当前位置: 首页 > news >正文

数据结构入门 — 队列

本文属于数据结构专栏文章,适合数据结构入门者学习,涵盖数据结构基础的知识和内容体系,文章在介绍数据结构时会配合上动图演示,方便初学者在学习数据结构时理解和学习,了解数据结构系列专栏点击下方链接。


  • 博客主页:Duck Bro 博客主页
  • 系列专栏:数据结构专栏
  • 关注博主,后期持续更新系列文章
  • 如果有错误感谢请大家批评指出,及时修改
  • 感谢大家点赞👍收藏⭐评论✍

数据结构入门 — 队列

本文关键字:队列、队列概念及结构、队列实现

文章目录

  • 数据结构入门 — 队列
    • 一、队列的概念及结构
      • 1. 队列的概念
      • 2. 队列的结构
    • 二、队列的实现
      • 1. 队列结构组成
      • 2. 初始化队列
      • 3. 队尾入队列
      • 4. 队头出队列
      • 5. 获取队列头部元素
      • 6. 获取队列队尾元素
      • 7. 获取队列中有效元素个数
      • 8. 检测队列是否为空
      • 9. 销毁队列


一、队列的概念及结构

1. 队列的概念

队列是一种数据结构,它遵循先进先出(First-in, First-out)原则。队列可以看作是一条排队等待服务的线程,其中最先加入队列的元素最先被处理,而最后加入队列的元素最后被处理。

队列有两个端点:队头和队尾。元素从队尾进入队列,从队头出队。队列的基本操作包括入队(enqueue)和出队(dequeue),以及获取队头和队尾元素的操作。队列在计算机科学中有广泛的应用,例如任务调度、缓存管理、路由算法等。

在这里插入图片描述

2. 队列的结构

队列的结构组成通常包括以下几个要素:

结构作用
队列元素队列中可存放的元素,可为任何数据类型
队列大小队列可存放元素的最大数量,即队列的容量
队头指针指向队头元素的指针,表示可以取出的元素
队尾指针指向队尾元素的指针,表示可以插入的元素
入队操作将元素插入队尾的操作
出队操作将队头元素取出的操作
队列空判断判断队列是否为空的操作
队列满判断判断队列是否已满的操作(对于固定大小的队列)

二、队列的实现

1. 队列结构组成

队列结构由链表组成,使用头尾两个指针,用size记录队列里元素个数

typedef int QueDatatype;
typedef struct QueList
{struct QueList* next;QueDatatype data;}QNode;typedef struct QueHeadTail
{QNode* head;QNode* tail;int size;
}QHT;

2. 初始化队列

初始化将头尾两个指针置空,将size置为0

void QueInit(QHT* pc)
{assert(pc);pc->head = pc->tail = NULL;pc->size = 0;
}

3. 队尾入队列

入队,用malloc开辟一个新的空间,分为两种情况当尾指针为空的时候和尾指针不为空时,详细见代码

void QuePush(QHT* pc, QueDatatype x)
{assert(pc);QNode* newnode = (QNode*)malloc(sizeof(QNode));if (newnode == NULL){perror("malloc fail");exit(-1);}newnode->data = x;newnode->next = NULL;if (pc->tail == NULL){pc->head = pc->tail = newnode;}else{pc->tail->next = newnode;pc->tail = newnode;}pc->size++;
}

4. 队头出队列

当头指针的下一个为空时要释放头指针指向的空间,并将头尾指针置为0

void QuePop(QHT* pc)
{assert(pc);assert(!QueEmpty(pc));if (pc->head->next == NULL){free(pc->head);pc->head = pc->tail == NULL;}else{QNode* next = pc->head->next;free(pc->head);pc->head = next;}pc->size--;
}

