Shell常用的几个正则表达式:[:alnum:], [:alpha:], [:upper:], [:lower:], [:digit:] 认知

一:通配符命令简介:
匹配符合相关条件的符号,匹配文件名查找。
通配符类型:
*:匹配任意长度的任意字符
?:匹配任意单个字符
[]:匹配指定范围内的任意单个字符
[^]:匹配指定范围之外的任意单个字符
[:space:]:空白字符
[:punct:]:标点符号
[:lower:]:小写字母
[:upper:]:大写字母
[:alpha:]:大小写字母
[:digit:]:数字
[:alnum:]:数字和大小写字母
特殊符号 | 代表意义 |
| [:alnum:] | 代表英文大小写字符及数字,亦即O-9,A-Z,a-z |
| [:alpha:] | 代表任何英文大小写字符,亦即A-Z,a-z |
| [:blank:] | 代表空白键与[Tab]按键两者 |
| [:cntrl:] | 代表键盘上面的控制按键,亦即包括CR,LF,Tab,Del…等等 |
| [:digit:] | 代表数字而已,亦即0-9 |
| [:graph:] | 除了空白字符(空白键与[Tab]按键)外的其他所有按键 |
| [:lower:] | 代表小写字符,亦即a-z |
| [:print:] | 代表任何可以被打印出来的字符 |
| [:punct:] | 代表标点符号(punctuation symbol),亦即:"'? ! ;:# $… |
| [:upper:] | 代表大写字符,亦即A-Z |
| [:space:] | 任何会产生空白的字符,包括空白键,[Tab],CR等等 |
| [:xdigit:] | 代表16进位的数字类型,因此包括:0-9,A-F, a-f的数字与字符 |
二:实例实操
2.1、创建 test.txt Text.txt TEST cl my,m.z k 67 8yu,789等文件:
注意,以上是以逗号为分隔符,其余都是文件名组成部分,与空格分隔创建文件
[root@www logs]# touch test.txt Text.txt TEST cl my,m.z k 67 8yu,789
[root@www logs]# ll
总用量 0
-rw-r--r-- 1 root root 0 9月 5 12:43 67
-rw-r--r-- 1 root root 0 9月 5 12:42 67,8yu,789
-rw-r--r-- 1 root root 0 9月 5 12:43 8yu,789
-rw-r--r-- 1 root root 0 9月 5 12:43 cl
-rw-r--r-- 1 root root 0 9月 5 12:43 k
-rw-r--r-- 1 root root 0 9月 5 12:43 my,m.z
-rw-r--r-- 1 root root 0 9月 5 12:42 my,m.z,k
-rw-r--r-- 1 root root 0 9月 5 12:43 TEST
drwxr-xr-x 5 root root 54 9月 5 12:43 test.txt
-rw-r--r-- 1 root root 0 9月 5 12:42 test.txt,Text.txt,TEST,cl
-rw-r--r-- 1 root root 0 9月 5 12:43 Text.txt
。
相关文章:
Shell常用的几个正则表达式:[:alnum:], [:alpha:], [:upper:], [:lower:], [:digit:] 认知
一:通配符命令简介: 匹配符合相关条件的符号,匹配文件名查找。 通配符类型: *:匹配任意长度的任意字符 ?:匹配任意单个字符 []:匹配指定范围内的任意单个字符 [^]:匹配指…...
简单的爬虫代码 爬(豆瓣电影)
路漫漫其修远兮,吾将上下而求索 这次写一个最简单的python爬虫代码,也是大多教程第一次爬取的,代码里面有个别的简单介绍,希望能加深您对python爬虫的理解。 本次爬取两个网页数据 一 爬取的网站 豆瓣电影 爬取网页中的&#…...
微服务之架构演变
随着互联网的发展,网站应用规模不断扩大,网站架构随之不断演变,演变历史大致分为单体应用架构-垂直应用架构-分布式架构-SOA架构-微服务架构-云原生架构 架构演变 单体应用架构 以前网站流量小,只需要一个应用就可以把所有功能…...
面试问题记录一 --- C++(Qt方向)
以下是我于2023年6~7月间换工作时遇到的面试题目,有需要的小伙伴可以参考下。约100个题目。 1 C和C++的区别 1) 文件区别:C源文件后缀 .c;C++源文件后缀 .cpp 2) 返回值: C默认返回int型;C++ 若无返回值,必须指定为void 3) 参数列表:C默认接收多个…...
