当前位置: 首页 > news >正文

深入理解联邦学习——联邦学习与现有理论的区别与联系

分类目录:《深入理解联邦学习》总目录


作为一种全新的技术,联邦学习在借鉴一些成熟技术的同时也具备了一定的独创性。下面我们就从多个角度来阐释联邦学习和其他相关概念之间的关系。

联邦学习与差分隐私理论的区别

联邦学习的特点使其可以被用来保护用户数据的隐私,但是它和大数据、数据挖掘领域中常用的隐私保护理论如差分隐私保护理论(DifferentiaI Privacy)、K匿名(K-Anonymity)和L多样化(L-Diversity)等方法还是有较大的差别的。首先联邦学习与传统隐私保护方法的原理不同,联邦学习通过加密机制下的参数交换方式保护用户数据隐私,加密手段包括同态加密等。与DifferentiaI Privacy不同,其数据和模型本身不会进行传输,因此在数据层面上不存在泄露的可能,也不违反更严格的数据保护法案如GDPR等。而差分隐私理论、K匿名和L多样化等方法是通过在数据里加噪音,或者采用概括化的方法模糊某些敏感属性,直到第三方不能区分个体为止,从而以较高的概率使数据无法被还原,以此来保护用户隐私。但是,从本质上来说这些方法还是进行了原始数据的传输,存在着潜在被攻击的可能性,并且在GDPR等更严格的数据保护法案下这种数据隐私的保护方式可能不再适用。与之对应的,联邦学习是对用户数据隐私保护更为有力的手段。

联邦学习与分布式机器学习的区别

横向联邦学习中多方联合训练的方式与分布式机器学习(Distributed Machine Learning)有部分相似的地方。分布式机器学习涵盖了多个方面,包括把机器学习中的训练数据分布式存储、计算任务分布式运行、模型结果分布式发布等,参数服务器(Parameter Server)是分布式机器学习中一个典型的例子。参数服务器作为加速机器学习模型训练过程的一种工具,它将数据存储在分布式的工作节点上,通过一个中心式的调度节点调配数据分布和分配计算资源,以便更高效的获得最终的训练模型。而对于联邦学习而言,首先在于横向联邦学习中的工作节点代表的是模型训练的数据拥有方,其对本地的数据具有完全的自治权限,可以自主决定何时加入联邦学习进行建模,相对地在参数服务器中,中心节点始终占据着主导地位,因此联邦学习面对的是一个更复杂的学习环境;其次,联邦学习则强调模型训练过程中对数据拥有方的数据隐私保护,是一种应对数据隐私保护的有效措施,能够更好地应对未来愈加严格的数据隐私和数据安全监管环境。

联邦学习与联邦数据库的关系

联邦数据库系统(Federated Database System)是将多个不同的单元数据库进行集成,并对集成后的整体进行管理的系统。它的提出是为了实现对多个独立的数据库进行相互操作。联邦数据库系统对单元数据库往往采用分布式存储的方式,并且在实际中各个单元数据库中的数据是异构的,因此,它和联邦学习在数据的类型与存储方式上有很多相似之处。但是,联邦数据库系统在各个单元数据库交互的过程中不涉及任何隐私保护机制,所有单元数据库对管理系统都是完全可见的。此外,联邦数据库系统的工作重心在包括插入、删除、查找、合并等各种数据库基本操作上面,而联邦学习的目的是在保护数据隐私的前提下对各个数据建立一个联合模型,使数据中含的各种模式与规律更好地为我们服务。