5. 获取队列头部元素

返回头指针所指向的元素

QueDatatype QueFront(QHT* pc)
{assert(pc);return pc->head->data;
}

6. 获取队列队尾元素

返回尾指针所指向的元素

QueDatatype QueLast(QHT* pc)
{assert(pc);return pc->tail->data;
}

7. 获取队列中有效元素个数

返回size的个数,即有效元素个数

int QueSize(QHT* pc)
{assert(pc);return pc->size;}

8. 检测队列是否为空

当头指针为空时,队列则为空

bool QueEmpty(QHT* pc)
{assert(pc);return pc->head == NULL;
}

9. 销毁队列

先保存下一个数据地址,并释放当前位置的内存空间,并将头尾指针置为空,size置为0

void QueDestroy(QHT* pc)
{assert(pc);QNode* cur = pc->head;while (cur){QNode* delnext = cur->next;free(cur);cur = delnext;}pc->head = pc->tail = NULL;pc->size = 0;
}

在这里插入图片描述

相关文章:

数据结构入门 — 队列

本文属于数据结构专栏文章,适合数据结构入门者学习,涵盖数据结构基础的知识和内容体系,文章在介绍数据结构时会配合上动图演示,方便初学者在学习数据结构时理解和学习,了解数据结构系列专栏点击下方链接。 博客主页&am…...

MongoDB - 安装

一、Docker安装MongoDB 1. 安装 安装版本: 7.0.0 docker run -itd --name mongodb -v C:\\data\\mongodb\\data:/data/db -p 27017:27017 mongo:7.0.0 --auth-v: 将容器目录/data/db映射到本地C:\\data\\mongodb\\data目录,防止容器删除数据丢失-p: 端口映射--aut…...

Qt应用开发(基础篇)——颜色选择器 QColorDialog

一、前言 QColorDialog类继承于QDialog,是一个设计用来选择颜色的对话框部件。 对话框窗口 QDialog QColorDialog颜色选择器一般用来让用户选择颜色,比如画图工具中选择画笔的颜色、刷子的颜色等。你可以使用静态函数QColorDialog::getColor()直接显示对…...

vscode 清除全部的console.log

在放页面的大文件夹view上面右键点击在文件夹中查找 console.log.*$ 注意:要选择使用正则匹配 替换为 " " (空字符串)...

UG\NX CAM二次开发 插入工序 UF_OPER_create

文章作者:代工 来源网站:NX CAM二次开发专栏 简介: UG\NX CAM二次开发 插入工序 UF_OPER_create 效果: 代码: void MyClass::do_it() {tag_t setup_tag=NULL_TAG;UF_SETUP_ask_setup(&setup_tag);if (setup_tag==NULL_TAG){uc1601("请先初始化加工环境…...

C++指针、指针函数、函数指针、类指针

1、指针变量 #include <iostream>using namespace std;int main () {int var 20; // 实际变量的声明int *ip; // 指针变量的声明ip &var; // 在指针变量中存储 var 的地址cout << "Value of var variable: ";cout << var …...

图:最短路径问题(BFS算法,Dijkstra算法,Floyd算法)

1 .单源最短路径 1.BFS算法(无权图) 使用广度优先遍历实现一个顶点到达其他所有顶点的最短路径。 注:无权图可以视为一种特殊的带权图&#xff0c;只是每条边的权值都为1。 1.算法思路&#xff1a; 定义一个数组存储每个结点与当前的结点的最短距离&#xff0c;定义一个数组…...

栈和队列篇

目录 一、栈 1.栈的概念及结构 1.1栈的概念 1.2栈的结构示意图 2.栈的实现 2.1支持动态增长的栈的结构 2.2压栈&#xff08;入栈&#xff09; 2.3出栈 2.4支持动态增长的栈的代码实现 二、队列 1.队列的概念及结构 1.1队列的概念 1.2队列的结构示意图 2.队列的实…...

分享一个vue-slot插槽使用场景

需求再现 <el-table-column align"center" label"状态" prop"mitStatus" show-overflow-tooltip />在这里&#xff0c;我想对于状态进行一个三目判断&#xff0c;如果为0那就是进行中&#xff0c;否则就是已完成&#xff0c;期初我是这样写…...

