的动画样式&#xff0c;如移动、缩放、旋转、变色和弹跳等。但这些动画都以抽象方式表示&#xff0c;一般封装为程序函数动画的参数可以在使用时指定&…...

数据库——Redis 单线程模型详解

文章目录 Redis 基于 Reactor 模式来设计开发了自己的一套高效的事件处理模型 &#xff08;Netty 的线程模型也基于 Reactor 模式&#xff0c;Reactor 模式不愧是高性能 IO 的基石&#xff09;&#xff0c;这套事件处理模型对应的是 Redis 中的文件事件处理器&#xff08;file …...

leetcode 567. 字符串的排列(滑动窗口-java)

滑动窗口 字符串的排列滑动窗口代码演示进阶优化版 上期经典 字符串的排列 难度 -中等 leetcode567. 字符串的排列 给你两个字符串 s1 和 s2 &#xff0c;写一个函数来判断 s2 是否包含 s1 的排列。如果是&#xff0c;返回 true &#xff1b;否则&#xff0c;返回 false 。 换句…...

Git —— 分支重命名操作

在开发中&#xff0c;对某个分支进行重命名的操作&#xff1a; 1、本地分支重命名 本地分支是指&#xff1a;你当前这个分支还没有推送到远程的情况&#xff0c;这种情况修改分支名称就要方便很多 git branch -m 原始名称 新名称 //示例&#xff1a; 修改 test 为 newTest g…...

JavaIO流

JavaIO流 一、概念二、File类三、File类的使用1、File文件/文件夹类的创建2、File类的获取操作3、File类判断操作 - boolean4、File类对文件/文件夹的增删改5、File类的获取子文件夹以及子文件的方法 四、Java中IO流多种维度的维度1、按照流向 - Java程序2、按照流的大小分类3、…...

FlinkSql 如何实现数据去重?

摘要 很多时候flink消费上游kafka的数据是有重复的&#xff0c;因此有时候我们想数据在落盘之前进行去重&#xff0c;这在实际开发中具有广泛的应用场景&#xff0c;此处不说详细代码&#xff0c;只粘贴相应的flinksql 代码 --********************************************…...

机器学习概念

目录 一、人工智能、机器学习、深度学习的关系 二、什么是深度学习&#xff1f; 2.1 深度学习常用算法 一、人工智能、机器学习、深度学习的关系 人工智能、机器学习和深度学习的关系如下所示。 二、什么是深度学习&#xff1f; 深度学习( DL, Deep Learning) 是机器学习 …...

【数据结构】排序(插入、选择、交换、归并) -- 详解

一、排序的概念及其运用 1、排序的概念 排序&#xff1a;所谓排序&#xff0c;就是使一串记录&#xff0c;按照其中的某个或某些关键字的大小&#xff0c;递增或递减的排列起来的操作。 稳定性&#xff1a;假定在待排序的记录序列中&#xff0c;存在多个具有相同的关键字的记…...

游戏中的图片打包流程,免费的png打包plist工具,一款把若干资源图片拼接为一张大图的免费工具

手机游戏开发中&#xff0c;为了提高图片渲染性能&#xff0c;经常需要将小图片合并成一张大图进行渲染。如果手工来做的话就非常耗时。TexturePacker就是一款非常不错方便的处理工具。TexturePacker虽然非常优秀&#xff0c;但不是免费的。 对于打包流程&#xff0c;做游戏的…...

Springboot实现ENC加密

Springboot实现ENC加密 1、导入依赖2、配置加密秘钥&#xff08;盐&#xff09;3、获取并配置密文4、重启项目测试5、自定义前缀、后缀6、自定义加密方式 1、导入依赖 关于版本&#xff0c;需要根据spring-boot版本&#xff0c;自行修改 <dependency><groupId>co…...

nginx 托管vue项目配置

server {listen 80;server_name your_domain.com;location / {root /path/to/your/vue/project;index index.html;try_files $uri $uri/ /index.html;} }奇怪的现象,在vue路由中/会跳转到/abc/def&#xff0c;但如果直接输入/abc/def会显示404&#xff0c;添加 try_files $uri…...

Vue3中如何进行封装?—组件之间的传值

用了很久一段时间Vue3Ts了&#xff0c;工作中对一些常用的组件也进行了一些封装&#xff0c;这里对封装的一些方法进行一些简单的总结。 1.props传递 首先在主组件进行定义传值 <template><div>这里是主组件<common :first"first"></common&…...

实训笔记8.25

实训笔记8.25 8.25笔记一、Flume数据采集技术1.1 Flume实现数据采集主要借助Flume的组成架构1.2 Flume采集数据的时候&#xff0c;核心是编写Flume的采集脚本xxx.conf1.2.1 脚本文件主要由五部分组成 二、Flume案例实操2.1 采集一个网络端口的数据到控制台2.1.1 分析案例的组件…...

vue自定义监听元素宽高指令

在 main.js 中添加 // 自定义监听元素高度变化指令 const resizerMap new WeakMap() const resizeObserver new ResizeObserver((entries) > {for (const entry of entries) {const handle resizerMap.get(entry.target)if (handle) {handle({width: entry.borderBoxSiz…...

网络爬虫到底是个啥?

网络爬虫到底是个啥&#xff1f; 当涉及到网络爬虫技术时&#xff0c;需要考虑多个方面&#xff0c;从网页获取到最终的数据处理和分析&#xff0c;每个阶段都有不同的算法和策略。以下是这些方面的详细解释&#xff1a; 网页获取&#xff08;Web Crawling&#xff09;&#x…...

前端行级元素和块级元素的基本区别

块级元素和行内元素的基本区别是&#xff0c; 行内元素可以与其他行内元素并排&#xff1b;块级元素独占一行&#xff0c;不能与其他任何元素并列&#xff1b; 下面看一下&#xff1b; <!DOCTYPE html> <html> <head> <meta charset"utf-8"&…...

CentOS 7用二进制安装MySQL5.7

[rootlocalhost ~]# [rootlocalhost ~]# ll 总用量 662116 -rw-------. 1 root root 1401 8月 29 19:29 anaconda-ks.cfg -rw-r--r--. 1 root root 678001736 8月 29 19:44 mysql-5.7.40-linux-glibc2.12-x86_64.tar.gz [rootlocalhost ~]# tar xf mysql-5.7.40-linux-…...