当前位置: 首页 > news >正文

python读取图像小工具

一、和图像交互获得图像的坐标和像素值

import cv2
import numpy as np
import signal
import threading
import timeif __name__ == '__main__':img = cv2.imread('XXX',0)#读取图片font_face,font_scale,thickness=cv2.FONT_HERSHEY_SIMPLEX,0.5,1#鼠标交互def mouseHandler(event,x,y,flags,param):points = (x,y)global imgCopy#鼠标左键双击事件if event == cv2.EVENT_LBUTTONDBLCLK:#拷贝一张与原图像格式相同的新图像imgCopy = img.copy()#拼接文字text = '['+str(x)+','+str(y)+']'+str(img[y,x])print(text)#读取文字(宽,高),下基线(t_w,t_h),baseLine = cv2.getTextSize(text,font_face,font_scale,thickness)#在鼠标当前位置的左上角显示文字cv2.putText(imgCopy,text,(x-t_w,y),font_face,font_scale,(125,125,125))cv2.imshow('win',imgCopy)#鼠标移动事件elif event == cv2.EVENT_MOUSEMOVE:#显示原图片能使文本框消失cv2.imshow('win',img)cv2.namedWindow('win')#窗口与回调函数绑定cv2.setMouseCallback('win',mouseHandler)cv2.imshow('win',img)cv2.waitKey()

二、二值化图像

import cv2
import numpy as np
import signal
import threading
import timeif __name__ == '__main__':img = cv2.imread('path',0)#读取图片ret, binary = cv2.threshold(img, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)print("threshold value %s" % ret)  #打印阈值,超过阈值显示为白色,低于该阈值显示为黑色cv2.imshow("threshold", binary) #显示二值化图像cv2.waitKey(0)cv2.destroyAllWindows()

批量图像二值化

import cv2
import numpy as np
import signal
import threading
import time
import os
import sys
import random
import datetime
import argparsedef get_files(path):files = []for filename in os.listdir(path):if os.path.isfile(os.path.join(path, filename)):files.append(filename)return filesif __name__ == '__main__':files_path="XXX"#print(files_path)image_files = get_files(files_path)i=1#print(image_files)for image_file in image_files:image_path=os.path.join(files_path , image_file)print(image_path)img = cv2.imread(image_path,0)#读取图片start_time_init = time.perf_counter()ret, binary = cv2.threshold(img, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)end_time_init = time.perf_counter()elapsed_time_init = (end_time_init - start_time_init)*1000print("二值化时间: {} ms".format(elapsed_time_init))print("threshold value %s" % ret)  #打印阈值,超过阈值显示为白色,低于该阈值显示为黑色scv2.imwrite(files_path+"/binary/"+str(i)+".png",binary)i=i+1

三、区域合并提取最大连通域

import cv2
import numpy as np
import signal
import threading
import time
import os
import sys
import random
import datetime
import argparsedef get_files(path):files = []for filename in os.listdir(path):if os.path.isfile(os.path.join(path, filename)):files.append(filename)return filesif __name__ == '__main__':#files_path="/home/robot/PaddleOCR-2.6.0/data/OK0828/raw_data/"files_path="/home/robot/PaddleOCR-2.6.0/data/829/"files_path="/home/robot/PaddleOCR-2.6.0/data/NG0823/"#print(files_path)image_files = get_files(files_path)i=1#print(image_files)for image_file in image_files:image_path=os.path.join(files_path , image_file)print(image_path)img = cv2.imread(image_path,0)#读取图片start_time_init = time.perf_counter()ret, binary = cv2.threshold(img, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)end_time_init = time.perf_counter()elapsed_time_init = (end_time_init - start_time_init)*1000print("二值化时间: {} ms".format(elapsed_time_init))print("threshold value %s" % ret)  #打印阈值,超过阈值显示为白色,低于该阈值显示为黑色scv2.imwrite(files_path+"/binary/"+str(i)+".png",binary)i=i+1# cv2.imshow("threshold", binary) #显示二值化图像# cv2.waitKey(0)# cv2.destroyAllWindows()start_time = time.perf_counter()num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(binary)end_time = time.perf_counter()elapsed_time = (end_time - start_time)*1000print("连通域的时间: {} ms".format(elapsed_time))max_area=0j=0for st in stats[1:]:j=j+1area=st[4]if(max_area<area):max_area=areaindex=jprint("index",index)print("max_area",max_area)#index=index+1print('num_labels: ', num_labels)labels[labels>0] = 255labels = labels.astype(np.uint8)# #将一维灰度图像扩展到三维labels= np.expand_dims(labels,axis=2).repeat(3,axis=2).astype(np.uint8)# for st in stats[1:]:cv2.rectangle(labels, (stats[index][0], stats[index][1]), (stats[index][0]+stats[index][2], stats[index][1]+stats[index][3]), (0, 255, 0), 3)#cv2.imshow('labels', labels)#cv2.waitKey(0)cv2.imwrite(files_path+"/labels/"+str(i)+".png",labels)

相关文章:

python读取图像小工具

一、和图像交互获得图像的坐标和像素值 import cv2 import numpy as np import signal import threading import timeif __name__ __main__:img cv2.imread(XXX,0)#读取图片font_face,font_scale,thicknesscv2.FONT_HERSHEY_SIMPLEX,0.5,1#鼠标交互def mouseHandler(event,x…...