联邦学习与区块链的关系

区块链是一个基于密码学安全的分布式账本,其方便验证,不可篡改。区块链2.0是一个去中心化的应用,通过使用开源的代码及分布式的存储和运行,保证极高的透明度和安全性,使数据不会被篡改。区块链的典型应用包括比特币(BTC)、以太坊(ETH)等。区块链与联邦学习都是一种去中心化的网络,区块链是一种完全P2P的网络结构,而在联邦学习中,第三方会承担汇聚模型、管理等功能。联邦学习与区块链中,均涉及到密码学、加密算法等基础技术。根据技术的不同,区块链技术使用的加密算法包括哈希算法,非对称加密等;联邦学习中使用同态加密等。从数据角度上看,区块链上通过加密的方式在各个节点上记录了完整的数据,而联邦学习中,各方的数据均仅保留在本地。从奖励机制上看,区块链中,不同节点之间通过竞争记账来获得奖励;在联邦学习中,多个参与方通过共同学习,提高模型训练结果,依据每一方的贡献来分配奖励。

联邦学习与多方安全计算的关系

在联邦学习中,用户的隐私与安全是重中之重。为了保护用户隐私,防止联邦学习应用被恶意方攻击,多方安全计算技术可以在联邦学习中被应用,成为联邦学习技术框架中的一部分。学术界已经展开利用多方安全计算来增强联邦学习的安全性的研究。McMahan指出,联邦学习可以通过差分隐私,多方安全计算,或它们的结合等技术来提供更强的安全保障。Bonawitz指出,联邦学习中,可以利用多方安全计算以安全的方式计算来自用户设备的模型参数更新的总和。Truex提出了一种利用差分隐私和多方安全计算来保护隐私的联邦学习方法。Liu提出将加性同态加密(AHE)应用于神经网络的多方计算。微众银行提出的开源联邦学习框架FATE中包含了多方安全计算的相关算子,方便应用方对多方安全计算进行高效的开发。

参考文献:
[1] 杨强, 刘洋, 程勇, 康焱, 陈天健, 于涵. 联邦学习[M]. 电子工业出版社, 2020
[2] 微众银行, FedAI. 联邦学习白皮书V2.0. 腾讯研究院等, 2021

相关文章:

深入理解联邦学习——联邦学习与现有理论的区别与联系

分类目录:《深入理解联邦学习》总目录 作为一种全新的技术,联邦学习在借鉴一些成熟技术的同时也具备了一定的独创性。下面我们就从多个角度来阐释联邦学习和其他相关概念之间的关系。 联邦学习与差分隐私理论的区别 联邦学习的特点使其可以被用来保护用…...

基于Python+DenseNet121算法模型实现一个图像分类识别系统案例

目录 介绍在TensorFlow中的应用实战案例最后 一、介绍 DenseNet(Densely Connected Convolutional Networks)是一种卷积神经网络(CNN)架构,2017年由Gao Huang等人提出。该网络的核心思想是密集连接,即每…...

旋转图片两种方法

这两种方法在旋转图像时,可能会产生一些不同的效果: rotate_image_new()旋转后的图像完全包含旋转前的内容,并且填充边界尽可能小 rotate_image() 保持原始图像的大小,并根据填充选项决定是否填充边界为白色。如果 if_fill_whit…...

10 mysql tiny/small/medium/big int 的数据存储

前言 这里主要是 由于之前的一个 datetime 存储的时间 导致的问题的衍生出来的探究 探究的主要内容为 int 类类型的存储, 浮点类类型的存储, char 类类型的存储, blob 类类型的存储, enum/json/set/bit 类类型的存储 本文主要 的相关内容是 int 类类型的相关数据的存储 …...

UI自动化测试之Jenkins配置

团队下半年的目标之一是实现自动化测试,这里要吐槽一下,之前开发的测试平台了,最初的目的是用来做接口自动化测试和性能测试,但由于各种原因,接口自动化测试那部分功能整个废弃掉了,其中和易用性有很大关系…...

电视盒子什么品牌好?数码博主盘点目前性能最好的电视盒子

电视盒子是非常重要的,老人小孩基本每天都会看电视,而电视盒子作为电视盒子的最佳拍档销量十分火爆,我自己每个月都会测评几次电视盒子,今天给大家详细解读一下电视盒子什么品牌好,看看目前性能最好的电视盒子是哪些&a…...

