当前位置: 首页 > news >正文

uni-app点击复制指定内容(点击复制)

相关文章:

uni-app点击复制指定内容(点击复制)

官方api uni.setClipboardData(OBJECT) uni.setClipboardData({data: 要被复制的内容,success: function () {console.log(success);} });...

无涯教程-Flutter - 简介

Flutter是一个由谷歌开发的开源移动应用软件开发工具包,用于为Android、iOS、 Windows、Mac、Linux、Google Fuchsia开发应用。 通常,创建移动应用程序是一个非常复杂和具有挑战性的任务。有许多框架可用,它提供了开发移动应用程序的出色函数…...

【STM32】学习笔记-时间戳RTC

Unix时间戳 Unix 时间戳(Unix Timestamp)定义为从UTC/GMT的1970年1月1日0时0分0秒开始所经过的秒数,不考虑闰秒 时间戳存储在一个秒计数器中,秒计数器为32位/64位的整型变量 世界上所有时区的秒计数器相同,不同时区通…...

绿色能源迎来跨越式增长新时代

当今世界,百年未有之大变局加速演进,新一轮科技革命和产业变革深入发展,全球气候治理呈现新局面,新能源和信息技术紧密融合,生产生活方式加快转向低碳化、智能化,能源体系和发展模式正在进入非化石能源主导…...

【算法】函数渐近的界基础知识及定理

创作不易&#xff0c;本篇文章如果帮助到了你&#xff0c;还请点赞 关注支持一下♡>&#x16966;<)!! 主页专栏有更多知识&#xff0c;如有疑问欢迎大家指正讨论&#xff0c;共同进步&#xff01; &#x1f525;c系列专栏&#xff1a;C/C零基础到精通 &#x1f525; 给大…...

stable diffusion实践操作-writing

文章目录 前言一、优点1.1、免费开源1.2、拥有强大的外接模型 二、组成要素2.1 底模2.2 风格2.3 提示词2.4 参数配置 三、生图原理四、下载链接 实践正文一、安装1.1 电脑硬件配置查看1.2 安装本地版本的stable diffusion1.3 SD使用教程 二、模型介绍与下载2.1大模型2.2 Lora模…...

idea查找maven所有依赖

文章目录 idea自带的依赖结构图idea安装maven helper插件 idea自带的依赖结构图 缺点是只有依赖&#xff0c;没有版本 idea安装maven helper插件 settings–>plugins–>搜索maven helper并安装 安装后打开pom.xml文件会有依赖解析 勾选conflict就是有冲突的依赖选中…...

【业务功能篇97】微服务-springcloud-springboot-电商购物车模块-获取当前登录用户的购物车信息

购物车功能 一、购物车模块 1.创建cart服务 我们需要先创建一个cart的微服务&#xff0c;然后添加相关的依赖&#xff0c;设置配置&#xff0c;放开注解。 <dependencies><dependency><groupId>com.msb.mall</groupId><artifactId>mall-commo…...

Shell常用的几个正则表达式:[:alnum:], [:alpha:], [:upper:], [:lower:], [:digit:] 认知

一&#xff1a;通配符命令简介&#xff1a; 匹配符合相关条件的符号&#xff0c;匹配文件名查找。 通配符类型&#xff1a; *&#xff1a;匹配任意长度的任意字符 &#xff1f;&#xff1a;匹配任意单个字符 []&#xff1a;匹配指定范围内的任意单个字符 [^]&#xff1a;匹配指…...

简单的爬虫代码 爬(豆瓣电影)

路漫漫其修远兮&#xff0c;吾将上下而求索 这次写一个最简单的python爬虫代码&#xff0c;也是大多教程第一次爬取的&#xff0c;代码里面有个别的简单介绍&#xff0c;希望能加深您对python爬虫的理解。 本次爬取两个网页数据 一 爬取的网站 豆瓣电影 爬取网页中的&#…...