【ES6】JavaScript中Reflect

Reflect是JavaScript中的一个内建对象&#xff0c;它提供了一组方法&#xff0c;用于对对象和函数进行操作和检查。这些方法与内建对象的方法非常相似&#xff0c;但具有更高的灵活性。 以下是Reflect对象的一些常用方法&#xff1a; 1、Reflect.apply(target, thisArgument,…...

Ajax + Promise复习简单小结simple

axios使用 先看看老朋友 axios axios是基于Ajaxpromise封装的 看一下他的简单使用 安装&#xff1a;npm install axios --save 引入&#xff1a;import axios from axios GitHub地址 基本使用 axios({url: http://hmajax.itheima.net/api/province}).then(function (result…...

WebDAV之π-Disk派盘 + 小书匠

小书匠是一款功能丰富,强大的知识管理工具。全平台覆盖,离线数据存储,自定义数据服务器,所见即所得的 markdown 编辑体验。 小书匠提供了多种实用的编辑模式,例如:栏编辑、双栏编辑、三栏编辑、全屏写作、全屏阅读等。并且该软件还提供了许多有用的扩展语法,比如Latex公…...

LTE ATTACH流程、PDN流程、PGW地址分配介绍

1、S-GW\P-GW选择 MME根据S-GW和P-GW的拓扑信息进行S-GW/P-GW的选择&#xff0c;在S-GW的候选序列和P-GW的候选序列中比较&#xff0c;寻找是否有合一的S-GW/P-GW&#xff0c;并且根据S-GW的优先级和权重信息进行排序&#xff0c;得到S-GW/P-GW的候选组。 2、SGW>PGW连接 PD…...

SQL sever中用户管理

目录 一、用户管理常见方法 二、用户管理方法示例 2.1. 创建登录账户&#xff1a; 2.1.1 检查是否创建账户成功&#xff1a; 2.2. 创建数据库用户&#xff1a; 2.2.1检查用户是否创建成功&#xff1a; 2.3. 授予权限&#xff1a; 2.3.1授予 SELECT、INSERT 和 U…...

linux————pxe网络批量装机

目录 一、概述 什么是pxe pxe组件 二、搭建交互式pxe装机 一、配置基础环境 二、配置vsftpd 三、配置tftp 四、准备pxelinx.0文件、引导文件、内核文件 一、准备pxelinux.0 二、准备引导文件、内核文件 五、配置dhcp 一、安装dhcp 二、配置dhcp 六、创建default文…...

处理时延降低24倍,联通云粒数据引擎优化实践

*作者&#xff1a;郑扬勇&#xff0c;云粒星河数据中台产品负责人 云粒智慧科技有限公司成立于 2018 年 6 月&#xff0c;是中国联通集团混改以来成立的首家合资公司&#xff0c;是中国智慧城市数智化建设者。一直以来&#xff0c;云粒智慧以数字化、智能化、集约化产品为核心&…...

学习MATLAB

今日&#xff0c;在大学慕课上找了一门关于MATLAB学习的网课&#xff0c;MATLAB对于我们这种自动化的学生应该是很重要的&#xff0c;之前也是在大三的寒假做自控的课程设计时候用到过&#xff0c;画一些奈奎斯特图&#xff0c;根轨迹图以及伯德图&#xff0c;但那之后也就没怎…...

React 18 对 state 进行保留和重置

参考文章 对 state 进行保留和重置 各个组件的 state 是各自独立的。根据组件在 UI 树中的位置&#xff0c;React 可以跟踪哪些 state 属于哪个组件。可以控制在重新渲染过程中何时对 state 进行保留和重置。 UI 树 浏览器使用许多树形结构来为 UI 建立模型。DOM 用于表示 …...

MySQL之事务与引擎

目录 一、事物 1、事务的概念 2、事务的ACID特点 3、事务之间的相互影响 4、Mysql及事务隔离级别(四种) 1、查询会话事务隔离级别 2、查询会话事务隔离级别 3、设置全局事务隔离级别 4、设置会话事务隔离级别 5、事务控制语句 6、演示 1、测试提交事务 2、测试事务回滚 4…...