对于枚举类型的输出

对于枚举类型的输出 对于枚举类型的输出&#xff0c;您可以使用以下方法&#xff1a;1. 将枚举值转换为整数进行输出&#xff1a;cppODU_TYPE type ODU_TYPE_331;int value static_cast<int>(type);std::cout << "ODU_TYPE: " << value <<…...

solidity开发环境配置,vscode搭配remix

#学习笔记 初学solidity&#xff0c;使用remix非常方便&#xff0c;因为需要的环境都配置好了&#xff0c;打开网站就可以使用。 不过在编写代码方面&#xff0c;使用vscode更方便&#xff0c;而vscode本身并不能像remix那样部署合约&#xff0c;它还需要安装插件。 点击红色箭…...

chatGPT生成代码--go组合算法

提问&#xff1a;用golang写一个组合算法函数zuhe(x,n)&#xff0c;x为组合所需的字符&#xff0c;n 为组合后的字符串长度&#xff0c;例如 x"ab", n2 结果返回 aa,ab,bb,ba 结果&#xff1a;下面是一个用Go编写的生成长度为n的字符串组合的函数 zuhe&#xff0c;其…...

推荐6款普通人搞副业做自媒体AI工具

hi&#xff0c;同学们&#xff0c;我是赤辰&#xff0c;本期是赤辰第5篇AI工具类教程&#xff0c;文章底部准备了粉丝福利&#xff0c;看完可以领取&#xff01;身边越来越多的小伙伴靠自媒体实现财富自由了&#xff01;因此&#xff0c;推荐大家在工作之余或空闲时间从事自媒体…...

vs中git提交合并分支的步骤记录

vs打开终端 PS D:\project\et_lower4_driver> git pull Already up to date. PS D:\project\et_lower4_driver> git branch * kiyun_usb7851 master PS D:\project\et_lower4_driver> git checkout master Switched to branch master Your branch is up to date wit…...

PostgreSQL 备份恢复:pg_probackup

文章目录 前言1. 安装备份工具1.1 环境介绍1.2 RPM 安装1.3 验证 2. 配置备份工具2.1 初始化设置2.2 创建备份用户2.3 配置自动归档 3. 工具使用介绍3.1 init3.2 add-instance3.3 del-instance3.4 set-config3.5 show-config3.6 set-backup3.7 backup3.8 show3.9 delete3.10 re…...

博客程序系统其它功能扩充

一、注册功能 1、约定前后端接口 2、后端代码编写 WebServlet("/register") public class RegisterServlet extends HttpServlet {Overrideprotected void doPost(HttpServletRequest req, HttpServletResponse resp) throws ServletException, IOException {//设置…...

MATLAB 2023安装方法之删除旧版本MATLAB,安装新版本MATLAB

说明&#xff1a;之前一直使用的是MATLAB R2020b&#xff0c;但最近复现Github上的程序时&#xff0c;运行不了&#xff0c;联系作者说他的程序只能在MATLAB 2021之后的版本运行&#xff0c;因此决定安装最新版本的MATLAB。 系统&#xff1a;Windows 11 需要卸载的旧MATLAB 版…...

全国唯一一所初试考Java的学校!平均300分拿下

苏州科技大学 考研难度&#xff08;☆&#xff09; 内容&#xff1a;23考情概况&#xff08;拟录取和复试分析&#xff09;、院校概况、23专业目录、23复试详情、各专业考情分析、各科目考情分析。 正文1187字&#xff0c;预计阅读&#xff1a;3分钟 2023考情概况 苏州科技…...

day35 | 860.柠檬水找零、406.根据身高重建队列、452. 用最少数量的箭引爆气球

目录&#xff1a; 解题及思路学习 860. 柠檬水找零 在柠檬水摊上&#xff0c;每一杯柠檬水的售价为 5 美元。顾客排队购买你的产品&#xff0c;&#xff08;按账单 bills 支付的顺序&#xff09;一次购买一杯。 每位顾客只买一杯柠檬水&#xff0c;然后向你付 5 美元、10 美…...

ffmpeg批量转码

新建.bat文件 echo offfor %%s in (*.mp4) do ( echo %%s ffmpeg -i %%s -b 7M %%~ns7m.mp4 ) pause如果你的电脑有显卡&#xff0c;也可以使用硬件转码。转码程序链接...