Qt应用开发(基础篇)——进度对话框 QProgressDialog

一、前言 QProgressDialog类继承于QDialog&#xff0c;是Qt设计用来反馈进度的对话框。 对话框QDialog QProgressDialog提供了一个进度条&#xff0c;表示当前程序的某操作的执行进度&#xff0c;让用户知道操作依旧在激活状态&#xff0c;配合按钮&#xff0c;用户就可以随时终…...

基于SpringBoot2的后台业务管理系统

概述 SpringBoot-Plus 是一个适合大系统拆分成小系统的架构&#xff0c;java快速开发平台&#xff0c;或者是一个微服务系统。其中加入了Thymeleaf数据模板语言代替了之前的JSP页面方式。页面展示采用Layui前端框架&#xff0c;包含了用户管理&#xff0c;角色管理&#xff0c…...

Jmeter(三十):并发测试(设置集合点)

集合点:让所有请求在不满足条件的时候处于等待状态。 如:我集合点设置为50,那么不满足50个请求的时候,这些请求都会集合在一起,处于等待状态,当达到50的时候,就一起执行。从而达到并发的效果。 那么Jmeter中可以通过同步定时器 Synchronizing Timer 来完成。 Number …...

Flink的checkpoint是怎么实现的?

分析&回答 Checkpoint介绍 Checkpoint容错机制是Flink可靠性的基石,可以保证Flink集群在某个算子因为某些原因(如 异常退出)出现故障时,能够将整个应用流图的状态恢复到故障之前的某一状态,保证应用流图状态的一致性。Flink的Checkpoint机制原理来自“Chandy-Lamport alg…...

ubuntu上安装nginx

这篇文章主要介绍怎么在ubuntu上安装nginx服务器&#xff0c;并进行一些简单的配置。 第一步&#xff1a;准备好一台ubuntu操作系统的虚拟机 注意&#xff1a;如果你还没有安装好ubuntu&#xff0c;个人推荐阅读以下文章完成unbutu安装&#xff0c;vm的版本不用刻意安装文章中…...

9. 微积分 - 导数

文章目录 导数求导实例代码演示:迭代法求解二次函数最小值阶Hi, 大家好。我是茶桁。 我们终于结束了极限和连续的折磨,开启了新的篇章。 不过不要以为我们后面的就会很容易,只是相对来说, 没有那么绕而已。 那么,我们今天开始学习「导数」。 导数 在之前的导论,也就是…...

滑动窗口系列1-达标子数组

#达标子数组# 求达标子数组的数量 * 题目&#xff1a;给定一个数组&#xff0c;求满足子数组中最大值-最小值小于等于某个数的子数组的数量 * 例如[0,1,2,3]中求子数组中最大值-最小值小于等于 2的子数组的数量 * 结果为9,因为满足条件的只有[0,0] [0,1] [0,2] [1,1] [1,2] [1…...

电视显示技术及价格成本对比(2023年)

版权声明&#xff1a;本文为博主原创文章&#xff0c;遵循 CC 4.0 BY-SA 版权协议&#xff0c;转载请附上原文出处链接和本声明。 本文链接&#xff1a;https://blog.csdn.net/zaibeijixing/article/details/132461068 ———————————————— 截止到2023年&#xff…...

浅谈 Pytest+HttpRunner 如何展开接口测试!

软件测试有多种多样的方法和技术&#xff0c;可以从不同角度对它们进行分类。其中&#xff0c;根据软件生命周期&#xff0c;针对不同的测试对象与目标&#xff0c;可将测试过程分为 4 个阶段&#xff1a;单元测试、集成测试、系统测试和验收测试。本文着重介绍了如何借用 pyte…...

vue自定义事件 div 拖拽方法缩小

在main.js 引用 // 引入拖动js import dragMove from "./utils/dragMove.js" 创建 drawmove.js export default (app) > {app.directive(dragMove, (el, binding) > {const DragVindow el.querySelector(binding.value.DragVindow)// 按下鼠标处理事件con…...