Flink集群常见的监控指标

为确保能够全面、实时地监控Flink集群的运行状态和性能指标。以下是监控方案的主要组成部分&#xff1a; Flink集群概览&#xff1a;通过访问Flink的JobManager页面&#xff0c;您可以获取集群的总体信息&#xff0c;包括TaskManager的数量、任务槽位数量、运行中的作业以及已…...

React常见知识点

1. setCount(10)与setCount(preCount > preCount 10) 的区别&#xff1a; import React, { useState } from react; export default function CounterHook() {const [count, setCount] useState(() > 10);console.log(CounterHook渲染);function handleBtnClick() {//…...

Vue-router路由

配置路由 相当于SpringMVC的Controller 路径然后&#xff0c;跳转到对应的组件 一键生成前端项目文档...

JVM-CMS

when 堆大小要求为4-8G 原理 初始标记&#xff1a;执行CMS线程->STW&#xff0c;标记GC Root直接关联的对象->低延迟 并发标记&#xff1a;执行CMS线程和业务线程&#xff0c;从GC Root直接关联的对象开始遍历整个对象图 重新标记&#xff1a;执行CMS线程->STW&a…...

无涯教程-Flutter - Dart简介

Dart是一种开源通用编程语言&#xff0c;它最初是由Google开发的&#xff0c; Dart是一种具有C样式语法的面向对象的语言&#xff0c;它支持诸如接口&#xff0c;类之类的编程概念&#xff0c;与其他编程语言不同&#xff0c;Dart不支持数组&#xff0c; Dart集合可用于复制数据…...

如何创建美观的邮件模板并通过qq邮箱的SMTP服务向用户发送

最近在写注册功能的自动发送邮箱告知验证码的功能&#xff0c;无奈根本没有学过前端&#xff0c;只有写Qt的qss基础&#xff0c;只好借助网页设计自己想要的邮箱格式&#xff0c;最终效果如下: 也推销一下自己的项目ShaderLab&#xff0c;可运行ShaderToy上的大部分着色器代码&…...

手机无人直播软件在苹果iOS系统中能使用吗?

在现代社交媒体的时代&#xff0c;直播带货已经成为了一种热门的销售途径。通过直播&#xff0c;人们可以远程分享自己的商品&#xff0c;与观众进行互动&#xff0c;增强沟通和参与感。而如今&#xff0c;手机无人直播软件更是成为了直播带货领域的一项火爆的技术。那么&#…...

创建2个线程并执行(STL/Windows/Linux)

C并发编程入门 目录 STL 写法 #include <thread> #include <iostream> using namespace std;void thread_fun1(void) {cout << "one STL thread 1!" << endl; }void thread_fun2(void) {cout << "one STL thread 2!" <…...

Redis可以干什么

Redis可以做什么&#xff1f; 缓存 Redis作为一款高性能的缓存数据库&#xff0c;能够将常用的数据存储在内存中&#xff0c;以提高读写效率。它支持多种数据结构&#xff0c;如字符串、哈希表、列表、集合等&#xff0c;让你可以根据业务需求选择合适的数据结构进行缓存。 …...

R语言+Meta分析;论文新方向

Meta分析是针对某一科研问题&#xff0c;根据明确的搜索策略、选择筛选文献标准、采用严格的评价方法&#xff0c;对来源不同的研究成果进行收集、合并及定量统计分析的方法&#xff0c;最早出现于“循证医学”&#xff0c;现已广泛应用于农林生态&#xff0c;资源环境等方面。…...

实战系列(二)| MybatisPlus详细介绍,包含代码详解

目录 1. MybatisPlus 的基本功能2. 基本用法3. MybatisPlus 的配置4. MybatisPlus 的实体类、Mapper 接口、Service 类和 Controller 类 MybatisPlus 是一个功能强大的 MyBatis 增强工具&#xff0c;它提供了丰富的特性来简化操作数据库的代码。它主要用于简化 JDBC 操作&#…...

横向对比 npm、pnpm、tnpm、yarn 优缺点

前端工程化是现代Web开发中不可或缺的一环&#xff0c;它的出现极大地提升了前端开发的效率和质量。 在过去&#xff0c;前端开发依赖于手动管理文件和依赖&#xff0c;这导致了许多问题&#xff0c;如版本冲突、依赖混乱和构建繁琐等。而今&#xff0c;随着众多前端工程化工具…...

安防监控/视频汇聚/云存储/AI智能视频融合平台页面新增地图展示功能

AI智能分析网关包含有20多种算法&#xff0c;包括人脸、人体、车辆、车牌、行为分析、烟火、入侵、聚集、安全帽、反光衣等等&#xff0c;可应用在安全生产、通用园区、智慧食安、智慧城管、智慧煤矿等场景中。将网关硬件结合我们的视频汇聚/安防监控/视频融合平台EasyCVR一起使…...