使用词袋模型(BoW)测试提取图像的特征点和聚类中心
文章目录 环境配置代码测试 环境配置 (1) 导入opencv,参考链接 https://blog.csdn.net/Aer_7z/article/details/132612369(2) 安装numpy 激活虚拟环境的前提下,输入: pip install numpy(3) 安装sklearn 激活虚拟环境的前提下,输…...
利用vba处理Excel表格数据实现键值转化,适用于将编码转化成对应的文本
最近遇到了一个甲方需要提供系统登录的用户名单和对应的角色权限内容。无奈直接从数据库导出的数据对应的都是编码,没有转成中文,想着偷个懒能不能直接用Excel直接转,网上看了一下有修改单元格格式的,但需要编码是2到3个。多的就用…...
IntelliJ IDEA(Windows 版)的所有快捷键
🪁🍁 希望本文能够给您带来一定的帮助🌸文章粗浅,敬请批评指正!🍁🐥 大家好 本文参考了 IntelliJ IDEA 的官网,列举了IntelliJ IDEA(Windows 版)的所有快捷…...
文件上传漏洞全面渗透姿势
0x00 文件上传场景 (本文档只做技术交流) 文件上传的场景真的随处可见,不加防范小心,容易造成漏洞,造成信息泄露,甚至更为严重的灾难。 比如某博客网站评论编辑模块,右上角就有支持上传图片的功能,提交带…...
GreenPlum的gpfdist使用与原理流程分析
一、简介 GreenPlum 的数据导入功能作为对数据源的一种扩充,数据导入的方式有: 1、insert 该方式通过 sql 语句,把数据一条一条插入至表中。这种方式,不仅读取数据慢(一条一条读取),且数据需要…...
Spring AOP与静态代理/动态代理
文章目录 一、代理模式静态代理动态代理代理模式与AOP 二、Spring AOPSping AOP用来处理什么场景jdk 动态代理cglib 动态代理面试题:讲讲Spring AOP的原理与执行流程 总结 一、代理模式 代理模式是一种结构型设计模式,它允许对象提供替代品或占位符&…...
【LeetCode算法系列题解】第51~55题
CONTENTS LeetCode 51. N 皇后(困难)LeetCode 52. N 皇后 II(困难)LeetCode 53. 最大子序和(中等)LeetCode 54. 螺旋矩阵(中等)LeetCode 55. 跳跃游戏(中等) …...
驱动开发错误汇编
本博文将会不定期更新。以便记录我的驱动开发生涯中的一些点点滴滴的技术细节和琐事。 1. link阶段找不到导出函数 比如"LNK2019 无法解析的外部符号 _FltCreateCommunicationPort32"。 出现这种情况的原因是,驱动的编译环境忽略了所有的默认库&#x…...
知识图谱项目实践
目录 步骤 SpaCy Textacy——Text Analysis for Cybersecurity Networkx Dateparser 导入库 写出页面的名称 编辑 自然语言处理 词性标注 可能标记的完整列表 依存句法分析(Dependency Parsing,DEP) 可能的标签完整列表 实例理…...
stable diffusion实践操作-提示词-人物属性
系列文章目录 stable diffusion实践操作-提示词 文章目录 系列文章目录前言一、提示词汇总1.1 人物属性11.2 人物属性2 前言 本文主要收纳总结了提示词-人物属性。 一、提示词汇总 1.1 人物属性1 角色类型人物身材胸部头发-发型头发-发色[女仆][霊烏路空][大腿][乳房][呆毛…...
RabbitMQ的安装和配置
将RabbitMQ文件夹传到linux根目录 开启管理界面及配置...
WebRTC 日志
WebRTC 日志 flyfish WebRTC支持的日志等级 // // The meanings of the levels are: // LS_VERBOSE: This level is for data which we do not want to appear in the // normal debug log, but should appear in diagnostic logs. // LS_INFO: Chatty level used in de…...
