2023年高教社杯数学建模思路 - 案例:异常检测
文章目录
- 赛题思路
- 一、简介 -- 关于异常检测
- 异常检测
- 监督学习
- 二、异常检测算法
- 2. 箱线图分析
- 3. 基于距离/密度
- 4. 基于划分思想
- 建模资料
赛题思路
(赛题出来以后第一时间在CSDN分享)
https://blog.csdn.net/dc_sinor?type=blog
一、简介 – 关于异常检测
异常检测(outlier detection)在以下场景:
- 数据预处理
- 病毒木马检测
- 工业制造产品检测
- 网络流量检测
等等,有着重要的作用。由于在以上场景中,异常的数据量都是很少的一部分,因此诸如:SVM、逻辑回归等分类算法,都不适用,因为:
监督学习算法适用于有大量的正向样本,也有大量的负向样本,有足够的样本让算法去学习其特征,且未来新出现的样本与训练样本分布一致。
以下是异常检测和监督学习相关算法的适用范围:
异常检测
- 信用卡诈骗
- 制造业产品异常检
- 数据中心机器异常检
- 入侵检测
监督学习
- 垃圾邮件识别
- 新闻分类
二、异常检测算法
import tushare
from matplotlib import pyplot as pltdf = tushare.get_hist_data("600680")
v = df[-90: ].volume
v.plot("kde")
plt.show()
近三个月,成交量大于200000就可以认为发生了异常(天量,嗯,要注意风险了……)
2. 箱线图分析
import tushare
from matplotlib import pyplot as pltdf = tushare.get_hist_data("600680")
v = df[-90: ].volume
v.plot("kde")
plt.show()
大体可以知道,该股票在成交量少于20000,或者成交量大于80000,就应该提高警惕啦!
3. 基于距离/密度
典型的算法是:“局部异常因子算法-Local Outlier Factor”,该算法通过引入“k-distance,第k距离”、“k-distance neighborhood,第k距离邻域”、“reach-distance,可达距离”、以及“local reachability density,局部可达密度 ”和“local outlier factor,局部离群因子”,来发现异常点。
用视觉直观的感受一下,如图2,对于C1集合的点,整体间距,密度,分散情况较为均匀一致,可以认为是同一簇;对于C2集合的点,同样可认为是一簇。o1、o2点相对孤立,可以认为是异常点或离散点。现在的问题是,如何实现算法的通用性,可以满足C1和C2这种密度分散情况迥异的集合的异常点识别。LOF可以实现我们的目标。
4. 基于划分思想
典型的算法是 “孤立森林,Isolation Forest”,其思想是:
假设我们用一个随机超平面来切割(split)数据空间(data space), 切一次可以生成两个子空间(想象拿刀切蛋糕一分为二)。之后我们再继续用一个随机超平面来切割每个子空间,循环下去,直到每子空间里面只有一个数据点为止。直观上来讲,我们可以发现那些密度很高的簇是可以被切很多次才会停止切割,但是那些密度很低的点很容易很早的就停到一个子空间了。
这个的算法流程即是使用超平面分割子空间,然后建立类似的二叉树的过程:
import numpy as np
import matplotlib.pyplot as plt
from sklearn.ensemble import IsolationForestrng = np.random.RandomState(42)# Generate train data
X = 0.3 * rng.randn(100, 2)
X_train = np.r_[X + 1, X - 3, X - 5, X + 6]
# Generate some regular novel observations
X = 0.3 * rng.randn(20, 2)
X_test = np.r_[X + 1, X - 3, X - 5, X + 6]
# Generate some abnormal novel observations
X_outliers = rng.uniform(low=-8, high=8, size=(20, 2))# fit the model
clf = IsolationForest(max_samples=100*2, random_state=rng)
clf.fit(X_train)
y_pred_train = clf.predict(X_train)
y_pred_test = clf.predict(X_test)
y_pred_outliers = clf.predict(X_outliers)# plot the line, the samples, and the nearest vectors to the plane
xx, yy = np.meshgrid(np.linspace(-8, 8, 50), np.linspace(-8, 8, 50))
Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)plt.title("IsolationForest")
plt.contourf(xx, yy, Z, cmap=plt.cm.Blues_r)b1 = plt.scatter(X_train[:, 0], X_train[:, 1], c='white')
b2 = plt.scatter(X_test[:, 0], X_test[:, 1], c='green')
c = plt.scatter(X_outliers[:, 0], X_outliers[:, 1], c='red')
plt.axis('tight')
plt.xlim((-8, 8))
plt.ylim((-8, 8))
plt.legend([b1, b2, c],["training observations","new regular observations", "new abnormal observations"],loc="upper left")
plt.show()
建模资料
资料分享: 最强建模资料
相关文章:

2023年高教社杯数学建模思路 - 案例:异常检测
文章目录 赛题思路一、简介 -- 关于异常检测异常检测监督学习 二、异常检测算法2. 箱线图分析3. 基于距离/密度4. 基于划分思想 建模资料 赛题思路 (赛题出来以后第一时间在CSDN分享) https://blog.csdn.net/dc_sinor?typeblog 一、简介 – 关于异常…...