机器人中的数值优化(九)——拟牛顿方法(下)、BB方法

本系列文章主要是我在学习《数值优化》过程中的一些笔记和相关思考&#xff0c;主要的学习资料是深蓝学院的课程《机器人中的数值优化》和高立编著的《数值最优化方法》等&#xff0c;本系列文章篇数较多&#xff0c;不定期更新&#xff0c;上半部分介绍无约束优化&#xff0c;…...

java 从resource下载excel打不开

GetMapping("/download/template")public void template(HttpServletResponse response) throws IOException {ServletOutputStream outputStream response.getOutputStream();InputStream inputStream null;try {//从resource获取excel文件流inputStream getClas…...

NS2安装及入门实例——(ns2.35 / Ubuntu20.04)

文章目录 一、ns2安装1、更新系统源2、准备工作3、下载安装包4、安装5、问题① 问题1② 问题2③ 问题3 6、安装成功7、环境配置 二、nam安装1、安装2、问题 三、实例 一、ns2安装 1、更新系统源 sudo apt-get update sudo apt-get upgrade2、准备工作 sudo apt-get install …...

平面设计的三大基本元素 优漫动游

平面设计需要美术基础&#xff0c;有美术基础的新人往往能更快完成平面设计岗的转行&#xff0c;在专业培训机构内讲师授课时也会从平面设计的基础——三大基本元素开始。今天就跟大家具体介绍一下平面设计的三大基本元素&#xff0c;让大家知道到底都有哪些。 平面设计的三…...

【电子取证篇】汽车取证检验标准

【电子取证篇】汽车取证检验标准 汽车取证鉴定可能涉及的测试/测量方法—【蘇小沐】 GA/T 976-2012《电子数据法庭科学鉴定通用方法》&#xff1b; GA/T 1998-2022《汽车车载电子数据提取技术规范》&#xff1b; GA/T 1999.2-2022《道路交通事故车辆速度鉴定方法 第2部分&…...

【元宇宙】游戏应用商城对元宇宙的影响

游戏行业不仅是创意设计原则的信息源&#xff0c;还是构建“下一代互联网”的基础技术。它也是元宇宙的经济活动先例。 究竟为什么会认为应用商城设置的30%佣金将导致元宇宙“无法实现”呢&#xff1f;有三个核心原因。首先&#xff0c;应用商城阻止了企业对元宇宙的投资&…...

南昌市做网站公司/网站加速

第一课用Python编程一、资料&#xff1a;1、Python语言中的语句就是Python命令。2、打开Python Shell&#xff0c;在提示符“>>>”的后面输入Python命令并按回车键&#xff0c;该命令就会立即执行并显示结果。3、凡是加上了引号(单引号和双引号都可以)的字符、数字等都…...

wordpress 新建栏目/关键词优化哪家好

1.论述 1.1.获取计算机系统所有实际可用物理区域信息 计算机系统的物理区域并不是连续的&#xff0c;且有的物理区域映射到特定硬件内部区域以便实现特定功能。 对计算机系统的物理区域进行分页管理&#xff0c;首先&#xff0c;要获取所有离散的物理区域信息。 INT 15h, AXE…...

网站建设项目简介/关键词排名优化易下拉技巧

最稳定的几何形状是三角形&#xff0c;不是四边形&#xff0c;也不是五边形。那么是不是最稳定的就是最安全的呢&#xff1f;一旦三角形的一条边受损了&#xff0c;三角形就不复存在了。有没有比三角形更稳定、更安全、更可靠的关系网呢&#xff1f;DNA结构是分叉交错形的、可替…...

小型企业网站建设的背景/百度竞价托管运营

一、霍夫变换 本文主要介绍霍夫变换检测直线和圆的原理。 霍夫变换是图像处理中从图像中识别几何形状的基本方法之一&#xff0c;应用很广泛&#xff0c;也有很多改进算法。主要用来从图像中分离出具有某种相同特征的集合图像&#xff08;如&#xff0c;直线&#xff0c;圆等…...

宁夏信用建设官方网站/最新百度新闻

sp_executesql 可能用 exec sp_executesql sqltext,paramstring,urlM_ID output 来得到动态执行中返回值&#xff0c;sqltext的长度可能超过了4000字符&#xff0c;可以使用nvarchar(max)解决&#xff0c;类似于&#xff1a; declare request1 nvarchar(4000) declare request2…...

建立自己公司网站的方法/合肥网络科技有限公司

今天最多人问的莫过于这个问题了。“初级会计师今天开始打印准考证了吗&#xff1f;”一开始我挺懵逼的&#xff0c;初级会计师考试时间出来了吗&#xff1f;为什么官网没消息的&#xff1f;不对啊&#xff1f;我登录了官网按了也带打印不了啊&#xff1f;后来我才知道&#xf…...