使用实体解析和图形神经网络进行欺诈检测

图形神经网络的表示形式&#xff08;作者使用必应图像创建器生成的图像&#xff09; 一、说明 对于金融、电子商务和其他相关行业来说&#xff0c;在线欺诈是一个日益严重的问题。为了应对这种威胁&#xff0c;组织使用基于机器学习和行为分析的欺诈检测机制。这些技术能够实时…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)

HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...

从零实现富文本编辑器#5-编辑器选区模型的状态结构表达

先前我们总结了浏览器选区模型的交互策略&#xff0c;并且实现了基本的选区操作&#xff0c;还调研了自绘选区的实现。那么相对的&#xff0c;我们还需要设计编辑器的选区表达&#xff0c;也可以称为模型选区。编辑器中应用变更时的操作范围&#xff0c;就是以模型选区为基准来…...

Java - Mysql数据类型对应

Mysql数据类型java数据类型备注整型INT/INTEGERint / java.lang.Integer–BIGINTlong/java.lang.Long–––浮点型FLOATfloat/java.lang.FloatDOUBLEdouble/java.lang.Double–DECIMAL/NUMERICjava.math.BigDecimal字符串型CHARjava.lang.String固定长度字符串VARCHARjava.lang…...

在四层代理中还原真实客户端ngx_stream_realip_module

一、模块原理与价值 PROXY Protocol 回溯 第三方负载均衡&#xff08;如 HAProxy、AWS NLB、阿里 SLB&#xff09;发起上游连接时&#xff0c;将真实客户端 IP/Port 写入 PROXY Protocol v1/v2 头。Stream 层接收到头部后&#xff0c;ngx_stream_realip_module 从中提取原始信息…...

oracle与MySQL数据库之间数据同步的技术要点

Oracle与MySQL数据库之间的数据同步是一个涉及多个技术要点的复杂任务。由于Oracle和MySQL的架构差异&#xff0c;它们的数据同步要求既要保持数据的准确性和一致性&#xff0c;又要处理好性能问题。以下是一些主要的技术要点&#xff1a; 数据结构差异 数据类型差异&#xff…...

【android bluetooth 框架分析 04】【bt-framework 层详解 1】【BluetoothProperties介绍】

1. BluetoothProperties介绍 libsysprop/srcs/android/sysprop/BluetoothProperties.sysprop BluetoothProperties.sysprop 是 Android AOSP 中的一种 系统属性定义文件&#xff08;System Property Definition File&#xff09;&#xff0c;用于声明和管理 Bluetooth 模块相…...

Device Mapper 机制

Device Mapper 机制详解 Device Mapper&#xff08;简称 DM&#xff09;是 Linux 内核中的一套通用块设备映射框架&#xff0c;为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程&#xff0c;并配以详细的…...

Java线上CPU飙高问题排查全指南

一、引言 在Java应用的线上运行环境中&#xff0c;CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时&#xff0c;通常会导致应用响应缓慢&#xff0c;甚至服务不可用&#xff0c;严重影响用户体验和业务运行。因此&#xff0c;掌握一套科学有效的CPU飙高问题排查方法&…...

视频行为标注工具BehaviLabel(源码+使用介绍+Windows.Exe版本)

前言&#xff1a; 最近在做行为检测相关的模型&#xff0c;用的是时空图卷积网络&#xff08;STGCN&#xff09;&#xff0c;但原有kinetic-400数据集数据质量较低&#xff0c;需要进行细粒度的标注&#xff0c;同时粗略搜了下已有开源工具基本都集中于图像分割这块&#xff0c…...

【MATLAB代码】基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),附源代码|订阅专栏后可直接查看

文章所述的代码实现了基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),针对传感器观测数据中存在的脉冲型异常噪声问题,通过非线性加权机制提升滤波器的抗干扰能力。代码通过对比传统KF与MCC-KF在含异常值场景下的表现,验证了后者在状态估计鲁棒性方面的显著优…...