C# Dapper 操作Oracle数据库
nuget安装内容 1.配置连接字符串 OracleConnectionString这个可用 {"Logging": {"LogLevel": {"Default": "Information","Microsoft.AspNetCore": "Warning"}},"AllowedHosts": "*","…...

element侧边栏子路由点击不高亮问题
最近自己封装侧边栏 又碰到了点击子路由不高亮的问题 <template><div class"aside"><el-scrollbar :vertical"true" class"scrollbar_left_nav"><el-menu :default-active"defaultActive" :collapse"$stor…...

C# 试图加载格式不正确的程序。 (异常来自 HRESULT:0x8007000B)
C# 在调用Cdll时,可能会出现 :试图加载格式不正确的程序。 (异常来自 HRESULT:0x8007000B)这个错误。 一般情况下是C#目标平台跟Cdll不兼容,64位跟32位兼容性问题, a.客户端调用Cdll报的错则, 1)允许的话把C#客户端…...

Linux 进程的睡眠和唤醒详解
概要 在Linux中,仅等待CPU时间的进程称为就绪进程,它们被放置在一个运行队列中,一个就绪进程的状 态标志位为 TASK_RUNNING。一旦一个运行中的进程时间片用完, Linux 内核的调度器会剥夺这个进程对CPU的控制权,并且从运…...

AI 绘画Stable Diffusion 研究(十五)SD Embedding详解
大家好,我是风雨无阻。 本期内容: Embedding是什么?Embedding有什么作用?Embedding如何下载安装?如何使用Embedding? 大家还记得 AI 绘画Stable Diffusion 研究(七) 一文读懂 Stab…...

在Jupyter Notebook中添加Anaconda环境(内核)
在使用前我们先要搞清楚一些事: 我们在安装anaconda的时候它就内置了Jupyter Notebook,这个jupyter初始只有base一个内核(显示为Python3) 此后其实我们就不需要重复安装完整的jupyter notebook了,只要按需为其添加新的…...

适配器模式简介
概念: 适配器模式(Adapter Pattern)是一种结构型设计模式,用于将一个类的接口转换成客户端所期望的另一个接口。它允许不兼容的接口之间进行协同工作。 特点: 通过适配器,可以使原本因为接口不匹配而无法…...

MyBatis —— 多种查询及映射关系
前言 上一篇文章中荔枝梳理了有关MyBatis的相关环境配置和核心配置文件及其模板的设置和生成,而在这篇文章中荔枝会着重梳理MyBatis多种查询情况、特殊SQL执行以及两表联查时映射关系的处理。希望对需要的小伙伴有帮助~~~ 文章目录 前言 一、多种查询情况 1.1 查…...

腾讯云服务器镜像TencentOS Server操作系统详细介绍
腾讯云TencentOS Server镜像是腾讯云推出的Linux操作系统,完全兼容CentOS生态和操作方式,TencentOS Server操作系统为云上运行的应用程序提供稳定、安全和高性能的执行环境,TencentOS可以运行在腾讯云CVM全规格实例上,包括黑石物理…...

Docker 中下载各版本的 CentOS、CentOS Steam 方式
如果你跟我一样,想要在docker下载centos的镜像,但是无奈访问不了 https://hub.docker.com/,于是不知道有哪些tag可以下载,该如何办呢? 方法如下,以供参考。 访问:https://quay.io/repository/…...

多线程使用HashMap,HashMap和HashTable和ConcurrentHashMap区别(面试题常考),硬盘IO,顺便回顾volatile
一、回顾💛 谈谈volatile关键字用法 volatile能够保证内存可见性,会强制从主内存中读取数据,此时如果其他线程修改被volatile修饰的变量,可以第一时间读取到最新的值。 二、💙 HashMap线程不安全没有锁,HashTable线程…...

专线连接交换机设置 – 如何实现高效率的网络连接?
专线链接交换机设置 – 如何实现高效率的网络连接? 什么是专线连接交换机? 在现代互联网中,网络连接的快速和高效是至关重要的。尤其是对于需要大量数据传输和保证网络稳定性的企业和组织来说,专线连接交换机是一项非常重要的技…...

C#,数值计算——Midexp的计算方法与源程序
1 文本格式 using System; namespace Legalsoft.Truffer { public class Midexp : Midpnt { public new double func(double x) { return funk.funk(-Math.Log(x)) / x; } public Midexp(UniVarRealValueFun funcc, double aa, d…...

微信小程序使用本地存储方法wx.setStorageSync()和wx.getStorageSync()
微信小程序的本地存储可以使用wx.setStorageSync()和wx.getStorageSync()方法实现 使用wx.setStorageSync()方法可以将数据以键值对的方式存储到本地存储中: wx.setStorageSync(demo, demo123);获取数据:使用wx.getStorageSync()方法可以从本地存储中获…...