微服务之架构演变

随着互联网的发展&#xff0c;网站应用规模不断扩大&#xff0c;网站架构随之不断演变&#xff0c;演变历史大致分为单体应用架构-垂直应用架构-分布式架构-SOA架构-微服务架构-云原生架构 架构演变 单体应用架构 以前网站流量小&#xff0c;只需要一个应用就可以把所有功能…...

面试问题记录一 --- C++(Qt方向)

以下是我于2023年6~7月间换工作时遇到的面试题目,有需要的小伙伴可以参考下。约100个题目。 1 C和C++的区别 1) 文件区别:C源文件后缀 .c;C++源文件后缀 .cpp 2) 返回值: C默认返回int型;C++ 若无返回值,必须指定为void 3) 参数列表:C默认接收多个…...

使用词袋模型(BoW)测试提取图像的特征点和聚类中心

文章目录 环境配置代码测试 环境配置 (1) 导入opencv&#xff0c;参考链接 https://blog.csdn.net/Aer_7z/article/details/132612369(2) 安装numpy 激活虚拟环境的前提下&#xff0c;输入&#xff1a; pip install numpy(3) 安装sklearn 激活虚拟环境的前提下&#xff0c;输…...

利用vba处理Excel表格数据实现键值转化,适用于将编码转化成对应的文本

最近遇到了一个甲方需要提供系统登录的用户名单和对应的角色权限内容。无奈直接从数据库导出的数据对应的都是编码&#xff0c;没有转成中文&#xff0c;想着偷个懒能不能直接用Excel直接转&#xff0c;网上看了一下有修改单元格格式的&#xff0c;但需要编码是2到3个。多的就用…...

IntelliJ IDEA(Windows 版)的所有快捷键

&#x1fa81;&#x1f341; 希望本文能够给您带来一定的帮助&#x1f338;文章粗浅&#xff0c;敬请批评指正&#xff01;&#x1f341;&#x1f425; 大家好 本文参考了 IntelliJ IDEA 的官网&#xff0c;列举了IntelliJ IDEA&#xff08;Windows 版&#xff09;的所有快捷…...

文件上传漏洞全面渗透姿势

0x00 文件上传场景 (本文档只做技术交流) 文件上传的场景真的随处可见&#xff0c;不加防范小心&#xff0c;容易造成漏洞&#xff0c;造成信息泄露&#xff0c;甚至更为严重的灾难。 比如某博客网站评论编辑模块&#xff0c;右上角就有支持上传图片的功能&#xff0c;提交带…...

GreenPlum的gpfdist使用与原理流程分析

一、简介 GreenPlum 的数据导入功能作为对数据源的一种扩充&#xff0c;数据导入的方式有&#xff1a; 1、insert 该方式通过 sql 语句&#xff0c;把数据一条一条插入至表中。这种方式&#xff0c;不仅读取数据慢&#xff08;一条一条读取&#xff09;&#xff0c;且数据需要…...

Spring AOP与静态代理/动态代理

文章目录 一、代理模式静态代理动态代理代理模式与AOP 二、Spring AOPSping AOP用来处理什么场景jdk 动态代理cglib 动态代理面试题&#xff1a;讲讲Spring AOP的原理与执行流程 总结 一、代理模式 代理模式是一种结构型设计模式&#xff0c;它允许对象提供替代品或占位符&…...

【LeetCode算法系列题解】第51~55题

CONTENTS LeetCode 51. N 皇后&#xff08;困难&#xff09;LeetCode 52. N 皇后 II&#xff08;困难&#xff09;LeetCode 53. 最大子序和&#xff08;中等&#xff09;LeetCode 54. 螺旋矩阵&#xff08;中等&#xff09;LeetCode 55. 跳跃游戏&#xff08;中等&#xff09; …...