【python爬虫】16.爬虫知识点总结复习
文章目录 前言爬虫总复习工具解析与提取(一)解析与提取(二)更厉害的请求存储更多的爬虫更强大的爬虫——框架给爬虫加上翅膀 爬虫进阶路线指引解析与提取 存储数据分析与可视化更多的爬虫更强大的爬虫——框架项目训练 反爬虫应对…...
Windows系统中Apache Http服务器简单使用
1 简介 Apache HTTP服务器是一个开源的、跨平台的Web服务器软件。它由Apache软件基金会开发和维护。Apache HTTP服务器可以在多种操作系统上运行,如Windows、Linux、Unix等,并且支持多种编程语言和技术,如PHP、Perl、Python、Java等。…...
Django ORM 框架中的表关系,你真的弄懂了吗?
Django ORM 框架中的表关系 为了说清楚问题,我们设计一个 crm 系统,包含五张表: 1.tb_student 学生表 2.tb_student_detail 学生详情表 3.tb_salesman 课程顾问表 4.tb_course 课程表 5.tb_entry 报名表 表关系和字段如下图:…...
第五课:C++实现加密PDF文档解密
请注意,未经授权的加密PDF文件解密是非法的,本文仅为学术和研究目的提供参考。 打开加密的PDF文件并获取密钥 在C++中,可以使用pdfium库打开加密的PDF文件。使用pdfium库中的FPDF_LoadCustomDocument函数可以打开具有自定义访问权限的加密文件。该函数接受一个IFX_FileRead*…...
智慧医疗能源事业线深度画像分析(上)
引言 医疗行业作为现代社会的关键基础设施,其能源消耗与环境影响正日益受到关注。随着全球"双碳"目标的推进和可持续发展理念的深入,智慧医疗能源事业线应运而生,致力于通过创新技术与管理方案,重构医疗领域的能源使用模式。这一事业线融合了能源管理、可持续发…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)
HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...
uni-app学习笔记二十二---使用vite.config.js全局导入常用依赖
在前面的练习中,每个页面需要使用ref,onShow等生命周期钩子函数时都需要像下面这样导入 import {onMounted, ref} from "vue" 如果不想每个页面都导入,需要使用node.js命令npm安装unplugin-auto-import npm install unplugin-au…...
React Native在HarmonyOS 5.0阅读类应用开发中的实践
一、技术选型背景 随着HarmonyOS 5.0对Web兼容层的增强,React Native作为跨平台框架可通过重新编译ArkTS组件实现85%以上的代码复用率。阅读类应用具有UI复杂度低、数据流清晰的特点。 二、核心实现方案 1. 环境配置 (1)使用React Native…...
学校招生小程序源码介绍
基于ThinkPHPFastAdminUniApp开发的学校招生小程序源码,专为学校招生场景量身打造,功能实用且操作便捷。 从技术架构来看,ThinkPHP提供稳定可靠的后台服务,FastAdmin加速开发流程,UniApp则保障小程序在多端有良好的兼…...
Java多线程实现之Callable接口深度解析
Java多线程实现之Callable接口深度解析 一、Callable接口概述1.1 接口定义1.2 与Runnable接口的对比1.3 Future接口与FutureTask类 二、Callable接口的基本使用方法2.1 传统方式实现Callable接口2.2 使用Lambda表达式简化Callable实现2.3 使用FutureTask类执行Callable任务 三、…...
HBuilderX安装(uni-app和小程序开发)
下载HBuilderX 访问官方网站:https://www.dcloud.io/hbuilderx.html 根据您的操作系统选择合适版本: Windows版(推荐下载标准版) Windows系统安装步骤 运行安装程序: 双击下载的.exe安装文件 如果出现安全提示&…...
Swagger和OpenApi的前世今生
Swagger与OpenAPI的关系演进是API标准化进程中的重要篇章,二者共同塑造了现代RESTful API的开发范式。 本期就扒一扒其技术演进的关键节点与核心逻辑: 🔄 一、起源与初创期:Swagger的诞生(2010-2014) 核心…...
精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南
精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南 在数字化营销时代,邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天,我们将深入解析邮件打开率、网站可用性、页面参与时…...
大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计
随着大语言模型(LLM)参数规模的增长,推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长,而KV缓存的内存消耗可能高达数十GB(例如Llama2-7B处理100K token时需50GB内存&a…...