时序预测 | MATLAB实现基于QPSO-BiLSTM、PSO-BiLSTM和BiLSTM时间序列预测

时序预测 | MATLAB实现基于QPSO-BiLSTM、PSO-BiLSTM和BiLSTM时间序列预测 目录 时序预测 | MATLAB实现基于QPSO-BiLSTM、PSO-BiLSTM和BiLSTM时间序列预测效果一览基本描述程序设计参考资料 效果一览 基本描述 1.Matlab实现QPSO-BiLSTM、PSO-BiLSTM和BiLSTM神经网络时间序列预测…...

【TypeScript学习】—基本类型(二)

【TypeScript学习】—基本类型&#xff08;二&#xff09; 一、TypeScript基本类型 //也可以直接用字面量进行类型声明let a:10; a10;//也可以使用 |来连接多个类型&#xff08;联合类型&#xff09;let b:"male"|"female"; b"male"; b"fe…...

uni-app点击复制指定内容(点击复制)

官方api uni.setClipboardData(OBJECT) uni.setClipboardData({data: 要被复制的内容,success: function () {console.log(success);} });...

无涯教程-Flutter - 简介

Flutter是一个由谷歌开发的开源移动应用软件开发工具包&#xff0c;用于为Android、iOS、 Windows、Mac、Linux、Google Fuchsia开发应用。 通常&#xff0c;创建移动应用程序是一个非常复杂和具有挑战性的任务。有许多框架可用&#xff0c;它提供了开发移动应用程序的出色函数…...

【STM32】学习笔记-时间戳RTC

Unix时间戳 Unix 时间戳&#xff08;Unix Timestamp&#xff09;定义为从UTC/GMT的1970年1月1日0时0分0秒开始所经过的秒数&#xff0c;不考虑闰秒 时间戳存储在一个秒计数器中&#xff0c;秒计数器为32位/64位的整型变量 世界上所有时区的秒计数器相同&#xff0c;不同时区通…...

绿色能源迎来跨越式增长新时代

当今世界&#xff0c;百年未有之大变局加速演进&#xff0c;新一轮科技革命和产业变革深入发展&#xff0c;全球气候治理呈现新局面&#xff0c;新能源和信息技术紧密融合&#xff0c;生产生活方式加快转向低碳化、智能化&#xff0c;能源体系和发展模式正在进入非化石能源主导…...

【算法】函数渐近的界基础知识及定理

创作不易&#xff0c;本篇文章如果帮助到了你&#xff0c;还请点赞 关注支持一下♡>&#x16966;<)!! 主页专栏有更多知识&#xff0c;如有疑问欢迎大家指正讨论&#xff0c;共同进步&#xff01; &#x1f525;c系列专栏&#xff1a;C/C零基础到精通 &#x1f525; 给大…...

stable diffusion实践操作-writing

文章目录 前言一、优点1.1、免费开源1.2、拥有强大的外接模型 二、组成要素2.1 底模2.2 风格2.3 提示词2.4 参数配置 三、生图原理四、下载链接 实践正文一、安装1.1 电脑硬件配置查看1.2 安装本地版本的stable diffusion1.3 SD使用教程 二、模型介绍与下载2.1大模型2.2 Lora模…...

idea查找maven所有依赖

文章目录 idea自带的依赖结构图idea安装maven helper插件 idea自带的依赖结构图 缺点是只有依赖&#xff0c;没有版本 idea安装maven helper插件 settings–>plugins–>搜索maven helper并安装 安装后打开pom.xml文件会有依赖解析 勾选conflict就是有冲突的依赖选中…...

【业务功能篇97】微服务-springcloud-springboot-电商购物车模块-获取当前登录用户的购物车信息

购物车功能 一、购物车模块 1.创建cart服务 我们需要先创建一个cart的微服务&#xff0c;然后添加相关的依赖&#xff0c;设置配置&#xff0c;放开注解。 <dependencies><dependency><groupId>com.msb.mall</groupId><artifactId>mall-commo…...