驱动开发错误汇编

本博文将会不定期更新。以便记录我的驱动开发生涯中的一些点点滴滴的技术细节和琐事。 1. link阶段找不到导出函数 比如"LNK2019 无法解析的外部符号 _FltCreateCommunicationPort32"。 出现这种情况的原因是&#xff0c;驱动的编译环境忽略了所有的默认库&#x…...

AI Agent与Agentic AI:原理、应用、挑战与未来展望

文章目录 一、引言二、AI Agent与Agentic AI的兴起2.1 技术契机与生态成熟2.2 Agent的定义与特征2.3 Agent的发展历程 三、AI Agent的核心技术栈解密3.1 感知模块代码示例&#xff1a;使用Python和OpenCV进行图像识别 3.2 认知与决策模块代码示例&#xff1a;使用OpenAI GPT-3进…...

23-Oracle 23 ai 区块链表(Blockchain Table)

小伙伴有没有在金融强合规的领域中遇见&#xff0c;必须要保持数据不可变&#xff0c;管理员都无法修改和留痕的要求。比如医疗的电子病历中&#xff0c;影像检查检验结果不可篡改行的&#xff0c;药品追溯过程中数据只可插入无法删除的特性需求&#xff1b;登录日志、修改日志…...

2024年赣州旅游投资集团社会招聘笔试真

2024年赣州旅游投资集团社会招聘笔试真 题 ( 满 分 1 0 0 分 时 间 1 2 0 分 钟 ) 一、单选题(每题只有一个正确答案,答错、不答或多答均不得分) 1.纪要的特点不包括()。 A.概括重点 B.指导传达 C. 客观纪实 D.有言必录 【答案】: D 2.1864年,()预言了电磁波的存在,并指出…...

《通信之道——从微积分到 5G》读书总结

第1章 绪 论 1.1 这是一本什么样的书 通信技术&#xff0c;说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号&#xff08;调制&#xff09; 把信息从信号中抽取出来&am…...

从零开始打造 OpenSTLinux 6.6 Yocto 系统(基于STM32CubeMX)(九)

设备树移植 和uboot设备树修改的内容同步到kernel将设备树stm32mp157d-stm32mp157daa1-mx.dts复制到内核源码目录下 源码修改及编译 修改arch/arm/boot/dts/st/Makefile&#xff0c;新增设备树编译 stm32mp157f-ev1-m4-examples.dtb \stm32mp157d-stm32mp157daa1-mx.dtb修改…...

【HTML-16】深入理解HTML中的块元素与行内元素

HTML元素根据其显示特性可以分为两大类&#xff1a;块元素(Block-level Elements)和行内元素(Inline Elements)。理解这两者的区别对于构建良好的网页布局至关重要。本文将全面解析这两种元素的特性、区别以及实际应用场景。 1. 块元素(Block-level Elements) 1.1 基本特性 …...

第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词

Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵&#xff0c;其中每行&#xff0c;每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid&#xff0c;其中有多少个 3 3 的 “幻方” 子矩阵&am…...

均衡后的SNRSINR

本文主要摘自参考文献中的前两篇&#xff0c;相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程&#xff0c;其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt​ 根发送天线&#xff0c; n r n_r nr​ 根接收天线的 MIMO 系…...

HDFS分布式存储 zookeeper

hadoop介绍 狭义上hadoop是指apache的一款开源软件 用java语言实现开源框架&#xff0c;允许使用简单的变成模型跨计算机对大型集群进行分布式处理&#xff08;1.海量的数据存储 2.海量数据的计算&#xff09;Hadoop核心组件 hdfs&#xff08;分布式文件存储系统&#xff09;&a…...

初探Service服务发现机制

1.Service简介 Service是将运行在一组Pod上的应用程序发布为网络服务的抽象方法。 主要功能&#xff1a;服务发现和负载均衡。 Service类型的包括ClusterIP类型、NodePort类型、LoadBalancer类型、ExternalName类型 2.Endpoints简介 Endpoints是一种Kubernetes资源&#xf…...