题解:ABC317C - Remembering the Days
题解:ABC317C - Remembering the Days 题目 链接:Atcoder。 链接:洛谷。 难度 算法难度:B。 思维难度:B。 调码难度:C。 综合评价:普及-。 算法 深度优先搜索。 思路 先建图&#x…...

【CSS】简记CSS效果:通过transition(动画过渡属性)实现侧边栏目滑入滑出
需求 在资金明细的页面中,点击按钮时筛选区域从左侧滑出,完成筛选点击确认后调用接口完成数据查询,筛选区域滑入左侧; 基于微信小程序页面实现 wxml代码 <view><!-- 操作按钮 --><button type"primary&qu…...

LeetCode——最大子数组和(中等)
题目 给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。 子数组 是数组中的一个连续部分。 示例 1: 输入:nums [-2,1,-3,4,-1,2,1,-5,4] 输出&#x…...

Zookeeper集成SpringBoot
Curator 是 Apache ZooKeeper 的Java客户端库。 Zookeeper现有常见的Java API如:原生JavaAPI、Curator、ZkClient等。 pom.xml <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0"…...

ModaHub魔搭社区:星环科技致力于打造更优越的向量数据库
在数字化时代,数据成为了最重要的资源之一。随着人工智能、大数据等技术的不断发展,向量数据库成为了处理这类数据的关键工具。星环科技作为一家专注于数据存储和管理技术的公司,其重要目标就是将向量数据库打造得更为优越。 在星环科技,有一个专注于向量数据库的团队。这个…...

Dubbo默认使用什么序列化框架?还有哪些?
Dubbo默认使用的序列化框架是Hessian 2.0。Hessian是一种基于二进制的序列化协议,它具有简单、高效的特点,适用于网络传输和存储数据。Hessian在Dubbo中被广泛使用,因为它可以在不同的编程语言之间进行对象的序列化和反序列化。 除了Hessian…...

攻防世界-What-is-this
原题 解题思路 解压后文件 没有后缀,不知道是什么文件。用notepad打开找不到flag。 尝试当成压缩包解压。 用stegsolve以打开图片1, 合成两张图片。...

[C++]构造与毁灭:深入探讨C++中四种构造函数与析构函数
个人主页:北海 🎐CSDN新晋作者 🎉欢迎 👍点赞✍评论⭐收藏✨收录专栏:C/C🤝希望作者的文章能对你有所帮助,有不足的地方请在评论区留言指正,大家一起学习交流!ǹ…...

【跟小嘉学 Rust 编程】二十一、网络编程
系列文章目录 【跟小嘉学 Rust 编程】一、Rust 编程基础 【跟小嘉学 Rust 编程】二、Rust 包管理工具使用 【跟小嘉学 Rust 编程】三、Rust 的基本程序概念 【跟小嘉学 Rust 编程】四、理解 Rust 的所有权概念 【跟小嘉学 Rust 编程】五、使用结构体关联结构化数据 【跟小嘉学…...

一文了解聚合支付
第四方支付是相对于第三方支付而提出的概念,又被称为“聚合支付”是指通过聚合第三方支付平台、合作银行、等多种支付工具进行的综合支付服务。 简言而之,把支付接口聚合到一个平台上面,来给商家或者个人来提供支付服务。 第四方支付集中了各…...

118.杨辉三角
一、题目 118. 杨辉三角 - 力扣(LeetCode) 二、代码 class Solution { public:vector<vector<int>> generate(int numRows) {vector<vector<int>>data(numRows);for(int i0;i<numRows;i){data[i].resize(i1);//扩容data[i]…...

第7节——渲染列表+Key作用
一、列表渲染 我们再react中如果渲染列表,一般使用map方法进行渲染 import React from "react";export default class LearnJSX2 extends React.Component {state {infos: [{name: "张三",age: 18,},{name: "李四",age: 20,},{nam…...

NTP服务器时间配置
简介 ntp服务器是一个同步时间都服务器。 开启ntpd 1.查看状态(可以看到状态为:inactive,也就是没有启动ntp服务) [rootlocalhost]$ systemctl status ntpd ● ntpd.service - Network Time ServiceLoaded: loaded (/usr/lib/…...

vulhub之MinIO信息泄露漏洞(CVE-2023-28432)
文章目录 0x01 前言0x02 漏洞描述0x03 影响范围0x04 漏洞复现1.启动环境2.查看端口3.构造POC 0x05 修复建议 0x01 前言 本次测试仅供学习使用,如若非法他用,与本文作者无关,需自行负责!!! 0x02 漏洞描述 …...

C语言:递归思想及实例详解
简介:在计算机科学中是指一种通过重复将问题分解为同类的子问题而解决问题的方法。通过函数的自调用化繁为简。 递归可以说是编程中最神奇的一种算法。因为我们有时候可能不能完全明晰代码的运行过程,但是我们却知道代码可以跑出正确的结果。而当我们使…...