Shell常用的几个正则表达式:[:alnum:], [:alpha:], [:upper:], [:lower:], [:digit:] 认知

一&#xff1a;通配符命令简介&#xff1a; 匹配符合相关条件的符号&#xff0c;匹配文件名查找。 通配符类型&#xff1a; *&#xff1a;匹配任意长度的任意字符 &#xff1f;&#xff1a;匹配任意单个字符 []&#xff1a;匹配指定范围内的任意单个字符 [^]&#xff1a;匹配指…...

简单的爬虫代码 爬(豆瓣电影)

路漫漫其修远兮&#xff0c;吾将上下而求索 这次写一个最简单的python爬虫代码&#xff0c;也是大多教程第一次爬取的&#xff0c;代码里面有个别的简单介绍&#xff0c;希望能加深您对python爬虫的理解。 本次爬取两个网页数据 一 爬取的网站 豆瓣电影 爬取网页中的&#…...

微服务之架构演变

随着互联网的发展&#xff0c;网站应用规模不断扩大&#xff0c;网站架构随之不断演变&#xff0c;演变历史大致分为单体应用架构-垂直应用架构-分布式架构-SOA架构-微服务架构-云原生架构 架构演变 单体应用架构 以前网站流量小&#xff0c;只需要一个应用就可以把所有功能…...

丰城住房和城乡建设部网站/长沙网站推广公司排名

Chicago Boss是一个用Erlang编写的服务器端框架&#xff0c;灵感来自Rails。Chicago Boss提供了现代Web 开发的各种便利功能&#xff0c;包括Comet。这个框架和其他非Erlang框架最大的区别是&#xff0c;它可以支撑很大的吞吐量。而和其他Erlang框架相比&#xff0c;Chicago Bo…...

镇江网站建设公司/爱站网站

1.并发容器类 ConcurrentMap集合类使用与底层原理分析 CopyOnWrite集合类使用与底层原理分析 并发与阻塞队列Queue讲解 模拟阻塞队列实战 ArrayBlockingQueue ConcurrentLinkedQueue SynchronousQueue PriorityBlockingQueue优先级队列 DelayQueue延迟队列应…...

医院如何做网站策划?/免费人脉推广软件

CPython c语言开发的 使用最广的解释器IPython 基于cpython之上的一个交互式计时器 交互方式增强 功能和cpython一样PyPy 目标是执行效率 采用JIT技术 对python代码进行动态编译&#xff0c;提高执行效率JPython 运行在Java上的解释器 直接把python代码编译成Java字节码执行Iro…...

绍兴市高速公路建设指挥部网站/今日头条新闻手机版

1 SWUpdata 概述 SWUpdata 是一个开源项目&#xff0c;该项目可以从存储介质或网络为嵌入式设备更新嵌入式系统。但是&#xff0c;它应该主要被视为一个框架&#xff0c;可以轻松地将更多协议或安装程序&#xff08;在 SWUpdate 中称为处理程序&#xff09;添加到应用程序中。 …...

做美女网站赚钱么/精准营销系统价值

一文快速掌握 MySQL进程号、连接ID、查询ID、InnoDB线程与系统线程的对应关系。有时候&#xff0c;怀疑某个MySQL内存查询导致CPU或磁盘I/O消耗特别高&#xff0c;但又不确定具体是哪个SQL引起的。或者当InnoDB引擎内部有semaphore wait时&#xff0c;想知道具体是哪个线程/查询…...

专注赣州网站建设/百度上打广告怎么收费

public function searchWordsByInitial(){//从AJAX发出的URL中获得参数&#xff1a;用户点击的字母和点击的页码$initial htmlentities($_POST[initial], ENT_QUOTES,"UTF-8");$page htmlentities($_POST[page], ENT_QUOTES,"UTF-8");$words $this->…...